You are here
sparse volume array for imaging ocean ambient noise in the near-shore region
- Date Issued:
- 1997
- Summary:
- Ocean ambient noise has been studied extensively in the past, and several models have been developed to predict its level and to characterize it in different ocean environments. However, most of these studies have been motivated by the need to reduce the negative effect of the ambient noise on measurements. Recently, several studies have used the ambient noise to obtain information about the ocean floor and to achieve passive target detection. This dissertation describes the development of an Ambient Noise Sonar (ANS) which can be used to measure ambient noise directivity to obtain information about the environment. The system was designed for use on an Autonomous Underwater Vehicle (AUV) and has been used to study the ambient noise in the near shore region by investigating different types of noise in shallow water, such as boat traffic, biological noise and naturally occurring noise up to 20 kHz. There are two advantages to the ANS. First, when mounted on an AUV its mobility will allow the ambient noise to be mapped over an extended area. Second, the very small number of transducers (6 total) used in the array, makes this system suitable for AUV operations because it uses a limited amount of space and power. This dissertation presents the theory of the array processing and preliminary results including examples of boat noise, and biological noise. It was found that the noise from biological sources such as snapping shrimp contributed to the anisotropic component of the acoustic field. These biological sources were found to be concentrated around artificial structures such as piers and groins, and also around natural reefs. Finally noise maps of coastal areas are presented to illustrate the potential of this system to measure the noise field in the coastal region and to evaluate acoustic propagation using passive sources such as the biological noise clusters found along the coast. In the future the ANS will be integrated onto the AUV 'Ocean Explorer II'.
Title: | A sparse volume array for imaging ocean ambient noise in the near-shore region. |
231 views
160 downloads |
---|---|---|
Name(s): |
Olivieri, Marc P. Florida Atlantic University, Degree grantor Glegg, Stewart A. L., Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1997 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 208 p. | |
Language(s): | English | |
Summary: | Ocean ambient noise has been studied extensively in the past, and several models have been developed to predict its level and to characterize it in different ocean environments. However, most of these studies have been motivated by the need to reduce the negative effect of the ambient noise on measurements. Recently, several studies have used the ambient noise to obtain information about the ocean floor and to achieve passive target detection. This dissertation describes the development of an Ambient Noise Sonar (ANS) which can be used to measure ambient noise directivity to obtain information about the environment. The system was designed for use on an Autonomous Underwater Vehicle (AUV) and has been used to study the ambient noise in the near shore region by investigating different types of noise in shallow water, such as boat traffic, biological noise and naturally occurring noise up to 20 kHz. There are two advantages to the ANS. First, when mounted on an AUV its mobility will allow the ambient noise to be mapped over an extended area. Second, the very small number of transducers (6 total) used in the array, makes this system suitable for AUV operations because it uses a limited amount of space and power. This dissertation presents the theory of the array processing and preliminary results including examples of boat noise, and biological noise. It was found that the noise from biological sources such as snapping shrimp contributed to the anisotropic component of the acoustic field. These biological sources were found to be concentrated around artificial structures such as piers and groins, and also around natural reefs. Finally noise maps of coastal areas are presented to illustrate the potential of this system to measure the noise field in the coastal region and to evaluate acoustic propagation using passive sources such as the biological noise clusters found along the coast. In the future the ANS will be integrated onto the AUV 'Ocean Explorer II'. | |
Identifier: | 9780591616866 (isbn), 12534 (digitool), FADT12534 (IID), fau:9425 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (Ph.D.)--Florida Atlantic University, 1997. |
|
Subject(s): |
Underwater acoustics Acoustic imaging |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/12534 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |