You are here
IDENTIFIABILITY ANALYSIS AND OPTIMAL CONTROL OF INFECTIOUS DISEASES EPIDEMICS AND PARAMETERIZATION METHOD FOR (UN)STABLE MANIFOLDS OF IMPLICITLY DEFINED DYNAMICAL SYSTEMS
- Date Issued:
- 2022
- Abstract/Description:
- This dissertation is a study about applied dynamical systems on two concentrations. First, on the basis of the growing association between opioid addiction and HIV infection, a compartmental model is developed to study dynamics and optimal control of two epidemics; opioid addiction and HIV infection. We show that the disease-free-equilibrium is locally asymptotically stable when the basic reproduction number R0 = max(Ru0; Rv0) < 1; here Rv0 is the reproduction number of the HIV infection, and Ru0 is the reproduction number of the opioid addiction. The addiction-only boundary equilibrium exists when Ru0 > 1 and it is locally asymptotically stable when the invasion number of the opioid addiction is Ruinv < 1: Similarly, HIV-only boundary equilibrium exists when Rv0 > 1 and it is locally asymptotically stable when the invasion number of the HIV infection is Rvinv < 1. We study structural identifiability of the parameters, estimate parameters employing yearly reported data from Central for Disease Control and Prevention (CDC), and study practical identifiability of estimated parameters. We observe the basic reproduction number R0 using the parameters. Next, we introduce four distinct controls in the model for the sake of control approach, including treatment for addictions, health care education about not sharing syringes, highly active anti-retroviral therapy (HAART), and rehab treatment for opiate addicts who are HIV infected. US population using CDC data, first applying a single control in the model and observing the results, we better understand the influence of individual control. After completing each of the four applications, we apply them together at the same time in the model and compare the outcomes using different control bounds and state variable weights. We conclude the results by presenting several graphs.
Title: | IDENTIFIABILITY ANALYSIS AND OPTIMAL CONTROL OF INFECTIOUS DISEASES EPIDEMICS AND PARAMETERIZATION METHOD FOR (UN)STABLE MANIFOLDS OF IMPLICITLY DEFINED DYNAMICAL SYSTEMS. |
67 views
41 downloads |
---|---|---|
Name(s): |
Neupane Timsina, Archana , author Tuncer, Necibe, Thesis advisor Mireles James, Jason D. , Thesis advisor Florida Atlantic University, Degree grantor Department of Mathematical Sciences Charles E. Schmidt College of Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 186 p. | |
Language(s): | English | |
Abstract/Description: | This dissertation is a study about applied dynamical systems on two concentrations. First, on the basis of the growing association between opioid addiction and HIV infection, a compartmental model is developed to study dynamics and optimal control of two epidemics; opioid addiction and HIV infection. We show that the disease-free-equilibrium is locally asymptotically stable when the basic reproduction number R0 = max(Ru0; Rv0) < 1; here Rv0 is the reproduction number of the HIV infection, and Ru0 is the reproduction number of the opioid addiction. The addiction-only boundary equilibrium exists when Ru0 > 1 and it is locally asymptotically stable when the invasion number of the opioid addiction is Ruinv < 1: Similarly, HIV-only boundary equilibrium exists when Rv0 > 1 and it is locally asymptotically stable when the invasion number of the HIV infection is Rvinv < 1. We study structural identifiability of the parameters, estimate parameters employing yearly reported data from Central for Disease Control and Prevention (CDC), and study practical identifiability of estimated parameters. We observe the basic reproduction number R0 using the parameters. Next, we introduce four distinct controls in the model for the sake of control approach, including treatment for addictions, health care education about not sharing syringes, highly active anti-retroviral therapy (HAART), and rehab treatment for opiate addicts who are HIV infected. US population using CDC data, first applying a single control in the model and observing the results, we better understand the influence of individual control. After completing each of the four applications, we apply them together at the same time in the model and compare the outcomes using different control bounds and state variable weights. We conclude the results by presenting several graphs. | |
Identifier: | FA00013970 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Dynamical systems Infectious diseases Parameter estimation |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013970 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |