You are here
Trajectory control of a new class of CNC machine tools
- Date Issued:
- 1998
- Summary:
- One emerging application of parallel manipulators is to use them as CNC (Computerized Numerical Controlled) machine tools and recently several prototypes of such CNC machines have been developed, all based on hexapod machine--a type of parallel manipulators similar to a Stewart platform. The goal of this research is to develop an effective control scheme, cross-coupling control, for this type of CNC machine tools, which will reduce the contouring errors and thus further enhance their advantages. This dissertation describes the research work as follows. Firstly. based on the analysis of the kinematics and dynamics, a PID (Proportional-Integral-Derivative) controller was designed for each leg of the hexapod CNC machine. Secondly, real-time contour error models were developed and verified to determine not only for the calculation of the contour errors of the hexapod CNC machine but also for the general case of any machine tools. Thirdly, the contour errors of the hexapod CNC machine were investigated for a conventional PID controller. The results indicate that the accuracy of the hexapod machine is better than the conventional CNC machine tools even for mismatched axes and load exertion. Finally, a cross-coupling control scheme was proposed for the purpose to enhance the contour accuracy of this new type of hexapod CNC machine tools. A cross-coupling controller design for a 2-DOF platform was performed to provide the guidelines. Then, a cross-coupling controller for the new type of hexapod CNC machine tools was designed by feeding back the contour error to each axis. The efficiency of the proposed cross-coupling controller was verified through simulations. The result shows that the proposed cross-coupling controller is very effective in reducing the contouring errors. While cross-coupling controllers were originally proposed for conventional CNC machine tools, this research is the first attempt of expanding this concept to the new type of hexapod CNC machine tools.
Title: | Trajectory control of a new class of CNC machine tools. |
149 views
59 downloads |
---|---|---|
Name(s): |
Xiu, Daoxi. Florida Atlantic University, Degree grantor Masory, Oren, Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1998 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 193 p. | |
Language(s): | English | |
Summary: | One emerging application of parallel manipulators is to use them as CNC (Computerized Numerical Controlled) machine tools and recently several prototypes of such CNC machines have been developed, all based on hexapod machine--a type of parallel manipulators similar to a Stewart platform. The goal of this research is to develop an effective control scheme, cross-coupling control, for this type of CNC machine tools, which will reduce the contouring errors and thus further enhance their advantages. This dissertation describes the research work as follows. Firstly. based on the analysis of the kinematics and dynamics, a PID (Proportional-Integral-Derivative) controller was designed for each leg of the hexapod CNC machine. Secondly, real-time contour error models were developed and verified to determine not only for the calculation of the contour errors of the hexapod CNC machine but also for the general case of any machine tools. Thirdly, the contour errors of the hexapod CNC machine were investigated for a conventional PID controller. The results indicate that the accuracy of the hexapod machine is better than the conventional CNC machine tools even for mismatched axes and load exertion. Finally, a cross-coupling control scheme was proposed for the purpose to enhance the contour accuracy of this new type of hexapod CNC machine tools. A cross-coupling controller design for a 2-DOF platform was performed to provide the guidelines. Then, a cross-coupling controller for the new type of hexapod CNC machine tools was designed by feeding back the contour error to each axis. The efficiency of the proposed cross-coupling controller was verified through simulations. The result shows that the proposed cross-coupling controller is very effective in reducing the contouring errors. While cross-coupling controllers were originally proposed for conventional CNC machine tools, this research is the first attempt of expanding this concept to the new type of hexapod CNC machine tools. | |
Identifier: | 9780599070684 (isbn), 12576 (digitool), FADT12576 (IID), fau:9462 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (Ph.D.)--Florida Atlantic University, 1998. |
|
Subject(s): |
Machine-tools--Numerical control Manipulators (Mechanism) PID controllers |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/12576 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |