You are here
Frequency-dependent characteristics of microstrip transmission lines
- Date Issued:
- 2000
- Summary:
- This dissertation is concerned with the studies on the frequency-dependent characteristics of microstrip line structures. Relevant considerations are applied to evaluate crosstalk in symmetric, coupled and lossy (dispersive) microstrip transmission lines. The technique adopted supplements the wide-range of semi-empirical expressions available in the literature on the frequency-dependent even- and odd-mode effective dielectric constants as well as the characteristic impedances of coupled microstrip lines. The accuracy of a crosstalk transfer function deduced is verified with theoretical and experimental results. The behavior of crosstalk versus line-spacing, dielectric substrate characteristics, and line-length is analyzed. This study is also extended to address the influence of temperature on crosstalk induced in microstrip lines. Further, analogous to relaxation considerations of Cole-Cole diagrams as applied to dielectric materials, a "reactive relaxation" concept is introduced to represent the frequency-dependent characteristics of lossless and lossy microstrips. The present algorithm depicting the dynamic permittivity of the microstrip structure (via Cole-Cole diagram) directly leads to a convenient and modified Smith chart representation. It includes the frequency-dependent influence of the fringing field and the lossy characteristics cohesively. Results based on the proposed model are compared with the available data in the literature in respect of a microstrip patch antenna. As far as the authors know of, this is the first attempt in depicting the dispersion characteristics of a microstrip line via Cole-Cole diagram format.
Title: | Frequency-dependent characteristics of microstrip transmission lines. |
405 views
325 downloads |
---|---|---|
Name(s): |
Malisuwan, Settapong. Florida Atlantic University, Degree grantor Ungvichian, Vichate, Thesis advisor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2000 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 250 p. | |
Language(s): | English | |
Summary: | This dissertation is concerned with the studies on the frequency-dependent characteristics of microstrip line structures. Relevant considerations are applied to evaluate crosstalk in symmetric, coupled and lossy (dispersive) microstrip transmission lines. The technique adopted supplements the wide-range of semi-empirical expressions available in the literature on the frequency-dependent even- and odd-mode effective dielectric constants as well as the characteristic impedances of coupled microstrip lines. The accuracy of a crosstalk transfer function deduced is verified with theoretical and experimental results. The behavior of crosstalk versus line-spacing, dielectric substrate characteristics, and line-length is analyzed. This study is also extended to address the influence of temperature on crosstalk induced in microstrip lines. Further, analogous to relaxation considerations of Cole-Cole diagrams as applied to dielectric materials, a "reactive relaxation" concept is introduced to represent the frequency-dependent characteristics of lossless and lossy microstrips. The present algorithm depicting the dynamic permittivity of the microstrip structure (via Cole-Cole diagram) directly leads to a convenient and modified Smith chart representation. It includes the frequency-dependent influence of the fringing field and the lossy characteristics cohesively. Results based on the proposed model are compared with the available data in the literature in respect of a microstrip patch antenna. As far as the authors know of, this is the first attempt in depicting the dispersion characteristics of a microstrip line via Cole-Cole diagram format. | |
Identifier: | 9780599611351 (isbn), 12627 (digitool), FADT12627 (IID), fau:9510 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (Ph.D.)--Florida Atlantic University, 2000. |
|
Subject(s): |
Strip transmission lines Crosstalk Microstrip antennas |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/12627 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |