You are here

balanced hypercube: A versatile cube-based multicomputer system

Download pdf | Full Screen View

Date Issued:
1997
Summary:
We propose the balanced hypercube (BH), which is a variant of the standard hypercube (Q), as a multicomputer topological structure. An n-dimensional balanced hypercube BHn has the same desirable topological properties of the 2n-dimensional standard hypercube Q2n such as size (2^2n nodes and n2^2n edges), regularity and symmetry, connectivity (2n node-disjoint pathes between any pair of nodes), and diameter (2n when n = 1 or n is even). Moreover, BHn has smaller diameter (2n-1) than Qn's (2n) when n is odd other than 1. In addition, BHn is load balanced, i.e., for every node v of BHn, there exists another node v', called v's matching node, such that v and v' share the same adjacent node set. Therefore, BHn has a desirable fault tolerance feature: when a node v fails, we can simply shift the job execution on v to its matching node v' and the communication pattern between jobs remains the same. In this dissertation, we study the topological properties of BHn and explore its fault tolerance feature. Other design issues are considered, such as communication primitives, capability of simulating other multicomputer systems through graph embedding, resource placement. and VLSI/WSI layout. Finally, the use of BHn is illustrated by an application.
Title: The balanced hypercube: A versatile cube-based multicomputer system.
170 views
65 downloads
Name(s): Huang, Ke.
Florida Atlantic University, Degree grantor
Wu, Jie, Thesis advisor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1997
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 191 p.
Language(s): English
Summary: We propose the balanced hypercube (BH), which is a variant of the standard hypercube (Q), as a multicomputer topological structure. An n-dimensional balanced hypercube BHn has the same desirable topological properties of the 2n-dimensional standard hypercube Q2n such as size (2^2n nodes and n2^2n edges), regularity and symmetry, connectivity (2n node-disjoint pathes between any pair of nodes), and diameter (2n when n = 1 or n is even). Moreover, BHn has smaller diameter (2n-1) than Qn's (2n) when n is odd other than 1. In addition, BHn is load balanced, i.e., for every node v of BHn, there exists another node v', called v's matching node, such that v and v' share the same adjacent node set. Therefore, BHn has a desirable fault tolerance feature: when a node v fails, we can simply shift the job execution on v to its matching node v' and the communication pattern between jobs remains the same. In this dissertation, we study the topological properties of BHn and explore its fault tolerance feature. Other design issues are considered, such as communication primitives, capability of simulating other multicomputer systems through graph embedding, resource placement. and VLSI/WSI layout. Finally, the use of BHn is illustrated by an application.
Identifier: 9780591455298 (isbn), 12519 (digitool), FADT12519 (IID), fau:9410 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (Ph.D.)--Florida Atlantic University, 1997.
Subject(s): Hypercube networks (Computer networks)
Fault-tolerant computing
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/12519
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.