You are here
FORAGING ECOLOGY OF A WADING BIRD IN TIDALLY INFLUENCED HABITATS: A SEQUENTIAL MODELING FRAMEWORK
- Date Issued:
- 2022
- Abstract/Description:
- I used empirical data to inform spatially- and temporally-explicit predictions of time-integrated habitat availability (TiHAB), quantify spatiotemporal patterns of resource selection by Little Blue Herons (Egretta caerulea), and evaluate foraging activity as function of resource availability and prey dynamics. Evaluating resource availability over time accounts for the magnitude and duration of resource change. This approach is useful for understanding mechanisms that underlie resource selection in dynamic environments and for guilds that are sensitive to changes in prey availability like wading birds. I found that average TiHAB varied interannually whereby gains and losses in Little Blue Heron foraging habitat at the landscape scale (1-8 km) occurred from slight differences in annual tidal cycles otherwise imperceptible with water depth data alone. Local patterns of resource selection by Little Blue Herons were temporally consistent but spatially variable across tidally influenced environments. TiHAB was the most important habitat attribute over time and space and was superior to other environmental features and prey density as a predictor of Little Blue Heron resource selection. Foraging activity did not show a clear association with probability of resource selection, but foraging metrics were best described by changes in TiHAB consistent with changes in foraging strategy. I conclude that spatiotemporal variation in resource availability reliably predicts patterns of dynamic habitat selection and supports an energy-maximizing foraging strategy for wading birds in tidally influenced habitats. This modeling framework can be applied to quantify the spatiotemporal availability of resources in real-time or under hydrologic restoration regimes and sea level rise scenarios, and track species responses to hydrologic and other environmental fluctuations.
Title: | FORAGING ECOLOGY OF A WADING BIRD IN TIDALLY INFLUENCED HABITATS: A SEQUENTIAL MODELING FRAMEWORK. |
57 views
27 downloads |
---|---|---|
Name(s): |
Martinez, Marisa Takada, author Gawlik, Dale E., Thesis advisor Florida Atlantic University, Degree grantor Department of Biological Sciences Charles E. Schmidt College of Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 178 p. | |
Language(s): | English | |
Abstract/Description: | I used empirical data to inform spatially- and temporally-explicit predictions of time-integrated habitat availability (TiHAB), quantify spatiotemporal patterns of resource selection by Little Blue Herons (Egretta caerulea), and evaluate foraging activity as function of resource availability and prey dynamics. Evaluating resource availability over time accounts for the magnitude and duration of resource change. This approach is useful for understanding mechanisms that underlie resource selection in dynamic environments and for guilds that are sensitive to changes in prey availability like wading birds. I found that average TiHAB varied interannually whereby gains and losses in Little Blue Heron foraging habitat at the landscape scale (1-8 km) occurred from slight differences in annual tidal cycles otherwise imperceptible with water depth data alone. Local patterns of resource selection by Little Blue Herons were temporally consistent but spatially variable across tidally influenced environments. TiHAB was the most important habitat attribute over time and space and was superior to other environmental features and prey density as a predictor of Little Blue Heron resource selection. Foraging activity did not show a clear association with probability of resource selection, but foraging metrics were best described by changes in TiHAB consistent with changes in foraging strategy. I conclude that spatiotemporal variation in resource availability reliably predicts patterns of dynamic habitat selection and supports an energy-maximizing foraging strategy for wading birds in tidally influenced habitats. This modeling framework can be applied to quantify the spatiotemporal availability of resources in real-time or under hydrologic restoration regimes and sea level rise scenarios, and track species responses to hydrologic and other environmental fluctuations. | |
Identifier: | FA00013925 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Ecology Herons Wading birds Ecological modelling |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013925 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |