

EXTENSIONS TO REAL-TIME OBJECT-ORIENTED

SOFTWARE DESIGN METHODOLOGIES

by

Timothy G. Woodcock

A Dissertation Submitted to the Facnlty of

The College of Engineering

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Florida Atlantic University

Boca Raton , FL

December 1996

© Cuvyright by Timothy G. Woodcock 1996

11

EXTENSIONS TO REAL-TIIVIE OBJECT-ORIENTED SOFTWARE
DESIGN METHODOLOGIES

by

Timuthy G. Wuudcuck

This dissert.at.iun was prepared nnder the dired.iun uf t.he candidate 's di ssertation
ndvisur, Dr. Ednardu B. l:<emandez. Department uf Cumpnt.er Srience and Engineer­
ing, and has been appruved by the members of his supervisory rommit.t.ee . It was
snbmi tted tu the famlt:r uf The College uf Engineering and was accepted in partial
fnlfillment uf t.he reqnirements fur the degree uf Dud.ur uf Philosophy in Cumpnter
Science.

SUPERVISORY CONHviiTTEE:

~

3
Dissertation Advisor

~-7

Ill

Author:

Title:

Institution :

Dissertation Advisor:

Degree:

Year:

ABSTRACT

Timothy G. Woodcock

Extensions to Real-Time Object-Oriented Software De­
sign Methodologies

Florida Atlantic University

Dr. Eduardo B. Fernandez

Doctor of Philosophy in Computer Science

1996

Real-time systems are systems where time is considered a system resource

that needs to be managed. Time is usually represented in these systems as a deadline

to complete a task. Unfortunately, by adding timing to even simple algorithms, it

complicates them greatly. Real-time systems are by nature difficult and complex tv

understand.

Object-oriented methodologies have attrilmtes that allow real-time systems

to be designed and implemented with less error and some control over the resultant

complexity. With object-oriented design , the system is modeled in the environment

that it will be used in. Objects themselves , are partitions of the system, into logical ,

understandable units.

In this dissertation , we start by snrveying the current real-time object-oriented

design methodologies. By comparing these methodologies and developing a set of

criteria for evaluating them , we discover that certain aspects of these methodologies

lV

still need sume wurk. The must important aspects uf the methudulugies are under­

standing the effects uf deadlines on statechart. behavioral models and understanding

the effects of deadlines when object models are inherited or undergo aggregation.

The effects of deadlines on statecharts are then explored in detail. There are

two basic ways that deadlines are added to statecharts. The first , and most popular,

is adding timing as a condition on a state transition . The second is adding a count

down timer to a state and forcing a transition if the timer reaches zero. We show

that these are equivalent and can be used interchangeably to simplify designs.

Next , the effects of deadlines on behavior models when the corresponding

object models undergo inheritance or aggregation are studied. We will first analyze

the effects on the behavior model when object inheritance is encountered. We fotmd

eight ways that the behavior model can be modified and still maintain the proverties

of inheritance. Finally, deadlines are added and the analysis is reveated.

v

CONTENTS

ABSTRACT
FIGURES
TABLES

Chapter

1 INTRODUCTION .

1.1 Real-Time Systems
1.2 OGject.-Oriented Methodologies

2 REAL-TIME OBJECT-ORIENTED SOFTWARE DESIGN
METHODOLOGIES

2.1 Intrvduction .
2.2 Backgrvund .

2.2.1 Real-Time Systems
2.2.2 OGject-Oriented Programming
2.2.3 State Machines and Petri Nets .

2.3 Classification Criteria

2.3.1
2.3.2
2.3.3
2.:3A
2.3.5
2.3.6

SnpJ.>ort. of Cvncnrrent Processing .
Controller Architecture .
Deadline I\hnagement
First Design Decision .
System Behavior .
Use of Inheritance .. .

Vl

IV

X

xiii

1

1
3

4

4

6

6
11
13

16

17
18
18
18
19
19

2.3.7 Life Cycle

2.4 Design I\Iethvdvlvgies .

2.4.1 ARTS
2.4.2 COBRA
2.4.3 HOOD/PNO
2.4.4 HRT-HOOD .
2.4.5 OCTOPUS
2.4.6 OMT.
2.4.7 OPNets
2.4.8 ROOM .
2.4.9 RTO
2.4.10 Transnet .

2.5 Analysis
2.6 Chapter Summary

3 BEHAVIORAL MODELING WITH STATECHARTS

3.1 Introduction . . .
3.2 About Time . . .
3.3 Timed Automata
3.4 Statecharts ...
3.5 OMT Statecharts
3.6 Timed Stat.echarts
3. 7 Evaluat.ivn and Analysis
3.8 Chapter Summary . . .

4 TIMED STATE STATECHARTS

4.1 Introdnct.ivn
4.2 Timed Transition Problems
4.3 Timed State Statecharts
4.4 ChaiJter Summary

5 OBJECT AND BEHAVIOR 1V10DELS .

5.1 Introdndivn
5.2 Object. Models and Behavior Models

VII

20

20

21
22
24
26
30
31
32
34
36
38

39
41

43

43
43
45
48
52
58
61
67

69

69
69
71
79

81

81
83

5.3 OLject and Behavioral Inheritance

5.3.1

5.3.2
5.3.3
5.3.4

Inheritance Behavior

5.3.1.1
5.3.1.2
5.3.1.3
5.3.1.4
5.3.1.5
5.3.1.6
5.3.1.7
5.3.1.8

Addition of an Extra Transition .
Retargeting and Splitting of a Transition ..
Weakening of a Precondition of a Transition
Strengthening of a Postcondition of a Transition .
Strengthening of an Invariant Relationship ...
Refinement of a State into Two or More States
Addition of New Attribntes
Modification of a State .

A Student System Example
Program Specifications
Multiple Inheritance

5.4 Relationships And State Diagrams
5.5 Object and Behavioral Aggregation
5.6 Chapter Snmmary

6 THE EFFECT OF DEADLINES ON OBJECT AND
BEHAVIOR .1\lODELS

6.1 Int.rudnrtion
6.2 Deadlines .
6.~~ Deadlines in OLject Models and Behavior Models
6.4 Deadline Inheritance

6.4 .1 Inheritance Behavior

6.4.1.1

6.-t.l. 2
6.-!.1. ~~

6.-!.1.-.l
6.4.1.5
6..!.1.6
6.-! .1.7

Addition of an ext.ra transition
Retargeting and splitting of a transition .. .
\Veakening of a prerondition of a transition
Strengthening of a postcondition of a transition
Strengthening of an invariant. relationship
Addition of new attriLnt.es .
Ivlodification of a state

A Stndent System Example
Program Specifications . . .

Vlll

85

86
86
88
88
91
91
93
94

94
99

103

104
106
113

115

115
117
118
119

121

121
121
125
125
127
127
127

129
133

6.4.4 Mnlt.ivle Inheritance

6.5 Relationshivs And State Diagrams
6.6 Object and Behavioral Aggregation
6.7 Chapter Summary

7 SCENARIOS AND EVENT TRACE DIAGRAMS

7.1 Introdnction
7.2 Behavior 11odels with Deadlines .
7.3 Background
7.4 Scenarios with Deadlines
7.5 Event Trace Diagrams with Deadlines .
7.6 Chavter Snmmary

8 CONCLUSIONS

8.1 Contributions
8.2 Future Directions

REFERENCES .
VITA

IX

13..!

135
139
l.J2

144

1-14
1..!5
147
1..!9
149
156

159

164
164

166
173

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

4.3

5.1

5.2

5.3

FIGURES

Example of a timed automata.

St,atecharts Example

Example of Ruml>augh 's OMT statecharts.

Example of Cook and Daniels Statecharts Formalism

Example of a timeout condition

Timed Statecharts+ example . .

Comparing OMT statecharts with regular statecharts

Example of !Jruadcast communication paradox. . . .

Gas Burner example, a) Statecharts+ and !J) TSSC

Ambiguity resolution with timed state statecharts.

Example of timed and untimed transitions in TSSC

O!Jject and Behavioral Models

Inheritance that adds a transition to the !Jehavioral model.

Inheritance where a transition is split and retargetted ..

46

51

55

57

59

61

63

65

75

77

78

84

87

89

5.4 Inheritance weakening a precondition. 90

5.5 Inheritance where a state decomposes into two or more states. 92

X

5.6 Inheritanre where an additional set of attriLutes is included in the
snLclass. 93

5.7 OLject. Model fur a Stndent system. 95

5.8 Behavior model for the class student. 96

5.9 Behavior Model for class Foreign_ Student. 97

5.10 Behavior Model fur the class Undergt·ad. . 98

5.11 Behavior Model for the state Grad_ Stndent. 100

5.12 Behavior Model for class Thesis_Student ... 101

5.13 Behavior Model for the class PhD_Stndent. 102

5.14 Example of Multiple Inheritance 105

5.15 Example of relationship in the object model and its temporal
natme in the Lehavior model. 107

5.16 OLject model for traffic light controller 109

5.17 Behavior mudel fur traffic light controller 110

5.18 Coordinating Aggregation 112

6.1 Inheritance adding a transition to the Lehavior model. . 122

6.2 Inheritance where a transition is split and retargeted. 124

6.3 Inheritance with weakening of a timed precondition. . 126

6.4 Inheritance where an additional set of at.triLntes is included. 128

6.5 OL.iect. Model fur the class Student.. . 130

6.6 Behavior model for the class student. 131

6.7 Behavior Model fur class Foreign_ Student.. 132

XI

6.8 Behaviur f\Judel fur the class Grad _ St.ndent. 133

6.9 Example uf Ivinlt ivle Inheritance. 136

6.10 Examvle uf relationship in the oLject mudel and relationship's
temvoral nature in the Lehavior model when deadlines are present. 138

6.11 Behaviur mudel for traffic light cuntruller. . 141

7.1 Tyvical scanario for phone call. 150

7.2 Scenario with timing information. 150

7.3 Typical event trace diagram for vhone call. 152

7.4 Event trace diagram with timing information. 153

7.5 Event trace with time interval requirement. . . 154

7.6 Event trace diagram with timing interval on event generation. 155

7.7 Statechart for tyvical telephone line. 157

Xll

2.1

3.1

TABLES

Summary of Methodologies

Comparison of Three Methodologies .

X Ill

41

66

Chapter 1

INTRODUCTION

1.1 Real-Time Systems

Real-Time software is increasingly important. in today 's world. As processors

Gecome less expensive, tiny eml>edded real-time systems are showing np in devices

that wonld not. have Geen imagined a few short. years ago. Larger real-time systems,

from military and space exploration. to complex medical lif~saving eqnipment.. are

Gecoming more common place. Often , real-time systems monitor life critical systems

where failme means a loss of life. 1Iany real-time systems have catastrophic effect.s

if they fail t.o perform their funct.ions correctly.

Real-time systems are by natnre difficnlt tv work with because there are

many aspeds of real-time software that. make it nniqne and difficnlt.. One vf those

aspects is that. t.ime is considered a critical system resomce that mnst. Ge managed.

t.hns there is a reqnirement. that. some tasks comlJlete in a SlJecified amount of time.

Not. all tasks in a system will have deadlines, but the ones that do , often Gecome

critical to the correct performance of the system. Often. the system must. know that

1

the resomces a task needs to complete are available, Lefore it will allow a task to

Le invoked on the system.

Real-time systems are also very periodic in nature, m that tasks are often

need t.o l>e performed within a window of time, and may need to be performed again

in some snbseqnent windows of time. The scheduling of these tasks is a complex,

often NP hard , prt'blem.

l'vlany real-time systems also execute in distributed processors and thus have

concurrent processing as another aspect of their systems. Distril>uted systems that

are made up of several connected communicating processors must also take commu­

nication time into their deadline management calculations. Concurrency, even on a

single processor, has implications for completing tasks by the deadlines.

Real-time software is also characterized Ly its nonportability. Software wri t ­

ten fur a SlJerifir appliratiun often can only work on that application. Changes to

the environment, no matter how small, could render that whole system inoperative.

This relationship to the environment becomes part of the software design.

These aspects of real-time software make it difficult. to design and implement.

Often the code has very long implementation and test cycles, and once finished is

very difficult and expensive to change or correct. In the lJast , the software in these

systems was composed of hand-tnned, asseml>ly language functions that were very

difficnlt tu create, maintain , or improve.

2

1.2 Object-Oriented J.\;lethodologies

Ooject-oriented software methodologies have oeen shown to have advantages

over classical software design techniques, such as structured design. Ooject-oriented

designs are more extensible, and have better reuse than classical designs. Object.­

orienteJ methods may also have an advantage in productivity. By encapsulating

the software and designing around objects that take the environment into account,

object methods may have a distinct. advantage when used to create real-time soft-

ware.

Object-oriented methodologies , however, still need t.o be developed further

before oecoming the methodology of choice for real-time system environments. The

goal of this dissertation is to explore some of the areas that need work and to identify

other areas for future shtdy.

First.. we start oy looking at. several existing oo_ject-oriented real-time design

methodologies and from this we compile a list. of areas where further work needs t.o

be done. Next, we examine oehavior models and study how real-time deadlines affect

them. Then , we explore the different ways that deadlines can be added to behavior

models. A study of t.he relationship between ooject and behavior models when

object models nndergo the techniqnes of generalization, aggregation. and association

is given next.. Finally, we look at. how the addition of deadlines affects the object

and oehavior model relat.ionships.

3

Chapter 2

REAL-TIME OBJECT-ORIENTED SOFTWARE DESIGN

METHODOLOGIES

2.1 Introduction

In real time systems, time is considered a limited resource that must he man­

aged . Creating software where tasks and messages may have deadlines is difficult .

Object-oriented met.hudulugies have heen shown tu innease jJrugrammer jJruductiv­

ity, software reuse. and software maintainahility. It is uf interest therefore to see if

ohject-uriented techniques provide henefit.s for real time environments.

There are several ohjectives for this chajJter. The first is to understand the

issnes that. are nniqne to object-oriented real-time software development. Then we

analyze how existing methods approach these issues. We also want to identify t.he

deficienries uf the existing methodologies. From there, we want to develop a set of

uhjertives fur a more comprehensive methodology. Finally we want tu develop a

set of criteria for selection uf a methodology fur a specific type of a:jJplicat.iun. This

study could be uf value hecause it allows the developer t.o look at the problem he is

4

trying to solve and then understand what methodology features would enhance the

soluti on to the vroLlem.

There are few studies have Geen vuLlished looking at both real time and

object o c·ient.ed programming. Kelly and Sherif did a similar analysis on real time

softwm(' develovment methodologies [35]. Their analysis included only one object­

oriented methodology and three other software development methodologies.

In this chavter, we will look at ten oLject oriented methodologies for devel­

oping real-time systems. These methodologies were chosen only to represent some

of the availaLle real-time oLject-oriented methodologies, and not as an all inclusive

list of all such methodologies. The following methodologies will be examined:

• ARTS - Real-Time Ol>ject f\'lodel

• COBRA- Concurrent Object Based Real-Time Analysis

• HOOD /PNO - Hierarchical Ol>ject-Oriented Design Gy means of Petri-Net

Ol>ject.s

• HRT-HOOD- Hard Real Time Hierarchical Ol>ject.-Orient.ed Design

• OCTOPUS - Object-Oriented design method for emoedded real-time systems

• OMT - OLject-Oriented design and analysis methodology

• OPNet.s - Ol>ject-Oriented high-level Petri Net model

5

• ROOM - Real-Time Object-Oriented Modeling

• RTO - Real Time Objects

• Transnet.- Object-oriented technique using Petri nets

First thrungh , some background on object-oriented methodologies , real-time

syst<:>ms , state machines and Petri nets is discussed in section 2.2. In section 2.3,

we describe the criteria used to compare the different methodologies. In section 2.4,

we examine each of these methodologies briefly. In section 2.5, each methodology

is contrasted to the others in terms of the comparison criteria. Finally, section 2.6

states some conclusions and indicates possible future directions.

2.2 Background

2.2.1 Real-Time Systems

Real-time software systems manage time by including deadlines for tasks

and messages. All real-time systems must be considered in the context of their

environment.. One way to interpret the deadlines of real-time software is to consider

all the data as perishable. If the data is not used before the time expires, it becomes

old and can nut be nsed, thns , verishable.

Periodicity is another asvect. of real-time systems, in that, some tasks must

be performed at veriodic intervals , called frames . Other tasks are evoked only when

a certain event occurs. Some tasks need to wait for other tasks to complete before

6

they can start. Often , the tasks that need t.u Ge nm in a time frame can Ge verformed

in a numLer of seqnences.

Task scheduling is a proGlem in real time systems that continues tu have a

great. deal uf research devoted to it [6); [7], [8], [9], [21], and [64]. The scheduling

algorithms are affected Gy the criticality uf the task t.ask precedences, availaGle

resources, and task deadlines [60). Also, tasks have tu communicate and synchronize

with other tasks. Scheduling algorithms in real time systems must ensure that task

deadlines are met. This is different from nunreal time systems where the goal is

faster response time. Stankovic vuints out that the dynamic environment often

reqnires adaptive scheduling algorithms. Scheduling in this environment is an NP-

Hard vruGlem [62].

Shin and Ramanathan showed that all real time tasks, both periodic and

aperiodic will have une uf three tyves uf deadlines [60].

• llanl - There are catastrophic conseqnences fur missing a hard deadline.

• Finn - The cunseqnences fur missing a firm deadline are not severe, Gut the

resnlts uf any task with a firm deadline are verishaGle; that is, they will cease

to be nsefnl when the deadline exvires.

• So.fl - All other deadlines are soft. The resnlt.s of a soft deadline task will

also decrease in nsefnlness uver time after the deadline expires, but. at a much

slower rate than a firm deadline.

7

Periodic tasks often have hard deadlines and are characterized as t ime critical ,

where the system will fail (often catast.ruphically) if the deadline is not met .

Predictal>ility is another important concept in real-time systems. Predictabil­

ity means that at design time it can be shown that all the constraints of all the tasks

can Le met with 100% certainty. This requires prior knowledge of the exact charac­

teristics and nm time resource requirements fur all the tasks in the system. Usually

this can Le done only in very small systems. In large systems the definition is relaxed

fur noncritical tasks.

For noncritical tasks, predictability is shown either probabilistically or run­

time deterministically. For a probal>ilistic guarantee, a t.ask can be shown to meet

its constraints with a certain prol>ability. In run-time determinism, the system looks

at a task Lefore accept.ing it and determines if it can meet the task 's constraints

without endangering any other rnnning t.asks constraints. If it can , t.he task is

accepted; otherwise , t.he task is rejected.

Another concept that occurs often in real-time em·irunments is that of sys­

tem concurrency. Real-time software can have many tasks active at the same time.

An example would Le several active threads or prucesse.s in an operating system.

Another example wunld Le the active phone calls in a telephone switch . Bnt, con­

currency alone is nut. enungh to make real-time suft.ware systems difficult. It is

the asychronous nature of the system that makes the concurrency more difficult to

handle. Fur example , the activity of a robot cell in a distributed manufacturing

8

system. even if there were 100 rol>ots, wonld not be so difficnlt if they all operated

in lock step. It is their asychronons activity that. makes them difficult to control.

Concmrent systems often must be proven to be deadlock free.

The dynamic nature of real-time systems can also contribute to programming

difficnlty. Some conemrent processes can l>e created and l>ecome active while others

are becoming inactive and being destroyed. An example wonld be telephone calls

in a telephone switch. At. any instance in time, any numl>er of calls could l>e in any

number of states indnding dialing , connecting, talking, and disconnecting.

Another important issue in the design of real-time systems is at what. level

of abstraction one should introduce the concept of time and how to map time con­

st.raints defined at some level to the lower levels.

There is a tacit assumption that in a true real-time system, the requirement to

interface with low level hardware while meeting stringent hard deadlines , prohil>its

the use of high level languages in the software. In other words , assembly language

mnst. l>e used. Stankovic [62] points out. that this is a common misconception about

real time software. He also points out that clever hand-coded optimized machine

language software is lal>or intensive. Also , this code often contains timing Lugs

that are difficult to trace, debug , or modify. Daponte et al. [19] show that the

real concern should l>e whether the target language allows us access to the low level

hardware interfaces without adding a rnn-t.ime support. penalt.y that is unacceptal>ly

high.

9

The issue uf reliaGility is also imvurtant. in real-time systems. Software re­

liaLility criteria can Le met through the use of n-version programming. ReliaLility

can also be svecified and quantified through the use of formal methods. However,

both n-version programs and formal methods are difficult to use on large complex

systems.

Real-time systems are very dependent on the environment of the system. The

software for a jet airplane would nut function outside of the airplane. Likewise, the

software for an automoLile engine comvuter would not be able to function without

the engine sensors. The importance of the environment in real-time systems indi-

cates that any methodology used must be able to revresent the physical environment

also; in this sense the oLjed.-oriented approach provides clear advantages.

EmLedded systems are usually real-time systems. One of their main char­

act.erist.ics is that. they require ftexiGility and ext.ensiLility (different envirunment.s

and different avplications). The object-oriented apvroach appears very promising

to satisfy this requirement.

Real-time systems are usually multiprocessors. Obviously, satisfying dead­

lines will depend on the specific multiprocessor configuration at hand. A design

methodology must. consider this effect. There are some real-time operating systems

that help accomplish this task, for examvle CHAOS [26], [56], and Clouds [14], [20].

[50].

10

2.2.2 Object-Oriented Programming

Object-oriented programming techniques have been shown to have advan­

tages over classical design techniques such as structured design . One advantage is

their enhanced abili :-.y to provide extensible designs. Another would be the increased

amount of rense uf design artifacts and code. Overall. object-oriented methods

do ap]Jear to improve]Jrudnctivity [2]. Object-oriented techniques also have sev­

eral ad,·antages in a real-time environment. Some researchers believe that current

(nonobjed.-oriented) real time software development techniqnes will not be adequate

for meeting the challenges of the future generations of complex real time systems

[59]. The object. oriented paradigm offers a better way of creating and controlling

the develo]Jment of complex real time systems; for exam]Jle , they might make it

easier tu IJl'OVe IJredictabili t.y.

An im}>ottant. advantage of object-oriented met.huds is their modeling]Jower,

it is possible to lmild a model fur some systems that. refierts its semantics mnrh more

closely than with other methods. This is an important advantage for the design of

real-time systems that have complex relationships between components and with

the emirunment.

A significant as]Jed. of real-time systems is the fact that they are composed of

physical units and they can be modeled using a hierarchic approach [24]. The envi­

ronment of the real-time systems are also important.. Object-oriented methodologies

SHIJport t.hese views of the software better than other methodologies.

11

In the uLjed.-uriented varadigm , infurmation hiding alluws a designer tu have

a variety uf imvlementations for each method in an object. each satisfying a different

type uf constraints. Fur examvle, an object might have three different methods for

verfurming a task, each uf which was guaranteed to cumplete in a set amount uf

t.ime (sluw. medium , fast, ur 5 ms , 2 ms. 1 ms, etc.).

Object-oriented varadigms may alsu have sume adYantages in ap}Jlying strate­

gies such as n-versiun fault tolerance. The object view uf the of the physical units of

the syst.em may allow an easier way of creating and using n-version software. For­

mal methods apvear also to enhance object-oriented designs. This can result in an

increased aLility to pruve system reliaLility, safety, and uther vroverties. Currently,

there are two main avvruaches tu including furmal met.huds in the OOA. The first.

is tu vlace the axioms in the uLjects [18], [57], and the secund method is tu vlace

the axiums in the st.at.e transitiuns [22]. [25]. [31], [41], [65]. and [66].

On the uther hand, there are sume disadvantages to using an object-oriented

met.hudulugy. There is a dichotomy between the underlying principles of object­

oriented methodologies and software performance, which could affect its ability to

satisfy deadlines ur its predictability. Fur example, it is nut clear what is the effect

uf inheritance uf deadlines. Must general vurpuse uL.iect oriented methodologies

have mudeling SlllJ}JUlt that is inadeqnate fur real time suftware. It is not dear in

must. methudulogies huw to exvand states to vrovide fur details at. lower levels of

aLstract.iun. The proLlem is exasperated by message deadlines and concurrency.

12

Another possiGle disadvantage of object-oriented systems fur emGedded ap-

plicat.ions is their requirement of efficient use of memory. In object-oriented imple-

mentatiuns, a class may contain many operations that will not Ge nsed in a given

application but will take memory space. It is necessary to consider ways for selecting

only the needed operations in a given application.

The implementation language will also need to be considered. No matter

what oGject-oriented language is used, C++, Ada, Eiffel, Smalltalk, or Java, ex-

tensions will need to be made to support the real-time environment. An extended

language like RTC++ or Ada 9X may work, but further extensions are still likely.

2.2.3 State l\fachines and Petri Nets

The modeling uf the Gehavior of objects in the oGject oriented paradigm, is

most often done with either state machines or Petri nets. \Vhile both modeling

techniques can descriGe the Gehavior uf the oGjects, they also have limitations tu

what. can Ge described with the techniques. A Grief descri]Jtion of state machines

and Petri nets follows .

State machines, or deterministic finite state automata. can be used to model

t.he Gehaviur uf many kinds of systems [42]. State machines consist of a finite

numGer of states, a set of transitions between states, and a list of the events or

inputs that trigger the transition from a state. This is usually expressed as a 5-

t.nple l\I= { Q, ~~ li , q0 , F'} vvhere:

Q is a finite set. uf internal states

13

I: is the input. alphauet

b : Q x I: -~ Q is the transition function

(jo E (J is the initial state

F ~ Q is a set. uf final states.

A state marhine starts off in the initial state , (jo. When an input (from I:)

arrives it. rauses one of the transitions from b to Ge used to move to a new state (or

sometimes stay in the same state) of Q. If the marhine is in one of the final states,

F, then the state machine can terminate .

To use state machines to analyze object-oriented software, one only needs to

map the uLject-oriented concepts onto the state machine. For examvle, I:, are the

set of messages that. an object conld receive. The transition fnnction , b, and the

state of the oLject determine what. happens when a message is received. The object

ronld arrept the message and transition to a new ~tate, ignore the message and stay

in the same state, etr. The states of the oLjects determine what methods need to

Le invoked by the different objects.

One of the vroblems with state machines is that of state explosions. If the

nnmLer of states involved are smalL then the proLlem can Le dealt with . Most

proLlems of even lovv comvlexity have a large nnmLer of states. One way to deal

with this proLlem is through the nse of stat.echarts, which are a modification of

state machines to allow the nesting of states [54]. Statecharts not only have a more

concise way of revresenting comvlex states , Lut also allow suLst.ates to inherit and

14

evuke state t.ransitiuns uf the parent states. The states in a statechart. are descril>ed

in a hierarchical strncture that alluws a cumvact. yet. vrecise representation uf the

dynamic L>ehaviur uf the ul>jects. Statecharts are usually mure convenient than state

machines.

Petri nets are similar in some ways tu state machines [1 J. They can L>e viewed

as anut.her type uf automaton, or as a way of representing different kinds uf systems.

There are several kinds of Petri nets, but for this paper, we limit ourselves to Marked

Petri nct.s only. A Marked Petri net is a 4-tuple C = (T , P, J1, AI), where,

T = {1. 1 ,/.2 , . .. ,ttl} is a set of transitions.

P = {pJ , P2 , ... , Pm} is a set of places.

J1 <::;;; {'!' x J>} U {JJ X 1'} is a set of directed arcs.

!II = { :r 1, :r2 , • . . , :c111 } where :ri 2 0, assigning a numl>er uf tukens tu each place

in the net . Thi s is called the marking uf the Petri net.

In a Petri net., a transition can fire unly if there is a tuken waiting in each

place attached tu it. The act uf firing causes the tukens tu Le remuved frum the

inputs vlaces to the transition and placed in the uutvnt places. \Vhen two transitions

are enaLled and du nut share an inpnt place , they can fire concurrently. When twu

enaLled transitions du share an input place, firing either wunld remuve the tuken

frum the shared place, disaLling the uther transition. This is knuwn as couJlict.. In

a cunflict. the chuice of which transition will fire is arbitrary.

The cuncept.s uf reachaLility and p-invariants are also used with Petri nets.

15

A marking !1/ is said tv Ge reachaGle frvm M' if start.ing with 1\/ ', tlwre exist.s svme

series vf transit iuns that can Ge fired that results in !11. A p-invari ant is a set vf

places, I. that have the property that the sum of all the tvkens of all the places in

the set, for any n 1m king vf the set is a constant. That is

c = 'L flt(p)
pt: I

Where !1/ is a reachaGle marking and I dves not have any prvper suGsets that. are

p-invariants. The reachaGility chart and the p-invariants vf the netwvrk can be nsed

to verify the Gehavivr of the Petri net.

Petri nets also suffer from state explosion. Similarly t.v statecharts, Petri nets

can Ge arranged in a hierarchical system t.hat cvnt.rvls the state explosion. Petri nets

can model very well aspects such as parallelism and nvndet.erminism. Petri nets can

model cvncmrenry. Gy expliritly showing the parallelism, and Ge used tv prvve that

a system is deadlock free . Petri nets can also Ge modified intv colored Petri nets or

into timed Petri nets in order tv increase their aGility tv mvdel certain applications.

For example, a timed Petri net can Ge introduced so that the deadlines of the real

time software ran Ge modeled. However , adding cvlvrs or timing detracts from the

Petri nets aGility tv detert deadlocks vr other conditions.

2.3 Classification Criteria

Based vn the disrnssivn in Sections 2.2.1 and 2.2.2. the following criteria will

Ge used as guidelines fvr comparison of the design methodologies .

16

• SlliJIJult uf runrnnent. prucessing.

• Cuntruller ard1it.ed.m e.

• Deadline management..

• First design derisiun.

• Mudeling uf system Lehaviur.

• Use uf inheritance.

• Life Cycle.

A discnssiun uf each criteriun fulluws.

2.3.1 Support of Concurrent Processing

Real-time suftwme is uften characterized Ly a large amonnt. uf system cun­

cnrrency. If, in general, tasks cummnnicate, synchronize, ur interact wit.h a nnml>er

of other indeiJendent asychrununs tasks and external events, then the system has

a large amount. uf system cunntrrency. The cuncurrency can range from seiJarat.e

IJrucessurs cunnected via a cummunicatiuns facility tu asychronuus events in one

prucess . Becanse the exiJression of cuncnrrency is an imiJultant issue in real-time

soft.ware, the design met.hudulugy shunld reflect it.

17

2.3.2 Controller Architecture

The srhednling algurithms fur real time suftware are implemented by a cun­

t.roller. Thus the cunt.ruller should be given cunsideration as part uf the uverall

system. Each design methodology supports either a distributed controller mecha­

nism ur a single uLjert r·ontrvller mechanism. In a distriLuted contruller, each object

will cuntain the cude necessary for synchrunizatiun and message J?assing and mes­

sage handling. In a single object contrul design, one oLject is specifically designed

fur handling message traffic, synchronization , and the states uf the uther uLjects.

2.3.3 Deadline J.\;lanagement

One uf the mure impurtant characteristics of real-time suftware is that every

task and every message may have a deadline that. must be cunsidered. In sume of

the design met.hodologies t.he deadlines are considered in the design J?hase. In uther

systems, the deadlines are handled Ly the target)?rugramming language in the

imJ?lementation J?hase. In any real time system with hard real time deadlines, this

is a key issue tube decided. Fmthermore. any system that does not have deadlines,

ur whose deadlines are never cunsidered Ly the methudulugy are nut tmly real time

systems. They may be relative t.ime syst.ems. L1tt they are not real time systems.

2.3.4 First Design Decision

Kelly and Sherif [;35] puinted uut that the first decisiuns that are made in a

design are often the hardest. tu change later in the suftware life cycle. Thus, these first

18

design decisiuns are lJruGlematic in that they are the must. persistent. decisiuns made,

yet. t.hey are made at a time when little is knuwn auunt the resultant system. Fur

examlJle, lJartitiuning a large system into sectiuns early un in a lJruject could result

in a puor design if lat.er in the design it is discovered that message traffic Getween

parts of the system will use a seriuus amount of system resumces. Cunsidering the

first design decision as a lJart of the methodology alluws the designer to make a

bett.er choice in the design of the system. This criteriun is of the lesser imlJurtance

when unly ouject-uriented systems are Geing cunsidered.

2.3.5 System Behavior

During the design 1Jhase of the life cycle. the behavior of the design artifacts

must Ge analyzed. In the methodulugies presented in this lJaper, only state machines

and Petri nets are used tu model the system Gehavior. Each technique has sume

advantages. State machines are easy to use and can Ge exlJanded in the mure

puwerfnl st.atecharts when necessary. Petri nets are mure puwerful and have the

aGility to model t.he concelJt of concurrency and show that. the system is deadlock

free. Petri net s can Ge exlJanded into timed ur culored Petri nets if desired.

2.3.6 Use of Inheritance

In uujed.-oriented methodologies, inheritance is a ,·alnal>le mechanism tu

reuse exis t.ing classes uf ul>jects . There are several issues with inheritance in real­

time software Geyond the general ul>ject-urient.ed inheritance 1ssues. SlJecifically,

19

t.]1e issnes vf the inheritance vf deadlines and uehavivrs are imvvrtant in real-t-ime

svftware. Hvw are dass deadlines inherited? If a snudass uverrides a svft deadline

with a hard deadline , can the methodvlogy ensme the vredidauility vf the svftware?

What is the relativnshiv uet.,l·een deadlines at different levels vf design austract.ivn,

·when mvre detailed state tr<1nsitiuns are invulved?

2.3.7 Life Cycle

Every methudvlugy Sll]Jport.s some phase uf the software life cycle. Sume unly

suvvurt. the analysis ur design phases uy vffering tvvls and techniques that vnly helv

in these vhases . Svme Sllp]Jvrt a fnll life cyde uy uffering tuvls and techniques that.

start. with the svecifirativns and enfvrce cumvleteness and rvnsistenry all the way

tv the rude release. It rvnld Ue desiraiJle tv even Sll)Jpvrt the life cycle iJeyond

cvde release and intv cvde maintenanre. In general. fnll life cyde methvdulvgies

are preferaule tv vartiallife cycle methvdolvgies uecanse the t.ovls of each phase are

integrated tvgetl1E'r. A ung fL-x in the code that resnlts in a change tu the design ,

shonld start in the design tvol.

2.4 Design l\:fethodologies

The ten met hvdvlogies that are examined here are all frvm recent. pnulicativns

and have ueen ltsed vn real prvject.s. In this sertivn. each met hvdology will ue uriefiy

discnssed. The design steps , majvr charact.eristirs . and strengths and weaknesses

will ue vntlined.

20

2.4.1 ARTS

ARTS is an uu.iect-urient.ed met.hudulugy fur designing real-t.ime systems [-15] .

It. is im}Jlemented in RTC++ which is an extension of C++ intended tu support

this methodology [:J-t]. It provides not only data encapsulation l.mt also timing en­

cavsnbtion. This methodology is more concerned with the low level design and

im}Jlementatiun issues (such as issues with RTC++) than with high level design

issues (like l>ehaYiur modeling). RTC++ is a language that could be used to imple­

ment. any of the methodologies discussed in this }Ja}JeL

Showing that a system is predictal>le is one uf the key aspects of the ARTS

methodology. fur which it uses rate monotonic scheduling.

In ARTS the ul>jects can l>e single threaded or multithreaded, out the mul­

tithreaded ul>jerts have Letter predictal>ility. Both types of ul>jects can have the

prul>lem uf priurit~' inversion. which happens when a task uf high priority is l>lucked

l>y a task uf low priority. By using a property called priority inheritance, \Yhich is

nut. the same as ol>ject-oriented inheritance, priority inversion can l>e overcome. In

most. cases, priorit:v inheritance is used to change the priority of a low J:>riurity task

that is l>lucking a higher J:>riurity task tu the priority uf the higher priority task. In

multithreaded ul>jects. a free thread can l>e used tu run the higher }Jriurity task.

Their use uf the term 'inheritance ' in J:>riority inheritance is confusing. It is

also unclear in ARTS how the l>ehavior of the ol>jects is modeled. It is dear that

ARTS SUJ:>pults J:>redidal>ility and provides a solution to J:>riurity inversion . out this

21

dues nut. a}>}>ear tied t.u ul>ject. l>ehaviur.

2.4.2 COBRA

The Cuncmrent Ol>ject-Based Real-Time Analysis (COBRA) methodology

was develu}>ed l>y Gumaa [27]. It. is a Glend uf cunce}>tS frum Real-Time Strnctmed

Analysis (RTSA). Ol>ject.-Orient.ed Analysis (OOA) . and Jacksun System De,·elu}>­

ment (JSD). COBRA nses the RTSA notation and state diagrams. It is similar

tu JSD in that its mudel uses cuncmrent processes for ol>jects and functions. Like

OOA, it. uses ul>ject st.rudming criteria.

The main st.e}>S uf the COBRA met.hudulugy are the fulluwing:

1. Decum}>use the syst.em intu inde}>endent distril>nt.ed snl>systems. Here dis­

tril>nted im}>lies mure than jnst cuncmrent. l>nt }>tucesses that can actually

reside un separate }Jrucessurs .

2. Ident.i(y the ul>ject.s fur each snl>system.

3. IdentifY the operatiuns fur each ol>ject .

4. Create a statechart mudel frum the ul>ject.s treating each as a concnrrent task.

5. Analyze the l>ehaviur uf each ul>ject. with event. seqnencing scenarios.

COBRA ·s decum}>usit.iun uf each problem intu snl>systems with an emphasis

un a dist.ril>nted environment, is snp}>urted by a stmcturing criteria and a ma}>ping

22

tv the distrilmted nudes . COBRA 's SUlJlJVrt fur thi s decvmiJvsitivn alJIJrvach gives

thi s methodology an advantage in distrilmted environments such as a manufacturing

Cf:'ll with indeiJendent ruuuts.

The criteria SUlJlJOrted Gy COBRA considers the following five types of ob-

.iecl s as the must. relevant.

1. /';:c:fcnwl /)c·nir.r: 1/0 viJjects, which malJ every 1Jhysical ent.it.y in the real world

tv a software vuject that. models the device.

2. Conf.n.Jl objects, which control all the other vGjects in the system.

:3. Dat.a absfmcfion vGjects, which encapsulate data that the system needs to

rememuer.

4. Algorithm ouject.s, which encaiJsulate algorithms nsed in the proGlem domain.

5. U.•;er· vGjed.s, which are needed t.u model the rule uf nsers in the model. The

user uGjects are different frvm the external device uGjects, Gnt the difference

is nut dear in Gumaa's IJaper. AIJparently. they are jnst nser interfaces.

The viJerativns fur each uGject. are characterized Gy their IJerivd. There are

two types vf VlJerat.ivns: asynchrvnuns and IJeriudic. Asyrhrvnvns viJerat.iuns are

activated Gy an vGject. vr event. tv IJerfvrm an action. Periodic viJerativns activate

themselves at regular intervals. Both kinds vf viJerativns can Ge nnregnlated vr

23

devendent npun the state of the object.. Overatiuns that are dependent nvun the

state of the object. may perform different tasks depending upon the object state.

The system is then modeled using the objects and uveratiuns. Each object

Is treated as a concurrent task, so that the system model supports a great deal

uf external concurrency. The system behavior is modeled using event sequencing

scenanus. Event sequencing scenarios use control objects that respond to incoming

events from the external environment and control the system state transitions. This

is the same as in Rumbaugh [54].

One disadvantage of COBRA is that deadlines are not considered. Another

disadvantage is that the event sequencing scenarios are not able to prove the system

is deadlock free, becanse they are just specific scenarios, not a complete representa­

tion such as statecharts ur Petri nets.

2.4.3 HOOD/PNO

Hierarchical Object-Oriented Design (HOOD) is a design methodology fur

real time software defined by the European Space Agency. It has been extended

with Petri net objects (PNO) tu model the system behavior (HOOD /PNO) [49].

PNO is a method uf describing the cuntrul strnctme and behavior uf each object

using Petri nets. The HOOD /PNO met.hudulugy covers the entire software life cycle

including analysis, design, and implementation

HOOD /PNO nses a parallel recursive life-cycle process that takes a level of

24

austract.iun , defines t.he Lehaviur at. that level, and decumvuses it intu the next luwer

level. The steps uf this methodology are as follows:

1. Determine the relevant objects of the system from the physical system require-

ments.

2. For the current level of austraction, collect the oujects into object classes.

3. Describe the vhysical objects in terms of their external behavior, their internal

structure and their relation to other objects.

4. Redefine physical objects and classes into software objects and classes. (The

authors claim that generally the physical description does not take into accotmt

all the responsiuilities required by the svecifications.)

5. For a given level of austract.ion, define the uverations fur each object.

6. Fur a given level of austraction , define the uperatiuns of the object.

7. Describe the objects' behavior by Petri nets and verify the properties of bound­

edness , liveness, and safeness in the design . Then computing the p-invariants

of the Petri net model , decompose the objects into next lower level of abstrac-

tiun.

HOOD /PNO is an uuject oriented design methudulugy that includes object­

oriented design analysis (OODA) , HOOD , PNO, and implementation rnles for trans­

lating detailed designs intu specific target language code. The strength of this

25

methodology is that it covers the entire life cycle from requirements tu code. This

met.hudulugy can Ge applied with a top down approach or a bottom up approach.

The stevs above show the top down approach.

One disadvantage of HOOD/PNO is that it dues not directly deal with the

vroGlems of concmrency. While concurrency can Ge modeled using Petri nets , it is

nut sverifically designed into the software. Also, the issues of object deadlines are

left tu the implementation language and not dealt with as design issues.

2.4.4 HRT-HOOD

The Hard Real Time Hierarchical Object-Oriented Design (HRT-HOOD) is

another adavtatiun uf HOOD for real time environments [10]. In this case the

emphasis is un supvurting the aGstractions that are typically needed by hard real­

time system designers. This allows the designer Getter conceptual tools for specifying

and analyzing the deadline requirements of the software.

HRT-HOOD was develuved based on the belief that the design methodology

must. vruvide the following support:

• uGjects that recognize the kinds of activities and artifacts found in real-time

systems .

• the appropriate scheduling varadigms.

• explicit definition of the timing requirements for each uGject.

26

• definition of the relative importance of each ouject tu the overall s1 tccessful

functioning uf the system.

• support for different modes of operation. (i.e. An airplane will have different

modes of operation such as on ground and in flight.. It is reasonable to expect

the software tu Lehave differently in these different modes of operation.)

• explicit definition and use of resource control oujects , which are olJjects that

interface to system resom-ces (i.e. sensors, memory, etc.) ..

• decomposition into a software architecture that facilitates processor allocation ,

scheduling paradigm analysis , and timing analysis .

• tuuls tu perform wurst case execution time and schedulability analysis.

HRT-HOOD seiJarates the high level design activity into two parts: the lug­

ical design and the }Jhysical design. The logical design is concerned with satisfying

the functional reqnirements that can be made independently of the constraints im­

posed lJy the execution environment. The physical design addresses the timing

and schedulability from the fun ctional req11irements and the other constraints. The

physical design can lw viewed as a refinement uf the lugical design , they are Goth

i tera tive and concllnent JHuresses.

The res11lt of the logical design is a set of objects that can not be fmther

decomiJosed (terminal olJjects). HRT-HOOD supports five kinds of objects:

27

• PASSIVE - Ol>jed.s that. are invoked Ly ut.her ul>ject.s . They have nu SlJunt.a-

neuus control over their own or other oLject's operations.

• ACTIVE- The must general class of oLjects with the least restrictions placed

un them. These objects can control when their own operations are executed

and can call uiJeratiuns in other objects. Since the effect. of these objects can

nut Le analyzed, they are allowed for background activities only.

• PROTECTED- This is an extension of the Lasic HOOD object types. These

oLjects can control when their operations are executed but can not call opera­

tions in other objects. These oLjects must be analyzed for the blocking times

they impose un the uLjects that call them.

• CYCLIC - This is another extension of the Gasic HOOD object types. These

are the 11eriudic activities uf the system . Their operations are demands fur

immediate attention. They can also SlJOntaneuusly invoke operations in other

oLjed.s.

• SPORADIC - This is another extension uf the Lasic HOOD object types.

These oLject.s represent the sporadic activities of the system.

Every uLject has code to control its Leha\'iur and synchronization which is

called the uLject control strnctme (OBCS). The cuncnrrent activities inside the ob­

jects are called THREADs. An ul>ject. can have une ur more THREADs that operate

28

indevendent.ly hum the uverat.iuns uf the ol>ject and whuse urder of execution is con­

trolled Gy the OBCS. At the highest level of design each system is represented Gy

a single CYCLIC or SPORADIC object. These objects are decomposed into lower

level objects at each iteration of the design cycle.

The physical design maps the logical design onto the physical resources of

the system. The physical design does the following:

• allocate the ol>jects in the logical design to the physical processors.

• schedule the communications network such that message delays are bounded.

• schedule the prucessors so that all objects on all processors meet their dead-

lines.

During the physical design , objects are assigned their timing attril>utes. Also

the al>stractiuns fur handling timing errors are created. These can include stopping

an ul>ject that uses more compute time than was requested, and stopping an object

that executes past. its deadline.

It. is clear that HRT-HOOD has very strong deadline management and is

a true real-time design methodology. It. is not dear how well this methodology

sHplJurts cuncmrency Geyund assigning ol>jects to physical processors and threads

inside an ol>ject.

29

2.4.5 OCTOPUS

OCTOPUS is a methudulogy for applying object-oriented techniques to em­

uedded real-time systems [69]. OCTOPUS contains extensions to OMT to handle

specifir real-time emuedded system problems such as concurrency, synchronization,

communication, handling uf interruvts, hardware interfaces and end-tu-end resvunse

time.

The stevs uf this methodology are as fulluws:

1. Create the system requirements specification frum case scenarios.

2. Create a system architecture to partition the system into independent subsys­

t.ems and svecifying the subsystem interfaces.

3. Analyze the snLsystem and create the OMT uLject and dynamic mudels nee-

essary fur the snLsystem .

4. There are twu required suLsystems: a hardware wravver and at least une uther

snLsystem. The hardware wrapver isolates the software frum the hardware.

The wrapper translat.es any external stimuli (ie hardware inputs, Lntt.ons, etc.)

t.u logical stimuli (events) for the software.

5. Analysis is first dune in implicit. cvncv.rn:ncy mude. where each suLsystem

is designed and analyzed as if it had its uwn fast. prucessur. Processing is

considered tu uccnr in zeru time.

30

6. Each event in t.he uiJject. and dynamic models are assigned a significance value

(c. e, 0, 1). Here c re_~Jresents a hard deadline, thee re_~Jresents a soft deadline,

the 0 represents no deadline, and the 1 re_~Jresents a deadline determined by

sume other state.

7. The e:r:plicit. concurrence mode is created by mapping the object model into

event threads.

OCTOPUS has strung design and analysis support for concurrency. The con­

troller design is implicit with an external hardware wrapper. Deadline management

sup_l)urt is included. The first design decision is that of suLsystems. The methodol­

ogy uses statecharts for behavior modeling. Inheritance is sup_l)orted as in OMT. The

life cycle covers the design and implementation phases. OCTOPUS is well suited to

emLedded real-time development. Also, once the architecture decisions have been

made, it. would Le difficult to change them, tmlike a regular uLject-oriented system,

where changes are ex_l)ed.ed and isolated from the system.

2.4.6 OMT

OMT is an oLject-oriented methodology that enjoys great _l)u_l)ularity [54].

Unlike the other methods discussed , this is nut a real-time methodology, but a gen­

eral methudulugy. Several extensions and pro_~Jusals exist tu add real-time features

to O~IT such as OCTOPUS (above) and [15].

31

Originally 01\'IT consisted of three complementary models: the object. modeL

the dynamic model. and the functional model. The functional model has Leen

eliminated in the recent OMT - Brooch unified model (UML) . The object model

descriLes the static relationship of the objects in the system. The dynamic model

descriLes the Lehavior of the individual objects.

Real-time e:tensions such as that of Chonoloes [15] capture the timing infor-

mation in the event. trace diagrams, scenarios, and statecharts. Rumbaugh's recent

additions to OMT [53] also support real-time software with deadlines in the event

trace diagrams and statecharts. Concurrency is not supported in OMT.

2.4.7 OPNet~

OPNets is an uLject. oriented methodology that models the Lehaviur of the

objects as Petri nets [-10]. One oft.he authors' mot.ivations for developing OPNets was

to correct a vroLlem they saw in PNO. In PNO, an oLject 's control structmes and

communications are not separated. Furthermore they saw the behavior of the oLject

in the control structure of the whole system as only Leing imvlicitly defined. As a

resnlt, a modification of an oLject.s ' inner control structure cunld result in a change to

the control stmctme fur the whole system. To overcome this proLlem t.hey vruvosed

the OPNets methudulugy. OPNets identifies objects Lased un their concurrency

relationships. The oLject 's internal control strnct.ure and external structure are

dearly sevarat.ed. High level Petri nets are used to model the behaviur of the

32

oGject.s and the relat.ionshivs Getween oGjects. This external structure then defines

the message passing Get.ween objects. At the next lower hierarchical level the Petri

net nodes are expanded to represent the internal control structure of the object.

The internal structure is not visible to other objects in the model.

There are two types of objects defined in OPNets. The first are primitive

oLjects which are the basic unit of behavior representation. Primitive objects define

sequential behaviors and static properties. These objects can not have concurrency

in them. The second type of object are the composite oLjects. Composite objects

are made up of primitive objects and other composite oLjects. Composite oLjects

have concurrency, and synchronize the sequential behaviors of primitive objects.

The stevs of this methodology are as follows:

1. Define the system in terms of mutually communicating aggregate objects and

their interconnection relations.

2. Define external message passing structure and internal control structure of

each oLject.

3. Define static properties and behaviors for each primitive object.

4. Model t.he behavior of each object with a Petri net.

5. For each primitive object, analyze the local Lehavior, reachability, and firing

sequences.

33

6. Fur earh rumvusit.e object , analyze its LehaYiur in terms of its internal objects.

OPNet.s uses a hierarchical Petri net. avvruarh tu model very comvlex real

time systems. Like Transnet. the methodology supports only :part of the life cycle ,

the analysis and design phase. OPNets can model runcmrent actions , Loth inside

and outside of objects. OPNet.s do nut indnde deadline management in the design

cycle.

2.4.8 ROOM

The Real-time Object-Oriented Modeling (ROOM) methodology was created

tu gu beyond creating and verifying a design, into automatically producing imple­

mentations uf the design [58]. ROOM is Lased un severalvrincivles of how a design

met.hudulugy should work. The key modeling concepts mnst be intuitive and domain

sverifir. Each software domain has its own cuncevts that. are well nnderstood by the

develu:pers . The develovment process should nut allow discontinuity. The authors

des<TiLe this as a seamless formal relationship between the artifacts and activities

of the analysis, design , implementation, testing. and documentation. Lastly, the

methodology should supvort an iterative design vrucess.

In ROOl\·1 syst.ems are modeled using h,·u varadigms. dimension and ab­

straction level. The dimension model vartitiuns the system Lased on the problem 's

natme. The abstraction level partitions the system into three levels: the syst.em

level fur modeling cuncevts at. the highest. level. the C01/.cun·ency level focusing un

34

issues of lJarallelism, and the ddaillevel which focuses on the im1Jlementatiun. The

model technique is iterative, l.milding a model at. a level of abstraction and analyzing

it, then refining the model at the next level of al>straction . The steps in the ROOM

methodology are as follows:

1. Analyze the current level of refinement using ROOM modeling concepts and

lJaradigms.

2. Design and imt>lement current abstraction in a ROOM model.

3. Verify that. the model meets requirements.

4. Move to the next level of abstraction and repeat.

The ROOM model uses active objects called actors. The actors have ports

that acrevt. messages . where messages are units of information that ftow between

actors. Actors can l>e decumvosed into groups of actors and their messages , which

are hidden from the higher levels of abstraction. The l>ehavior of the actors is

formalized using finite state machines and statecharts.

The advantages of ROOM are the iterative process and the abstraction levels.

Anut.her advantage is t.he formal support. of the methodology fur the entire life cycle

from requirements to implementation and to verification.

35

2.4.9 RTO

Real Time Objects (RTO) are a methodology that. has as its major goal the

explicit prugramming of the real time scheduling [47], [48], [19]. The authors claim

that this methodology is well suited for hard real time programming. RTO defines

i t.s ohjects snch that internal concurrency is not allowed.

The following are the RTO mechanisms that are supported by the method-

ology:

• Object.s - RTO ohjects are single threaded (at.vmic) ohjects. The object Le­

havior is modeled Ly a state machine. RTO ohject.s are reactive in that they

are at rest. nntil a message arrives , then depending vn their state, they perform

an action. Exerntivn vf an action ran not. be preempted.

• Cla.s.w:s - RTO nses a decentralized synchronization control; therefore, each

vhjed. has code tv synchronize concurrency.

• Message Fassing- Ohjects communicate through asynchronous message pass-

mg.

• l!nr::rpr:rf('(/ Messagr:s - When an ohject rece1ves a message that it can not

handle, it ran decide tv do one of the following:

- discard the unexpected message.

36

- defer the m essage 11ntil la ter, ass11ming that when the u l.Jject gues in tu

another state it. will be able to deal with the message.

pass the message to another object. This is different from the concept of

inheritance in that the object can send the message to any other object

not jnst its parent object.

• Component.s and Cont.mllen; - To handle scheduling the idea of a component

is introduced. A component is a collection of objects with similar time re­

qnirements operating on a (physical or virtual) processor. Each component

has a special object called a r.or1.trvller. The controller collects all the message

traffic, reorders the messages , and dispatches messages. With this implemen-

tation any user programmable control strategy can be used, or a standard

controller can be imported from a library.

• S t.anrlarrl Cont.roller'S - \Vhile the cont roller can be programmed by the user

to implement any control strategy, RTO also has a default standard controller

that. operates concurrently with the other objects inside its component and

di spatches messages in FIFO order without. concern for time (soft deadline) .

•])riveT Ohjcd s - Driver objects encapsulate the physical system and external

events into internal messages and vice versa.

The advantages of RTO are tha t. it. supports concurrency, it. considers the

object deadlines in the high level design , and that any scheduling algori thm can be

37

programmed intv the cvntrullers. RTO has a decentralized ccmtrul strategy because

there are mnltiple rvmpcments (each containing vLjects with a similar deadlines) ,

and each rumpunent has its un71 runtruller, su the cuntrul cvde fur s ynchrunizatiun

and communicativn is fvrced intv each cvmpvnenL

2.4.10 Transnet

Transnet is similar tv HOOD/PNO in that. it also uses Petri nets to model

and verify the Lehavivr vf the system [55]. Transnet is different from that method

in that it is cvncerned not only aLvut the functionality of the design but also with

the deadlines vf the svftware and message passing and with oLject cvncurrency.

The st.eps vf t.his methvdvlogy are as fvllvws:

1. Identify the vLjed.s and the calls Letween the vbjects.

2. Mvdel the vL,ject Lehavivr as high level Petri nets.

3. Define data types as primitive sets together with their vperativns.

4. Cvnstrnct the Petri net reachability trees.

5. Analyze the trees fur reachaLility, safeness, deadlvck, and freedom from star-

vat.ion.

6. Assign timing to Pet.ri nets.

7. Validate timing and nH. execntion.

38

One disadvantage uf Transnet is that it only SlliJIJults the SIJecificatiun and

IJreliminary design st.eps uf the life cycle. Its advantage is deadline management

sup!Jutt and concurrence analysis.

2.5 Analysis

TaGle 2.5 shows a summary of the ten methodologies IJresented above. Each

of the methodologies is comiJared according to the comiJarison criteria of Section

Concurrency is often an important issue in real time software problems.

The methodologies that have better support for concurrency are COBRA, RTO,

Transnet, OCTOPUS, OMT and OPNets. Related to this is the control structure

of the met.hudulugy. The methodologies that Sll!JIJOrt a single ul>ject. control are

COBRA and Transnet. The other methodologies support distributed control mech­

anisms. A very concurrent system with hard or firm message passing deadlines

wunld Genefit from a distrilJnted control structme system design.

Another imiJurtant issue in real time systems is the handling of real time

deadlines. Methodologies that du nut deal with the deadline issues me nut true real

time methudulugies. In this paper, ARTS , HRT-HOOD. ROOM, and OCTOPUS

have the Lest. snpiJurt fur real time deadlines. These all incorporate techniqnes for

determining if t.he deadlines will be met and for showing the predictal>ility uf the sys­

tems. RTO and Transnet methudulugies Gut.h have some deadline handling supiJurt

39

lmt they du nut include any techniques fur analyzing the predictability uf the sys­

tem. The remaining methodologies all support deadlines only in the implementation

}Jhase uf t.he design cycle and may not. Le true real time design methodologies.

ln all uf the methodologies studied, except for COBRA and OCTOPUS, the

first de~ign decision is selecting the oLjects. In COBRA, the first design decision is

selecting the concmrent. processes. In OCTOPUS, the first decision is suLsystems.

This is not. a surprising result in that. all the methodologies are of the object oriented

paradigm.

It. is not clear what Lehavior modeling technique is incorporated in ARTS

and HRT-HOOD. The Lehaviur modeling for the COBRA met.hodolugy is event se­

quencing scenarios and st.atecharts. RTO, ROOM, OCTOPUS, and OMT also use

scenarios and statechmts fur Lehaviur modeling. HOOD/PNO, Transnet., and OP­

Net.s use Petri nets. Selic point out that these modeling techniques are still limiting

{59}. None uf these modeling techniq11es really allow the modeling of the deadlines

uf tasks and messages in the real time system. The interaction of hard, firm , and

soft deadlines in a system is nut considered Ly any of the modeling techniques.

None of the methodologies studied in this }Ja}Jer discuss if, or how, deadlines

and behaviors are inherited. If a class has a hard deadline and an object. inherits

from this class, is the deadline inherited? Say a suLclass overrides a soft deadline

with a hard deadline. How can the system ensure that this deadline will be met.

when an inherited operation is performed? Another prublem is how is the object

40

Gehaviur inherited? It. is nut at all dear if Gehavior is inherited, and if it is, huw

part.s uf the Gehaviur can Ge overridden Gy the suodass.

ARTS COBRA HOOD/PNO HRT-HOOD I
Concurrency SllpJ.wrt N y N N

Control Dist.rib Central Distrib Distrib
Deadline Management y N N y

First. Design Decision Ol>ject.s Conc1trency Ol>ject.s Ol>ject.s
Behavior Modeling St.atechart Statechart Petri Nets Statechart

OCTOPUS OMTs OPNets Room
Concnrrency Snppurt y N y y

Control Distrib Central Distrib Dist.rib
Deadline Management. y N N N
First. Design Decision Subsystems Objects Objects Objects

Behavior St.at.echart Stat.echart Petri Nets Stat.echart

RTO Transnet.
Concltrrency Snpport y y

Cunt.rul Dist.rib Central
Deadline Management y y
First. Design Decision Objects Objects

Behavior l'vludeling St.at.echart. Petri Nets

Table 2.1: Snmmary of Methodologies

2.6 Chapter Summary

Ol>ject.-orient.ed design methodologies have several advantages in real time

software design. First. , they have some general advantages snch as isolating the

impact. uf changes un the design. and encouraging the rense uf design artifacts and

code. The ul>jed.-uriented paradigm can model appropriately the environment in

which the suft.'vvare will Le used , which is very important. for real-time systems. The

41

information hiding asped. can allow the real-time system to have several methods fur

IJerfurm ing each task. There may also l>e some fault tolerance advantages. Lastly.

the formal methods necessary to show the IJredictal>ility of the system can l>e easily

and natmally incoriJorated into the system.

Tl w dis~dvantage of ul>ject.-uriented techniques is that must general vmvuse

ul>jed uriented methodologies have inadequate modeling SlllJlJort fur real time soft­

ware . Few methodologies even attempt to deal with deadlines, which is arguably

the must imvurtant featme that separates real time software from regular software.

In this chapter , we examined ten real-time ul>ject-uriented software design

methodologies and wmpared their strengths and weaknesses. A design methodology

fur real time software shunld help the designer deal with the svecial vrul>lems of the

real time environment. If the environment has hard real time deadlines, then the

metl1udulugy should suvpurt the consideration of this in the design stage, nut jnst

at the implementation stage. Concurrency is another issne that can be handled in a

nnmGer of ways. The design methodology should snppurt concurrency at the level

that is required Gy the prul>lem at hand.

42

Chapter 3

BEHAVIORAL MODELING WITH STATECHARTS

3.1 Introduction

Must. ul>jed.-oriented systems behavior models are based either on statecharts

or un Petri nets. After reviewing both modeling techniques , we elected to concen­

trate un st.atecharts. Among the reasons for this decision is the fact that there is

a mapping Getween statecharts and Petri nets, that is , they have similar modeling

power fur must uf the cummun software applications. Personal preference may Ge

the overriding deciding factor for choosing Getween the twu methods.

Om first gual was to evaluate statecharts and the problems associated with

extending them tu incorporate real-time deadlines. We first looked at the nature

uf time measurements in software. Next , we looked at how simple automata are

changed when timing is added. After that we reviewed statecharts.

3.2 About Time

Before we luuk at adding timing to antomat.a or statecharts , we should first

louk at the natme uf t.ime. There are several ways uf thinking al>out time. Each

43

has different. at.trilmtes and causes us to think about um vrublems differently.

The first way of thinking al>unt time we wunld call al>solnte time. Al>solnte

time is very svecific. Ten o'clock, Tuesday, and July 4th are all expressed in al>sulute

time. Al>suln le time is nut what we normally think al>uut when we deal with real

time prugran nning. However, must. software today can read the system duck and

use al>sulute time.

When we are m a real time environment. we more often refer to time in a

second way, relative time. With relative time, we are concerned with issues such as

did one event happen before another. Time is expressed in terms of before , after ,

and within an interval. This can l>e much less specific than al>solute time but. more

significant from the point. of view uf an apvlicat.ion.

The third way uf expressing time is in the sense uf temvurallogic. Here the

v1ew of t.ime is expressed as eventnally something happens, ur as something will

never happen. This t.empurallugic view of t.ime is well snited fur making arguments

al>unt pruvert.ies snch as safeness and liveness.

Clearly all three of these views of time have a vlace m real-time softvvare.

The first. view is nu different than exists in nun-real-time software. That is we can

call fnnctiuns t.hat read the system duck and compare it t.u a valne. The second view

of time is more uf a real-time view. This is the kind uf timing we are att.emvt.ing to

add into the ul>ject l>ehaviur models. Finally, the temporal logic view uf time is an

important view that we need fur reasoning about um designs. Adding this timing

44

alone dues nut make t.he software real-time software.

3.3 Timed Automata

Any aut.umata from simple state machines to Turing machines can be mod­

ified with timing. This can be dune by simply restricting the state transitions so

that they can only Le t.aken dming specified time intervals. This simple change has

far rearhing effect.s that include state explosion, intractaLilit.y, and undecidaLilit.y.

However , real-t.ime systems require these timing constraints for 1mderstanding and

verifying the critical timing interactions.

One uf the Lest discussions of timed automata is that presented by Alur

and Dill [3]. Here the timed automata are explained using sets of reset.able timers.

These timers ran Le reset as an action on a state transition or can be used as a

condition on a state transition. Figure 3.1 shows an example of a timed automata.

In this example, the transition from state S0 to state S1 occurs when the symLul a

is read Ly the automaton. This transition causes the timer x to be reset. to 0. The

transition from state S1 Lack to state S0 is constrained by the condition (x<2)? In

this example the transition will Le taken if the symLul L is read Lefure 2 time units

have past after reading the symLul a .

There are several pruLlems and issues addressed in the current literatme fur

timed automata. These include:

• Timed aut.umat.a suffer from state explosion when applied to realistic pruLlems.

45

a, x:=O

b,(X<2)?

Fig ure 3 .1: Example of a timed automata.

• Analysis vf timed automata for properties such as reachal>ility, safeness , live­

ness , and others, is often intractable.

• There is nv agreement. vn the nnml>er and kind vf ducks nsed in the antvmata.

• There is nv agreement vn discrete versns dense (cvntinnvns) time.

The state exiJlvsivn issue is similar to the IJrvl>lem that led to the introduction

of statecharts. The idea vf a hierarchy and concurrency can be used to control

the exiJvnential state growth vf must. interesting IJrvl>lems. However, timing can

canse e\·en faster state grv,:vt.h , l>ecanse each event can canse different. transit.ivns

depending vn t.he amvnnt of time that has passed.

The t.radauility vf timed antomata is significantly more cvmiJlex than that

of regnlar automata. The issne of reachal>ility. which can be fairly straightforward

in a simple state machine. is many times more cvmiJlex m timed state machines.

46

One example is the simt>le state machine that has an nnreachaule final state when

an indnded timing constant is not an integer [37], [38]. Trying tu show that a timed

automata is emlJty (nu strings reach the final state) is tmdecidable.

The number of docks used in the automata is also an issue. Several authors

recommend using mnltiple ducks [3], [5], [37], [38], and [.t6]. Others use the single

cluck model (30], [~~3], and [43]. The multit>le clock models can ue reset by an action

ur event.. And sume multiple clock models require that the clocks run synchronously

and others du not. A model with multiple clocks that does not require synchronous

clocks will definitely have more power when modeling a distributed system.

The last issue is that uf discrete versus dense (continuous) time. If the docks

increase munut.unically uy an integer amount, then the ducks are discrete. Some

argue that dense time is needed fur must real-time sitnatiuns. Several hybrid models

that inrutvurat.e uut.h t.imes have ueen lJlU_IJused [4]. It. dues appear that if the integer

value uf increase in a discrete clock is small comvared tu the values that were tested

fur. than we would nut be aule to observe a difference between discrete and dense

time.

There are several sulntiuns fur getting around the vroulems of timed au­

t.umata. Must. involve restricting the ant.omata in sume way su that the resulting

ant.umata can ue easily analyzed. One example uf this restriction is the Alternating

RQ timed antumata [37]. Here the timed automata is restricted to one that has a

finite nnmuer uf ducks where each cluck can be queried unly once after it is reset.

47

Thus , on any vat.h through the automata the docks should alternate Letween resets

and queries. Using t.his JE'st.rict.ion it. can Le shown that the resulting automata are

tractable. However, this alsv results in mvre states, as extra states are necessary

just. to keev the clucks understandable.

While svme vf thi s work on timed automata is theoretical in nature , the

prol>lems of intract.al>ility, undecidability, and reachal>ility will also appear in timed

statecharts. Thus we need to look closely at these solutions and see hvw we can

incorporate them into future models. These solutions can be incorporated both

directly (via a rule fur the models) or indirectly in the way we structure the modeling

technique. In any event, we should consider the above vroblems when looking at

timed st.at.echart.s.

3.4 Statechart::>

Harel's st.atechart.s [29] are extensions tv state machines that incorporate the

cvncevt.s vf hierarchy, concurrency, and cvmmunicat.ivns. St.at.echarts, which are

also known as Hare! Diagrams, have Lecome vne uf the must. important. tools fur

svecifying and analyzing complex systems. They are nuw Leing used in a wide

variety vf tvvls.

St.atechart s originated while examining the vrvl>lems with specifying n :ar!.i1 ,r·

sys/.ems. These systems are difficult tv svecify Lecause they must react tv a wide

range vf internal and external stinmli. This stimuli and the resulting act.iuns are

48

complex and often have timing constraints. As a resnlt, the traditional state ma­

chines are unmanagealJle, due to the exponential growth of the number vf states

needed tv specify even moderately sized prolJlems.

The exponential growth of state machines is a side effect of their limitations

when descrilJing concurrency. State machines consist vf states and transitions. In

a finite state machine. only one state can Le active and all the others are inactive.

Transitions are directed connections between two states. Each transition has a

associated event. and action. When an event arrives a transition is taken from the

active state tv another state and the associated action is performed. As the number

of possilJle conditions of the system grows, the number of simple states necessary

to represent each vf these conditions grows and the numlJer vf connections between

all the states grows. Every event that can happen must have a transition (fi'<:ed or

implied) from every state. Events that are not. exvlicitly defined for a state must

have an imvlicit transition, such as transition to an error state or ignoring the event.

Statecharts are an extension to the basic state machine that uses concurrency and

hierarchy to eliminate the need for many states and transitions.

The concept. vf generalization hierarchy is incor]Jvrat.ed into statecharts using

superstates and sulJst.ates. A subst.ate is contained Ly a superstate. If the sulJstate

is active then the superstate is also active. Thns. more than one state is active at. a

t.ime. The details vf a superstate can Le ignored Ly zooming out, and looking only

at the external interactions of the state. In the same manner. we can zvvm in and

49

lvvk vnly at. the internal vf the superstate, thus allvwing vmselves the aGility tv use

hierarchy tv rvnrentrat.e unly vn t.he level vf detail needed tv svlve the prvl>lem at

hand.

A superstate ran alsv allvw more than one snbst.at.e to L>ecome active at the

same t.ime. This allvws rvn<mTenry in the system design. Concurrent states, shown

together but separated l>y a dotted line in Harel diagrams, helps restrict the number

vf states necessary tv build the system. The ronrmrent states can be synchronized

by having t.ransitivns that cause state changes in all parts of the concurrent states.

Otherwise the states are unsynchrvnized.

Communication L>etween the states JS based on the broadcast mechanism.

There are several shvrt.hand conventions necessary fur keeping the diagrams undnt-

t.ered. A transitivn tv a superstate implies that. the marked default. sul>st.at.e is the

state entered. A t.ransitivn frvm a superstate implies that. , when the rundit.ivn fur

t.he t.ransit.iun is enrvnntered, t.he transitivn is taken nv matter which snLst.ate 1s

adive at the time. Transitivns frvm suLst.ates and tv suLstates are also allvwed.

Figme ~~.2 is an example vf a simple staterhart. Entering state A autvmati­

rally enters suLst.ates B and D simultanevnsly. If the event that triggers T3 uccms

then stat.e D wvuld rease hJ Le artive and state F \\"uldd Lecome active. If state

F is active and the event. that triggers T7 vccms . then state A Lecvmes inactive,

regardless uf which vf states Band C were active. Like\\·ise. if transition T8 is taken,

state A Lecvmes inactive nv matter which sul>states were active.

50

I

~
I

A I

I

~
I
I

I

I

I

I
I D I
I

8 I

:~t
I

I

I
I

I

I

I

T3 I

I

~ I
I

T1 T2
I

E I

I ,

~ c
\ 1r

F T6
~

~

'
I

T7

T8
r ,

Figure 3.2: Stat.echarts Example

51

The result is that statecharts are a lJOWerful tool used to visualize the states

of a com!Jlex system. This tool allows us to concentrate on only the pieces of the

problem that we need to at any }Joint in time, yet result in a complete overall picture

of the system.

Several extensions have been added to statecharts since they were introduced.

One exam!Jle of this is t.he extension of statecharts to be a graphical language for

the programming of CNC machines [28]. In this exam!Jle , the statechart is used

as a gra}Jhical user interface (GUI) to create programs and to program numerical

controllers of machine-tools (CNCs). The pa!Jer claims, but does not. show, that

the statecharts can IJe translated directly into CNC programs that have real-time

considerations.

3.5 OMT Statechart~

An important. variation of stat.echarts is the one used iJy Ruml>augh in 01\IT

[54]. This extension is one of the most. com!Jlete from a design consideration. It.

includes the conce!Jh3 of conditional events that trigger actions , state activities , and

lamLda transit ions.

One oft he key featmes of OMT statecharts is the specificat.ion of the transi­

tions. All f·he transitions are controlled Ly a criteria t.hat inclndes an event. . condi­

tions, and actions . This is \vritten as P-'IW1i.l.(at.lrilmtc)fcundit.io11jj aclion and attached

to each transition as a laLel. The event is the event. that triggers the tran sition and

52

the att.ril.mtes are infunnatiun passed alung with event, l.mt sevarate frum it. For

example. the event can L>e a signal from the keyboard controller signalling that a

key was devressed. The attril>ute could l>e the information on which key was de­

pressed. In many cases , the event is really an e1'ent.-e.r.pression that is a l>uolean

express it•n desrril>ing atomic events. The events can be single events (say event. a),

a combinat.iun of events (a. V b, a 1\ b), or other special events (time-onts, A events,

negations, etr.) .

The condition m an OMT statechart transition lal>el is an expression that

descril>es the set uf conditions necessary to enal>le the transition. This is usually a

descrivtion of other states that mnst be active (or inactive) for this transition to be

enal>led. Events that uccm when the condition has the transition disabled do not

canse a stat.e change.

Artiuns are events created l>y the transition. There dues nut apvear t.u be

any limits un how many events can Le generated ur what kinds of events can Le

generated.

One feat me of O.lviT stat.echarts that. is very different from Harel 's statecharts

IS the activities that. urrnr inside the states. We can svecify activit.ies that will

hapven when a state is entered. Likewise , we can specify activities that will havven

when a state is exited. We can alsu svecify activities that. will havven when certain

events uccm . even if that do nut reqnire, or cause a state change. These activities

are specific. and have dmatiuns. As a resnlt. we can specify lambda transitions that

53

will ucc1tr, causing state changes, Lased on the activities in the st.at.e completing.

On une hand these state activiti es are convenient additions t.u statechart.s.

Many activities that will be performed in a state, can Le aLstracted to a high level

entry, exit , or event activity. However , the ~ ~e ad.ivities may require further reduction

int.u a statechart as we move into lower le vels (jf design al>straction. It is important

tu note that these activities do not give OMT statecharts any more modeling power

over any other stat.echart.s met.hod. Anything that can be modeled using activities

can Le modeled using suLstates in the statecharts.

One important benefit of using the OMT method is that a designer is strongly

reminded that states do something and are not just parking places. Activities are

performed inside states. That activity may be to perform functions, write to files,

sleep. ur wait fur a key to ue pressed, but it is still doing something.

There is une other difference uetween Ol\IT statecharts and other methods.

There is an underlying assumption in most st.at.echarts that. all transitions are in­

stantaneous. When an event occurs , the transition does not take any time to change

states. However , in O.tviT statecharts , a state can have exit activities , that take time

toLe performed. While this may not ue a prol>lem in nun-real-time software, it adds

a definite complication tu real-time systems.

Figme :3. :3 shows an example of Ruml>augh 's Ol\IT stat.echarts. As we can

see. the states can have activities in them. These can ue regular, entry, and exit

activit.ies. Fmt·her more there can also ue activities that are triggered uy external

54

State1
do activity1 event1 (attribs 1)[condition 1]/action 1
entry/activity2 1-----------------1:~1
exit/activity3
event/activity4

I

State2

\

Figure 3.3: Example of Rumbaugh 's OMT statecharts.

events . Transitions are triggered Ly event.s with conditions, which cause actions.

Artivities are similar to actions except that activities take a significant time to com-

plet.e . Artions on t.he other hand are so quick to complete that they are considered

instantaneous.

Hooman et.al. used an axiomatization formalism to make formal assertions

al>ont the }Jroperties of statecharts [31]. In their pajJer, the authors show how logical

specifirations ran Le added to the st.at.echarts in order to make formal assertions

al>ont safeness and liveness properties.

Another example of formalism being added to statecharts is the Syntropy

method of Cook and Daniels [18]. They argue that the graphical notations of stat-

echarts. while powerful, often lack expressive power. To overcome this, written

55

wurds are uft.en added t.u statechart.s, Lut the wurds are t.hemselves uften amLigu-

uns. Something mure furmal is needed.

The Syntropy methud is Lased on O:MT. This Legins by associating each part

uf the OMT nut.atiun with a precise mathematical meaning. For example, a one tu

many assuciatiun is interpreted precisely as ~ t ma thematical fnnctiun mapping the

uLjects of the first set intu the oLjects uf the second set. This can Le a very simple

function , a E b, or a mnch more complex fnnction.

In their nse uf statecharts unly events, cause state changes. The design must

specify which uLject.s are affected by what events, when events can hapven, and

what are the cunseqnences of the events. Tu do this, each state has a list of the

events t.u whirh the state will resvond. Transition guards cuntrul when states can

resvund tu events (change states). Events that are on the list but can not trigger

st·ate dwnges a re considered nndefined. It is nut d ear \Yhy they alluw events un the

li st that wunld Le considered undefined. unless it was tu enaLle them for suLstates.

Figure :3 .4 is an example of a Cuuk and Daniels statechart.. This example

shuws a simplist.ir traffic light. cont.roller that alluws the traffic light to be in a reset

stat.e where all the yellow lights flash ur in the nurmal fnndiuning state (Running)

where the lights cycle thuruugh their sequence. These states are switched l>etween

by the ewnts Reset. and Nut.Reset. The mles uf this kind uf statecharts say that

an event. that. is nut un the li st uf events fur the rurrent. artive state. rannut. be

generated. The sert iun at. t he butt.um uf the staterhart labeled 'Alluw' shuws what

56

Traffic-Light (,r­
~ ------------------1

I
I

Allow:

Yellow­
Flash

Reset
NotReset

Running

NotReset

F igure 3.4: Example of Cook and Daniels Stat.echarts Formalism

events t.his staterhart. will accept. In this case it is t he events Reset and NotReset.

Cook and Daniels descriLe this as an implied contract that reqnires the design

to ensme that all events are allowed before Leing generated. This is a somewhat

limiting rest.rirt.ivn.

Once generated, t.he events can cause one or more vf several consequences.

First. they ran cause a state change in the stat.echart. They can also cause a change

tv t.he oLject's prvperties , or they can cause a change to the membership associations

vf the vL.iert. Also , they ran generate other events. And. lastly, they can cause the

57

termination uf the uLject. In all cases, the cunseqnenres uf the event can Le d early

stated and prerisely desniued.

3.6 Timed Statecharts

One uf the signifirant shortcomings of statecharts fur real-time systems is

their inauility tu descriue and model timing constraints. There are several ways to

intrudnce timing intu stat.echarts. One way was prupused Ly von der Beeck [65] , whu

added the cuncept uf timed transitions tu stat.echarts. A timed transition has an

npper and luwer time Luund fur the transition; that is , the event must be active for a

minimnm amount of t.ime (the lower bonnd) before the transition can be taken, but

it must Le taken Lefure the maximum amount of time elapses (the upper bound).

This allows the int.rudud.iun uf the concepts uf delay and time-unt into the model.

The formal syntax uf the transitions are as follows:

c[r-]/a fur nntimed transitions

([r:] f(n · I) / a fur timed transitions

where c is an event., c is a condition , a is a sequence uf generated actiuns and events,

and 1 is a time interval {l , 'lt.}, that specifies an npper Luund u, and a lower Lunnd

l, fur the dmatiun uf the time interval. Using the timed and untimed transitions,

the real-time syst.em characteristics uf delay. t.ime-unt . and preemption can all Le

mudeled. In this mudel , the transitions triggered Ly ewnts are always unt.imed.

58

([true] for {t,t}) 11 e

o~ A

Figure 3.5: Example uf a timeunt condition

This t.iming techniqne does appear powerfnl in SIJecifying delays and timeont.s.

An example uf a time unt condition is shown in figure 3.5. If state A is active and

event c ucrms Lefure l time nnits pass. then state B becomes active. However, if l

time nnit.s pass Lefure event. (~ occms, then state C Lecumes active.

Another example is the extension uf stat.echarts into uojectcharts [16] . Here

st.at.echart.s are extended with defanlt states. glooal timing. and timed transitions .

The timed transitions are the same as those above. Each state in an objectchart

that has hierarrhy. mnst have a defined start. state. This is the same as Harel 's

defanlt st.at.e.

Oojed.rhart s reqnire a glooal cluck. The global duck needs to be available t.o

every uojert. Also all the states in the uojectchart need t.u have access to the cluck.

How this wunld Le handled in dist.riont.ed syst.ems is nut dear.

59

Lastly, uLjectcharts uses timed transi tiuns fur timing. Transi tiuns can have

specified minimum and maximum delays. Any ubjectchart transitions can use time

as a firing runsideratiun .

Another avvruach for introducing time into statecharts is statecharts+, which

are based on the model of timed automata [66]. Like the timed statecharts, stat.­

echarts+ have timed state transitions. In addition, statecharts+ also have timed

states. However, there is a difference in the Lehaviur of these timed states and timed

transitions compared to the aLove.

The timing constraints on the states contain upver and lower bounds. For

example, a st.at.e may have a time svecifi.cation like [l , u] where l is the minimum

amount of time the state must Le active before a transition can Le taken and 'U is

the maximum amount of time that a state can Le active Lefure transition must Le

taken. It is nut dear what havvens if t.he state times out and no transitions are

availaLle.

The statecharts+ timed transitions are the same as the vrevious timed tran­

sitions. The timing is used to restrict. when a transition is enabled. If an event

uccms when the transition is enabled it must Le taken. To accomplish this, a set of

clurks mnst. Le est.aLli shed and driven Ly a master cluck. The ducks fur a transition

can Le reset (as the resnlt of an action) Lnt the ducks fur t.he states can not.

An examvle of this is shown in figme 3.6. Here state A has a timing constraint

where it mnst stay in the state fur l 8 time units . and mnst leave the st.at.e Ly '11 8 time

60

(A' e[lt,ut]
.. B .

[Is, Us]

Figure 3.6: Timed Statecharts+ example

units. The transitivn taken when event e occurs between l1 and '1./.1. time units leads

t.v state B.

3. 7 Evaluation and Analysis

Tv make a detailed analysis of the way staterharts are nsed tv desniGe and

analyze the Gehavivr vf vGject-uriented vGjects. we chvse three methods to study.

We chuse Ol'vlT. Culeman. and Cook and Daniels. We chuse Rumbaugh et.al. [5.!]

OMT. Geranse it is a pvpnlar method that is well dvrnmented. We chose Coleman

et .al. [16] and Cvvk and Daniels [18] t.o cvmpare t.he st.rnct.me vf their transit.ivn

speci ficativns.

By analyzing the strengths and weaknesses vf these three methvds. we will

have a Gett.er understanding of what feat.mes are desired in a statechart Gehavioral

desrriptivn.

61

The OJ\IT st.af.erharts ran have very detailed states th a t. SIJerify what artivi­

ties orcm when the state is artive. In this way, OMT statecharts are different from

Harel's original stat.erhart.s. This dues cause a IJrvulem with the assumption that

state transitions vccm inst.antaneuusly. In OMT, there are entry and exit. actions

that. take t.ime tv ue performed. In nun-real-time suft.ware. this is nut a IJroLlem.

However, in real-t.ime software these actions need to ue carefully considered and the

time tv IJerfunn them accounted for.

The activit.iE's in an OMT statechart could ue considE>red a high level textual

descriiJtiun of thE' lvwE'r level states in a statechart. Fur E'Xample, figme 3.7 a shows

a dE>tailE'd OMT st.atechart.. In figme 3. 7 b there is an equivalent maiJping of this

to a HarE>l st.at.E>rhart. Rumuaugh et.al. advises using entry and exit activities when

all the transitions into or unt of a state cause the same actions.

The Cvuk and Daniel method gathers the common information auuut the

transition SIJerificat.iuns int.v each state. Where it. is necessary, formal mat.hematirs

are added to clarify the svecificatiuns. Since all the cvmmvn information for the

transitions arE' specified in one vlace, it is fairly easy to analyze the uehaviur of

thE' staterhmt . The transitions only need to carry the infvnnation unique to each

transition.

ThE' Coleman method has all the information for thE' transitions in the t.ransi-

t.ivn prerundit.ivns and }Jvst.cundit.iuns. This is nut as easy tv follow as thE' Cook and

Daniels mE>thvd. Fur instance, it is more difficult. to understand ·when transitions are

62

state1
entry/act1

-~exit/act2

state1

state 1.1
act1

tate2

event

a.

b.

F igure 3.7: Cvmvaring OMT statecharts with regular statecharts

63

affert.ed Gy a rvnditivn change. The use vf transit.ivn conditivns makes it easier tv

add new t.ransit.ions and states, thus this met.hvdvlogy facilitates design iterations.

Twv different ways of revresenting time avvear in these three methods. OMT

11ses aLsol11t.e time only Here there are no local clocks. but the system clock can

Ge read . Cvvk and Daniels also uses only absolute timing. In this method, there

is only a glvGal dvrk that. every object can access and read. This is rudimentary

timing and can only Ge used to restrict two processes frvm overlavving. To Ge really

useful for real-time vrvgramming Goth methods need to include expanded timing

information. The Coleman method uses relative timing. In this case, a local clock

can Ge started when a state is entered. This clock can then be used as a condition

for state changes and triggering events in the model.

Anvt.her way vf cvmvaring mvdels is to look at how the objects and states

communicate wit.h vne anvt.her. There are twv Gasic mvdels: the Groadcast. and

the client server mvdel. In the Grvadcast. model, all states are aware of all events

and condit.ivns generated. If a state dves not change when an event occurs, it is

ignvred. In rvnt.rast., the voint to voint or client server model sends the events only

to specifir st.ates . Each state must know what. events it expects and what transitions

are assvciat.ed with each event. Undefined events are not allowed. OMT and Covk

and Daniels use the Grvadcast communication method. Events can occur in varallel.

and vcrur inst.untly everywhere.

There me paradvxes that can occm when Groadcas t is used , Gut specia l rules

64

[~]~---b/a~•['------']

Figure 3.8: Example of broadcast communication paradox.

are pnt in to rontrul them. Several examples are shown in [31]. These problems

orcnr because of onr assumption that all the transitions occur instantaneously and

simnltaneonsly. Consider the rase in fignre 3.8 where in concurrent parts of the stat­

erhart event. a triggers a transition that generates action b. In the same statechart,

the occurrence of event. b triggers a transition that generates action a. At this point.

the orcurrence of either event a or b will canse the other to occur instantaneously.

The Coleman met.hod nses the client server form of communicat.ion. In this

model , all events happen instantly Lmt seqnentially. Events are only sent to specific

states. Event traces are nsed to map ont. t.he scenarios. The paradoxes of the

Lruadrast method are avoided .

65

II OMT Cook and Daniels I Coleman et.al.

Cunc1 nrency implicit implicit implicit
Expression uf time Absolnte Absolnte Relative

Real-t.ime Yes Yes Yes
Commnnicatiun Broadcast Broadcast Client Server

Clucks G lol>al Clock Glol>al dock Local clucks
St.ructnre uf Transitions Transi t.ions Transitions

timing and states

Table 3.1: Cumparisun of Three Methodologies

Finally. we snmmarize the three methodologies examined al>ove. OMT is

less graphical than the uther methuds. Mnch uf the information for the Lehavior is

recorded textually inside the states. When this is used correctly it can be powerful,

huwever, it dues nut. increase the modeling power of the method.

The Cuok and Daniels methodology is the easiest to analyze since information

is gathered in a tal>le in the states. Bnt fur the same reasuns it is more difficult

to design with. It. is difficult to add new transitions and event.s mnst, be carefnlly

specified Lefure Leing generated. Concnrrency is implicit and commnnication is

broadcast tu leave mure freedom t.o the designer.

The Coleman methodology is easier to design with. for the same reason that

Cuuk and Daniel s is nut. That is, transitions can Le added with relative ease.

Huwever. thi s methud dues not facilitate analysis. Each transition mnst be examined

individually dming analysis. It. has fair expression of timing characteristics , bnt

cunld be bet.t.er with timers. Coleman has alsu dearly addressed the communication

Jssne . It. appears that. t.his method and t.he Cuuk and Daniels method have the same

66

modeling pvwer, and this suggests that it may be possil>le tv transform l>etween

them to cvml>ine the easier design ability of this method and the easier analysis of

the Cook methvd .

While svme vf the methvds here discuss part of the relationship of the behav­

ior model tu the ul>ject model, nvne uf the methods details how this should happen.

There is nu discussion of the relation of composition of objects or inheritance and

the l>ehaviur uf the statecharts. In OMT, Rumbaugh skirts the issue by advising

that only objects with meaningful dynamic behavior should be modeled with a stat­

echart. Rumbaugh also advises that events in the statecharts are the methods from

the object model. Clearly, more work needs to be done exploring the link between

the object and behavioral models.

3.8 Chapter Summary

The Lehaviur models used in must object-oriented design methodologies are

either statechart.s or Petri nets. In this chapter we concentrated on statechart.s,

looking at t.he problems associated with incorporating real-time deadlines into the

Lehavivr models.

First we examined the difficulties in adding deadlines into simple automata.

From this analysis we found that time constraints add a high level of complexity to

simplest. of automata. These time constraints often make it difficult to prove simple

automata properties, such as showing that every state is reachable.

67

Next we examined three methuds uf adding formali sm to st.atecharts. Vle

examined the methuds of Cook and Daniels, Culeman, and Rnmbaugh 's OMT.

These three methudulugies were similar tv one another in must respects. All lacked

snpport. fur inheriting deadlines and nvne snpported only timed state automata.

68

Chapter 4

TIMED STATE STATECHARTS

4.1 Introduction

All the methods of adding timing to statecharts in the previous chapter used

or included timed transitions. We wondered if timing could be specified in the

st.at.echarts using only timed states. In some cases, using only timed states results

in a model that is easier to design with, is more extensible, and that better represents

the deadlines we are trying to model.

In the t.imed state met.hodology the deadlines are modeled with count. down

timers. Upon entering a state with a deadline a timer is started. If the deadline

expires uefore the state has been left, an exception or time-out event is created.

This real-t.ime uehavior modeling meth•Jdology can ue easier to evaluate than the

timed transition met.hodology.

4.2 Timed Transition Problems

In the previous chapter , timing was added to statecharts by making time a

condition on a state transition as follows:

69

c[r]/ a for untimed transitions

([r] for 1)/a for timed transitions

where r· is an event , r. is a condition, a is a seqnence of generated actions and events,

and 1 is a time interval { l, u}, that specifies an npper bonnd u, and a lower bonnd

l. for the duration uf the time interval. Another approach to modeling time in the

state transitions is to simply add a time interval to every transition. Transitions

that we want tu behave as untimed transitions would have a zero to infinity timE"'

interval. The formal syntax of this transition model would be:

c([r].for· i)/a fur all transitions

where r. is an event.. r is a condition. a is a sequence of generated actions and events,

and 1 is a time interval { l , u}. that specifies an upper bound u. and a lower bonnd

l, fur t.he dmat.iun uf the t.ime interval. To model all the sit.nations that can occm in

real-time systems we will need some special events such as a A event or a time out

event. tu trigger a state change. This gives this model all the power of the previous

model plus some as events can now trigger timed transitions.

There is one im1Jurtant ambiguity that. is treated in different ways m the

literature. Huw the lllJlJer bound uf the time interval is interlJreted is an im1Jortant

diHerenre . In some cases , the U1Jper bound is treated as a gate that simply turns

uH the ability uf the transition to be taken. This is called weak lime semanl.ics.

70

Fur examJ->le, events that. uccm after the upper time Lunnd has J->ast are treated

as any unexpected event. wuuld be. In the other case. the upper time bound is a

requirement. Here the transition must L>e taken L>efore the time limit expires. This

is called st.nmg lime semant.ics. Part of the analysis of the system would be to show

that the event was indeed generated before the time limit expired.

Like the U!Jper time L>ound ambiguity there is a similar ambiguity concern­

ing the lower time l>uund. One way to consider the lower bound is that it is the

specification of the amount of time, since entering the state, that must pass before

a transition can L>e considered. In other words, if event e occurs before time l , it

is ignored, and if it occurs after time l, the transition is taken to a new state. A

different way uf thinking abunt the lower time bound is the amount of time the

event. must L>e true Lefore the transition can Le taken. Here the timing starts only

when the event (with t.he conditions) l>ecomes active and if the event stays true

fur the minimum time, the transition can then L>e taken to the next state. This

nondeterministic form is nut found often.

4.3 Timed State Statecharts

The timed statecharts al>uve all have sume disadvantages. First. there is

aml>iguity in the meaning uf the common implementations. In most uf the imple­

mentations. it is nut dear if the model uses weak or st.mng time semantics. Second,

71

there can Le vLscnre design fiaws. Tv overcome these vrvLlems we look at mov­

ing the timing information frvm the transitions tv the states. A fmther refinement

where time intervals are changed to st.at.e timers, with strong time semantics , re-

sults in a new design method that results in better models. We call this Timed

State Statecharts vr TSSC.

This new timed statechart method is similar to normal state machines in

that. all transitions are freed from timing constraints. If an event occurs, and the

conditions are true, the transition is taken. States can have timers, and suLstates

are snLservient tv snverstate timers. When a state timer counts down to zero a new

event is generated called a state time-vnt. The t.ime-ont. event is used to transition

tv a new st.at.e. In svme cases , additional states are necessary to model the behavior

vf the system. In some cases these are dummy or place holder states. However, these

extra states are far frvm state exvlvsivn, and in fact serve tv clarify the design.

The fvllvwing additions are necessary create TSSC frvm st.at.echarts:

1. States can have a timer that is reset to its starting value whenever t.he state

is entered. States withvnt timers can Le considered states wit.h timers set tv

infinity. The nvtat.ivn nsed is St.at.e[t.].

2. Ewry timer in t.he syst.em has the same period. Lnt. incorvorates whatever

granularity is needed by the state. This incorporates the idea of the master

72

duck, Lmt allows llS tv use hour , minute , second, or even microsecond timers

if that is what the design calls for.

3. When a state timer counts down to zero, a time-out event IS created. A

transition that nses this event should exist in the st.atechart.

4. All transitions are untimed and will be taken if the state allows the transition.

This vccms regardless vf the state timer.

As an exam11le of how TSSC works, we use the gas burner example of [66].

The specificat.ivn of the problem can be stated as follows:

• A leak shvnld be detected within one second.

• When a leak is detected, the gas should be turned vff.

• After :w seconds the gas can be turned vn to see if the leak still exists.

In figure 4.1 the Statecharts+ solution vf Wang and Chen is shown along

with om TSSC solnt.ivn. As we can see the Statechart+ solution uses both timed

states and timed transitions. The default. state is ' Leak (not leak). If a leak occurs

the event. Leak changes t.v state Leak[O ,l]. In this state the leak must be detected

within vne second. sv the state Leak has a time limit vf vne second re11resented by

the [0.1]. The shnt.dvwn transition must be taken within one second. This changes

tv a new state which Wang and Chen unfortunately gave the same name as the

73

default sta te , Leak. Aft.er :w seconds the gas can Ge turned un to see if the leak

still exists. This is J.mrpurtedly shown Gy the transition Leak[30 ,] back tu the state

Leak. In this case the timed state (Leak[O,l]) may Ge redundant and if eliminated

would nut alter the Gehavior. Also the unfortunate use names in this example makes

it difficult tu follow .

The TSSC solution 11ses two timed states and one nntimed state. State Cason

is a super state uf t.imed state Leaktest. Leaktest cycles performing a leak test every

minute . If a leak is detected event Leak causes a state change to state Gassoff and

causes action sh11tduwn tu occur. When state Gassoff times ont the transition tu

state Gasun uccms and action Fireup is started.

One advantage uf the timed state statecharts is that the time Lound amui­

guities are handled explicitly. An example of this is shown in figure 4.2. In figme

..t .2a. the timed transition statechart. is shown . In thi s example if state Sl is active

and event e uccms Letween time x and time y, then state S2 will become active. As

di scnssed earlier the weak / strung time semantic ambiguity exists in Loth the upper

and lower t.ime Luunds. In figme 4.2b , the timed state statechart is shown in the

case where event. c m11st. uccnr at or before the 11pper time Gunnd. In part c we

show the case where the transition is disal>led if t.he upper time bound is past before

event e uccnrs . In t.hi s examvle, we only consider the more common lower bo11nd

where the transition is nut enabled until the lower time Luund has vast. A similar

expansion can Le dune tu incorpora te the other lower time Lunnd amuiguity. As we

74

"Leak Leak Leak(O, 11
_____.. .. -

Shutdown j~

(0, 11 ,.
"Leak

a.

Gason

~ Leaktest[11

Leak/Shutdown Time-out/Fireup

Gassoff[301

b.

Leak

[30, 1

Figure 4.1: Gas Bnrner example, a) Statecharts+ and IJ) TSSC

75

can see. these ambignities are explicitly defined when nsing timed state statecharts.

The ability uf timed state st.atechart.s to explicitly resolve ambiguities does

nut. diminish their ability tu model any desired behavior. As shown in figure 4.3, we

see huw tu mudel a set. uf states where there is a combination uf timed and untimed

transitions. In t.his case fignre 4.:3 a shows an example where when state S2 is

active. a timed transition would make state Sl active and an untimed transition

wuuld make state S3 active. Thus if event e havvens bet.ween times x and y then

state Sl Gecumes active. If event. el happens at any time then state S3 becomes

active. Figme 4.3 b shows how TSSC would vreform the same tasks. State S2 is

shown as using nested states. The default state is TSl. If event el occurs at any

time state S~3 (nut shuwn in figme 4.3 b) wunld Gecume active. If state TSl is active

fur x time , a time unt occurs that makes state TS2 active. Now if event e occurs

state Sl (nut shu,,·n in figure -L3 b) ,,-unld Gecume artive. If state TS2 is active

fur time y. then a timeout makes state TS3 active, disabling event. e but not event

e L Thns Gy using the hierarchical vower of statecharts and the simplicity of timed

states. it is always clear what Gehaviur is desired.

There are several advant.ages tu timed stat.e st.atecharts. They are a closer

representat.iun tu the real-time systems that '"'e are trying tu model. Real-time

systems are uften concerned vvith tasks completing inside a time interval. Timed

st·.ates is a cluser model uf this requirement.

Timed state stat.echarts alsu du nut have any amGiguity in their nutation .

76

D e[x,y] iS2]

a.

~Time-Out TS2

L_j ·=- (y]

r¥l [_j
Time-Out ..

"------J

b.

TS4
[y]

I

c.

e
0 -T1me-Out

Time-Out TS5 ..

e

Figure 4.2: Ambiguity resolution with t.imed state st.at.echarts.

77

a.

TS1 Time-Out TS2 Time-Out TS3
[x] - [y] -

e

e1 -,, -
b.

Figure 4.3: Exam]Jle uf timed and nntimed transitions in TSSC

78

This sometimes resnlts in a few more states in the statechart. However , these extra

states will more often than not be swept. np Ly the hierarchy of the statecharts.

Therefore, these extra states are not a proLlem.

Timed state statecharts will expose poor designs quicker than timed transi­

tion statecharts. One reason for this is that it is easy to examine the timer of the

onter most timed state and then see that the cumulatiYe t.ime of all strings of timer

inside this state add up to less than the outer most timer. We can easily examine

all the timed states inside a timed state and ensure that they are reachable before

the state exvires. Further more this can be repeated frum the lowest to the highest

level in the statechart hierarchy.

While TSSC have several real advantages, almost all of the important real­

time objed.-orient.ed methodologies nse timed transitions to model the timing in

their Lehavioral models. In order to make the next chavters nnderst.andaLle to

the main stream oLject-oriented researchers. timed transition models will Le used

almost exclnsively.

4.4 Chapter Summary

In this chapter we examined the modeling power of statecharts with real-time

deadlines, v,rhere the deadlines are modeled Ly timed states. We defined how timed

state statecharts work and nsed them to model real-time deadlines. These timed

state statecharts were then compared to timed transition statecharts.

79

We fmther identified the and di srnssed the strung time - weak time semantic

pruGlem. \Ve shuwed where the timed state statecharts eliminated thi s semantic

vruGlem in the real-time environment.

Timed state statecharts have the advantage of better representing real-time

deadlines. Furthermore, they do nut have amGiguity in their nutation . They can

result in mure states Geing defined , Gut this is cuntrullalJle with the statechart

hierarchy. Timed state statecharts also can expose design problems quicker than

timed transition statechart models can.

80

Chapter 5

OBJECT AND BEHAVIOR MODELS

5.1 Introduction

This chapter deals with the relationship between ol>ject and behavior models.

The effects of generalization inheritance, aggregation, and relationship associations

on the object models are well known . These associations are a key part. of the

difference l>etween object-oriented and other design methodologies. In some object

methodologies the behavior model is not considered until after all the object relations

have l>een settled.

Object models have a well defined inheritance notation with clear meanings

associated with it. Behavior models are less defined with no clear notation and no

dear understanding of how to reuse the Lehaviur models. ;\lust methodologies rely

un complete restJerificatiun uf the st.atecharts [63].

First.. we will examine how the Lehavior model changes during object model

inheritance. The term inheritance has two meanings in object-oriented terminology.

The first is called snbtyping and the second is called redefining of methods. This

81

chavter cuncent.rat.es un snl>t.yving as it is the mure desired form of inheritance as

well as the mure restrictive.

There are eight ways that the behavior model can be changed after object

mudel inheritance. and still maintain subtyving. Each of these is examined in detail.

Th<>se nll fall int.o three major categories , refinement of transitions, refinement of

states, ur refinement of attril>ut.es. Examples are used tu illustrate the methudulugy.

Next, we examine huw the object model association of relationship affects the

L>ehaviur mudel. An ubject model relatiunshiv connection shuws the communication

paths Letween oLjeds. There is a corresponding behavior model connection that

defines the temvural nature of the communication path. This allows a clearer and

fuller description uf the oLject relationships. We introduce a new model notation

fur clearly showing t.his relationship.

Finally. we examine the ul>ject mudel aggregation and how this affects the

corresvunding Lehaviur mudel. OL>ject mudel aggregation causes some form uf con­

currency in the Lehavior mudel. Through the use of examvles we show the resultant

COnClUTency.

We alsu shuw huw to incurvorate coordinating aggregation in the behavior

mudel. By int.ruducing another new nutation we shuw huw a difficult concevt can

L>e easily and clearly exvlained in t.he L>ehavior model.

In this chavter. we look at how ol>ject models and Lehavior models are re­

lated in Section 5.2. Second, we luok at oLject and L>ehavioral inheritance, including

82

mnltiple inheritanre , in Section 5.3. Next, we look at oGject and Gehavioral associ­

ation in Section 5.4, while we explore how these models are affected by aggregation

in Section 5.5. Lastly, we present some conclusions in Section 5.6.

5.2 Object l\'lodels and Behavior 1\Iodels

OGjed. oriented methodology is the definition of a problem and the envi­

ronment of its solntion it terms of oGjects. These objects have a name, a list of

at.t.ril.mtes , and a list of actions (also called operations or methods) that they per­

form. Using the techniques of aggregation, generalization, and relationship these

oLjects can Le comLined to create software to control or simulate the system.

Each oLject has a behavioral model associated with it. In this paper, we

\vill nse the graphics shown in Figure 5.1 to represent the object and behavioral

models. The behavioral model is usually represented as some variety of statechart

[29]. Exploring the relationshiv of the oLject and Lehavior models Ly considering the

effects of inheritance and aggregation is of prime imvortance to develop strategies to

make bett.er use of object-oriented technology and these asvects have not yet been

exvlored murh.

The statecharts nsed in this paver fur the Lehavior models are Harel's stat­

echart.s. Specifically, we nse the basic statechart constructs of hierarchy, Lroadcast

rommunicat.ion , and concnrrency. Hierarchy is used to simplify the models andre­

duce the numLer of transit.ions that must be shown. Broadcast communication is

83

Object
Model -----------· Behavior

Model

Figure 5.1: OLject and Behavioral .Models

assumed to make the models easier to constnwt.. For this vwrk we do not need to

use any of the advanced features of Harel 's statecharts. such as the history entry

point or states that have multiple modes of concmrency.

5.3 Object and Behavioral Inheritance

The conce]Jt. that oLject.s are related Ly inheritanre and generalization is im-

]Jortant. in oLjed.-oriented technology. A suLclass inherits when it takes the pro]Jer-

ties of the SU]Jerclass and specializes Ly incor]Jorating features that make it unique.

Inheritance is valnaLle when a class is Leing reused from a previous problem or from

a software liLrary. In generalization , ol>jects have their similarities factored ont into

a snperdass . This leaves each snl>dass ol>ject. descriLing only what is different from

the rommon properties of the snperclass .

Coleman point. ont. that there are two types of inheritance S'Ublyping and

n~rl1:{ining o.f mc/.lwrls [16]. Sul>typing reqnires that the child class can L>e substitnted

84

fur tl1e IJarent. dass anywhere. Furthermore, any event trace that wunld have been

acceiJted Gy the parent class must. also be acceiJted by the new class. The set of

event traces are also referred to as the set of value vectors [44]. For subtyping to

hold the set uf traces of the parent should be a proper suuset of the set of traces

uf the child. Note that. this set of event traces is not the same as the event trace

diagram that. will Ge dismssed later.

Redefining of methods can be seen m ROO:Mcharts [57]. In ROOMcharts

all generalization is considered redefining of methods fur pragmatic reasons. Selic

Gelieves that, even if overriding was disallowed, that it would not be possible to

ensnre Gehaviural equivalence. Both Coleman etal. and Selic point out examples

where snut.yiJing inheritance could not be achieved, even when following a rigid

criteria. The issne of snbt.yping vs redefining of methods remains an open issue

where further researrh is warranted.

5.3.1 Inheritance Behavior

We have identified the following eight different ways that the behavior model

can Ge affect.ed dming inheritance [16, 17. 44]. They are also illustrated on the

following pages.

1. Addition uf an extra transition .

2. Retargeting and Split.ting of a transition.

85

J. Weakening of a vrecondition of a transition .

.J. Strengtlwning of a vost.cundition of a transition.

5. Strengthening of an invariant relationshiv

6. Refinement of a st.at.e into hvo or more states.

7. Addition of new attributes resulting in additional indevendent states.

8. !v1odifiration of a state to change its interpretation lmt result.ing m an 1111-

changed diagram.

5.3.1.1 Addition of an Extra Transition

The addition of a transition is fairly straightforward. When a transition is

added to the Lehavior model of the child class it still models the behavior of the

parent. class. Lut. t.he extra transition adds new Lehaviurs. An examvle of this tyve

of inheritanre is shown in Fignre 5.2.

5.3.1.2 Retargeting and Splitting of a Transition

Retargeting a t.ransition changes t.he transition to a new internal snl>state of

the original state. This is often used in conjunction with the refinement of a stat.e

into t.wo or more states Lelow. Here we modify the transit ion to]Joint. to a new

S]Jecifir internal state of the original state.

86

s1

a.

b.

Figure 5.2: Inheritance that adds a transition tu the Lehavioral model.

87

At the same time, a transition can Le svlit intu twu ur mure transit.iuns. These

new transitions can Le controlled Ly different conditions, Lut the comuinatiun of

conditions needs t.u logically OR'ed intu the original conditions. There are two ways

splitting is used: t.u go to different internal states Lased on conditions, or to emanate

from different internal states , and generating different events when triggered. Fur

examvle, in Figme 5.3 event e1 is split devending un condition cord and retargeted

to state 4 and st.ate 5. Similarly event e2 can t.rigger different events depending on

the substate uf state 3 that was active when the event occurs.

5.3.1.3 Weakening of a Precondition of a Transition

A child class can also weaken a vrecundition of a transition. In this case , the

child class alluws the transition to occur more uften. Fur example, in Figure 5.4a.

in the varent class the event e 1 triggers a transi tiun frum state s2 to state s3 when

cunditiun d is t.rne. In J.>art b of the figme the }.>recondition has been weakened so

that event el causes the transition frum state s2 tu state s3 whenever conditions

cl or c2 are trne. Care must be taken here however, as Coleman [16] pointed out,

Lecause it is pussiule tu create cases where changing a vrecundition that affect s

internal class chuices can resnlt in inheritance that is nut. suutyping.

5.3.1.4 Strengthening of a Postcondition of a Transition

Strengthening a vustcunditiun is similar t.u weakening a J.>reconditiun. In

this case , Culeman means setting fewer cunditiuns when the t.ransitiun is taken 111

88

a.

s1

e1 (c]

e1 (d]

b.

Figure 5.3: Inheritance where a transitiun is split and retargetted.

89

a.

b.

Figure 5.4: Inheritance weakening a precvnditivn.

90

the snbdass than the parent class sets. This also has the IJroulem with internal

class chuices puint.ed ont in [16]. Coleman dearly use weakening a precondit.iun to

mean the nniun of additional terms in the condition statement. Likewise they use

strengthening a postcondition to mean the intersecting of additional terms in the

IJostcondition. It. is not dear that this is universal as Lecoeuche and Sourrouille [39]

appear to allow Lehavior that contradicts this. Both may Le correct..

5.3.1.5 Strengthening of an Invariant Relationship

An invariant relationship is an assertion that is always true for a class. This

could Le something as straightforward as the fact that the attribute 'miles' in a class

'f1ruck can never decrease. Again, care must be taken when using specialization that

uses invariant strengt.hening in order to maintain strict subtyping. The invariants

are usnally handled in the functional model. Since this paiJer will not deal with the

functional model, this relationship will Le exiJlored in a futme work.

5.3.1.6 Refinement of a State into Two or More States

A state can be refined into two states. An examvle of this is shown in Figure

5.5. In t.his case, the Lehavior will be the same as that of the parent except for

some svecific conditions where it will have a finer definition. This may be the most

cummon furm of inheritance.

91

s1

a.

s1

~ s3

b.

Figure !:> .!:>: Inheritance where a state deromvoses into two or more states.

92

s1

a.

s1

b.

Figure 5.6: Inheritance where an additional set of attributes 1s included in the
snlx lass.

5.3.1.7 Addition of New Attributes

Additional at.tril.mtes also conld Le inclnded in the snLdass, as shown in Fig-

me 5.6, which ronld resnlt in a snLdass having additional states that are concurrent

with the original states. This is also a very common form of inheritance.

93

5.3.1.8 lVIodification of a State

A state can Ge modified (usually Gy overriding) for Getter performance. In

this case, the Gehavioral model does not change. Since the behavior model does not

change, suLtyping will Le maintained.

5.3.2 A Student System Example

To Let.ter illnst.rate how these inheritance cases apply to a real model consider

Figme 5.7, an oLject. model for a Student system. Here we see that the class Student

has three suLclasses that inherit its properties, the classes Foreign_Student , Under­

grad, and Grad Student. Foreign .. Student is specialization of the class Student

with t.he additional at.triLut.e of Visa_ Status. In this model the class Grad_ Student

is fmther sperialized into two classes , Thesis _ Student and MS __ Non thesis. Thesis­

Student is further specialized into PhD _ Student and l\IS _ Student.

The class Student has the Lehavioral model sho,,·n in Figure 5.8, where the

up era tion wlmil creates a student in the Admitted state. If the student's G PA falls

Geluw some limit, the student. is placed on academic probation and enters state On­

ProLation. \Vhen the student 's GPA rises aLove the threshold, he is placed Lack

into the admit.t.ed state. When the condition prugram-romplet.ed Lecomes trne, the

event. get-degree orcms and the final state is entered . At any time the student may

withdraw. This is the Lasic Gehavior of all oLject.s of the class Student.

Next., let 's look at the class of Foreign Student. In Figure 5.9 we see that

94

Student

Name
Number
GPA
Enroll
Withdraw
Compute_GPA

A
I I J

Foreign_ Student Undergrad Grad_ Student

Visa_Status Limit=2.0 Limit=3.0

A
I I

}Thesis_ Student I jMS_Nonthesis

I I I I
I I I I

A
I

PhD_Student MS_Student

Figure 5.7: Ol.Jject Model fur a Student. system.

95

admit

Student
Name
Number

__ ..,..
GPA

Enroll
Withdraw
Compute GPA

Figure 5.8: Behavior model for the class student.

the ol>.ied model for the class Foreign _Student is specialized l>y the addition of

some new at.t.ril>ut.es. The behavior model gets the addition of the concurrent state

containing the sul>stat.es of Visa-OK and Residence-Problem. This is an examvle of

inheritance that causes model concnrrency.

For suLrlass Undergrad the Lehavior model is almost. the same as for Student.

As we can see in Figme 5.10 the only change is that the Limit. has been strengthened

Ly revlacing the varial>le Limit with a specific value. This indicates that a GPA of

2.0 is necessary to keev the student. off vroLation.

In Figme 5.11 we see the Lehavior model for t.he class Grad __ Student. Here

the rhanges indude the change of the GPA limit and the state Admitted has Leen

decomposed into two states , that reflect the additional need for a graduate stndent

t.o apply for randidacy. Note that this examvle, Lecanse of the transition out of

Candidate state. sl ightly violates suLtyving. We can accevt this when the semantics

96

I
Foreign_Student

Visa_Status

admit

Figure 5.9: Behavior Model for class Foreign . Stndent.

97

~ndergrad

Limit=2.0

t
admit

Figure 5.10: Behavivr lVIodel fur the class Undergrad.

98

of the specifirat.ion d early requires it.

In Figme 5.12 we have the behavior model for the class Thesis_Student. In

this case , the state Candidate has Leen decomposed into two states Cand1 and

Preparing __ Thesis. Likewise in Fignre 5.13, for PhD _Student the state Admitl has

been decomposed into two states. These examples demonstrate the most common

ways of inheri t.ance specialization for the behavior model.

5.3.3 Program Specifications

All the models are related through the program specification. It is the pro­

gram svecification that prescriLes how the objects are related including their be­

havioral differences. As an illustration of this point, we refer to our student system

examvle from above. The vrogram svecification will include a definition of a stu­

dent. The behavior of the student also will be described as the actions that can

IJe performed on the oiJject student. For example, the specification might include

statements like, "The student can withdraw at any time. " . or "If the students CPA

falls below the limit, the student will be vlaced on probation.", or even "The stu­

dent can not comvlete the J:>rugram and get a degree if the student is on J:>roLation."

From these and other statements, the Lehavior model of the student in Fignre 5.8

was neated.

The svecification also will descriLe each specialization of the student oLject,

such as the Grad __ Student object. Here the svecification describes the graduate

99

I
Grad_ Student

Limit=3.0

I

' admit

Figure 5.11: Behavior Mvdel for the state Grad Student.

100

I
Thesis_Student

I

admit '
pply_for _candidacy

~]
Withdraw

[program_ com pleted)/get_ degree

Figure 5.12: Behavior Model for dass Thesis __ Student.

101

I
PhD_Student

admit

Withdraw

[GPA.?3.0]

Apply_for_candidacy

[program_ com pleted]/get_ degree

Figure 5.13: Behavior Model for the class PhD _ Student.

102

student 's additional behavior of having to apply for candidacy uefore being allowed

to complete the program and get the degree. It is from these descriptions in the

specifications that the specialized ouject and uehavior models are obtained. Of

comse, in many cases, the program specification is ambiguous or incomplete, which

may make the decision auout snustates more complex.

5.3.4 Multiple Inheritance

One area that is not dealt with much is that of multiple inheritance [44). One

reason for this is that multiple inheritance can become complicated. While multiple

inheritance can be avoided most of the time, there are occasions where its use can

simplify the design greatly.

When multiple inheritance is used , the object model is relatively straight­

forward. The program specification will show what parts of the each object will

ue inherit.ed in the new ouject. However, the uehavioral model is not so clear. To

demonst.rat.e this we nse another example in om student system. Shown in Fig­

me 5.14, om specificat.ion states that we can combine the Foreign_Student and the

Grad .. Student. to create a new class of Foreign _ Grad_ Student.

In mult.iple inheritance , the behavior model will inherit the parts of the par­

ent. model t.hat contain the most specialized aspects. For example, Foreign_Student

and Grad Stndent are Goth suuclasses with differing semantic aspects, and, we

shonld inherit. the most specialized aspects of each branch. In the case of the

103

Foreign Grad Stndent., the details that make the Foreign Student different. frum

Stndent are inherited. Likewise , the details that made Grad _ Student different from

Student are inherited. Thns, the new model has both the concurrent residency status

states and the states that. represent the requirement for applying for candidacy.

5.4 Relation::;hip::> And State Diagrams

Perhaps the must common object model association is that uf relationship .

With relationship uLjects are associated to one another with links that describe how

they cooperate together in a meaningful way. Fur example, the uLject person can

Le linked to the uLject company Ly the association '' works for ". The multiplicity

uf an assoriahun specifies how many instances of one class are related to a single

instance uf another.

In general , a relationship implies a coordinated action Letween two classes

and is a path fur uLject cummnnicatiun. While t.he uLjen model shows the stat.ic as­

ped s uf a relationship , the Lehaviur model shows the d:·namir and temporal aspects

uf the relationship. Usnally two oLjects in different classes can only communicate

when they are in SIJerifi.C' states. This is Lest exposed in the Lehavior model.

Cook and Daniels [18] showed some asiJed.s of the connection between the

oL.iect model assuriatiuns and the behavior model. The:· oLserved that associations

in the uLject. model may resnlt. in conditions on the LehaYiur model transitions. Fm­

thermore they showed how these associations runld be given IJrecise mathematical

104

admit

Foreign_ Student Grad_ Student

Visa_Status Limit=3.0

A A
I I

Foreign_Grad_Student

I

admit

' (program_completedjlget_degree

Figure 5.14: Examvle uf Multiple Inheritance

105

expressions t·hat resnlted in accurate behavior models.

Om apprvarh tv expressing the temporal aspects vf relationship is tv intrv­

duce a graphical cvnnectiun in the statechart. (In our st.atecharts we shvw these

temporal relationships with dashed lines.) These do not represent allowable state

changes, jnst. allvwaLle cummnnicativn paths. This method of showing the relation­

ships can easily angment, and can Le augmented Ly, the mathematical expressions

nsed by Cvvk and Daniels.

For example. in the object model in Figure 5.15 we see that the class Fac­

nlty is related tv the class Thesis Stndent by the relationship Advises. Further­

more, each Thesis __ Student is advised by only vne Faculty, bnt a Faculty can ad­

vise several Thesis_ Students. However , this is only half vf the relationship, be­

canse there is still a temporal aspect of this relationship nut apparent in the object

mvdel. In the LehaYivr model in Figme 5.15, we see that the Thesis_Stndent can

vnly engage in the cvmmunicativn with the Facnlty when Thesis Student is in the

state of Preparing Thesis. Likewise, the Faculty can vnly communicate with the

Thesis Stndent. dass when the Facnlty is in the Research _ Activity state. At other

times this cvmmnnicatiun path is not valid and nu commnnicat.ion can take place.

5.5 Object and Behavioral Aggregation

Anvther impvrtant cvncept in the vLject-vriented methodology is that uf

aggregat.ivn. Aggregation is a fvrm vf assuciativn where a class is composed of

106

A
I I

TheSis Student Faculty

Ia Advises

admit I

' Faculty

(program_completedyg~t __ de ree

Figure 5.15: Example uf relatiur:ship m the object model and its temporal natme
in the Gehaviur mudel.

107

distinct. oujert-s in a part of relationship. We think of the snuclass as L>e ing one

of several di ssimilar parts of the snperclass. We think of the superclass as L>eing

an entire assemuly composed of the subclass components. When the object model

uses aggregation. the corresponding behavioral model is represented uy concurrent

states. Concnrrency can also happen within a given state diagram (intraouject

roncnrrenry). This kind of concurrency is not related to aggregation.

A simple examt>le of this can be found in the traffic light controller from

Dmsinsky [2:3]. The specification for Drusinsky 's traffic light controller is as follows:

• There are two directions, Main and Secondary, with alternating lights.

• Lights aH.ernate L>ased on a Timeout. signal read frum the Timeout variaule.

• The initial state (All-y) is for all lights to ftash ~'ellow. Reset. occnrring in

All -y state start s On-going. Reset in On-going retnrns to All-y.

• A ronnt.er ronnt.s the cars waiting in the mam direction. The connter can

sense the difference uetween cars and trncks.

• If main is red and fonr or more cars or one or more cars followed uy a trnck

are waiting in t·he main direction , a hidden ramera shouts the intersection.

Part uf the uuject model for this traffic light controller is shown in Figure

5.16 and the uehaviur model is shown in Figure 5.17. In these figures, we see that

the aggregation ranses the uehavior model to have a more comt>lex nature. Still the

108

Main Controller

reset
activate
~eactivate

y
I I l

!Camera !Counter Light
color
timeout

shoot count turn-green
~urn-on reset turn-yellow

turn-off turn-red
flash-yellow

Figure 5.16: OLject model for traffic light controller

Lehavior model exhiLits concnrrent Lehavior in the camera and connter components ,

althongh in this case their states only make sense as nested states within specific

states of the aggregate (camera and connter only work when the main light is red) .

l\hny times , olJerations in aggregations must Le coordinated. The example

in Figure 5.18 shuws a docnment that is composed of sections and each section is

comlJused uf snusectiuns. For legal reasons the document is created in the original

state. However, if any modification is made to the docnment , this mnst Le considered

109

reset reset

On-going

Red-main

[new-truck]

Figure 5.17: Behavior model fur traffic light controller

110

as modified.

There are t.wu interesting effects that we wish to exlJlore fur this example.

The first is t.hat of modifying a section ur suusection. If a section or subsection is

mudified , its st.ate must. change from original to modified. If it was a subsection that

was mudified t.hen t.he correslJonding section must alsu change state. Likewise, when

any sectiun changes state t.he entire document must change into modified state. This

reflects the requirement that any change to any section or suusect.ion will result in

the ducument. ueing marked as changed.

The secund effect is where the action of deleting a document or section re­

sults in the deleting of all the lower level parts. Deleting a section causes all the

suusectiuns tu ue deleted. It would not make sense for a document to be deleted but

fur the sed.iuns tu remain intact. This effect is related to propagation of operations

in aggregations [51].

The modeling of this feature is shuwn in Figure 5.18 as dotted arrows con­

necting the state transitions. This is similar to the way we connected states for

the temlJural lJart. uf associations earlier. In this case, the models could show this

relatiun uy setting conditions and using the statechart communication mechanism

tu lJerform the changes at the other levels. However , it is dear that these activities

are needed when the new cunned.iuns are added tu the behavioral mudel.

111

Document

create ---- -- ~
modify

delet€1'

7
Section

create_s ------ ~ ' modity_s

delete_s

7
Subsec.11on

create_ss ------ ~

modify_~s

delete_ss

Figure 5.18: Coordinating Aggregation

112

5.6 Chapter Summary

As the demands fur complex software increases, so will the need for tools and

methodologies tu Slll>l>urt this software. The object-oriented methodology is one of

the most promising for increasing the ability to create, maintain, and understand

complex software. However, the relationship of the object model and the behavior

model in object. oriented methodologies must be examined.

Having an object model implies that there is a corresponding behavior model.

\Vhen the object model is related to other objects by the use of association, aggre­

gation. and generalization there are corresponding relationships with the behavioral

model. The sim1>lest object association is that of relationship. The resulting behav­

ioral relationshii> is im1>lemented by t.he 11se of conditions on the state transitions.

Association implies a commnnicat.ion path between objects. The behavioral model

further strengt.hens this cuncel>t. by exposing any tem1>ural relationships in this com­

mllnication path. Th11s, we can clearly shuw when objects must be in specific states

to cumm11nirate.

The aggregation relationshii> is a more cuml>lex furm uf association. The sim­

plest Lehaviural model assuriated with object mudel aggregation is that of concur­

rency. In t.his rase, uLject mudel aggregation resnlts in behavior mudel concurrency.

Huwewr , behavior mudel concurrency is not always t.he result of object model ag­

gregation. In uther rases, the behavioral model is more complex. Lut concurrency

is alwa.'{S involved. Alsu , at times the need fur coordinated behavior is necessary.

113

OL>jed mudel generalization results in the most comjJlicated l>ehaviur model.

When the ul>ject. mudel uf a snperdass is inherited, the L>ehavior model of a suLclass

can be une where a new state or a new transition is added. Also, it could result

in a model where a state is decomposed into two or more new states or the model

could have a transition changed where a precondition is weakened, or where a post­

condition or invariant is strengthened. Finally, a st.ate can Le modified for better

JJerformance.

114

Chapter 6

THE EFFECT OF DEADLINES ON OBJECT AND

BEHAVIOR MODELS

6.1 Introduction

This chapter dusely mirrors the previons chapter. In it we will reexamme

all the issues discussed previously, except that now we will consider how real-time

deadlines wunld Le refierted in the object and Lehavior models.

First. , we will cunsider huw deadlines are introduced into the models. The

deadlines are represented as at.triLut.es ur invariants in the oLject model and as time

constraints un the transitions or states in the Lehavioral mudel. Since the Lehavioral

mudel descriLes the temlJural natme of the system and deadlines are concerned with

the temlJural aslJeds uf the system. it is apparent that the behavioral model needs

tu Le examined dusely in a real-time system .

\Ve then examine how the Lehavior model with deadlines can be changed

dming uLjert. model inheritance. \Ve will again luuk a subt.yt>ing inheritance since it

is the mure desired furm of inheritance. Bnt this time um concern is how deadlines

affect um mudels.

115

In the vrevious chavter we saw that there are eight ways that the uehaviur

model can ue changed after ouject model inheritance. and still maintain subtyping.

Each of these is examined in detail. These all fall into three major categories , refine­

ment of transitions, refinement of states, or refinement of attributes. We concentrate

on the differences necessary for incorvorating deadlines.

After that., we examine how deadlines are incorporated into the object model

association of relationship and how this affects the behavior model. Deadlines can

affect the periods when the communication paths between oujects are valid. This

can be easily shown in the behavior model connection that defines the temporal

nature of the communication path.

Finally. we examine how deadlines affect the ooject model aggregation and

the rurresvunding uehaviur models . Deadlines can be incorporated into any part

of an aggregation. Since the resultant Gehaviur model is concurrent by nat.me,

uverlavving periods may result ..

Because even simple real-time systems with soft deadlines are highly cum­

vlex when compared to nun-real-time software, the ouject-oriented techniques are

appealing fur these syst.ems. However, many proolems need to be addressed Gefure

object-oriented methodologies are routinely used for real-t.ime systems. There is

lit.t.le agreement on how the deadlines should ue introduced into the oujed.-oriented

models.

In this chavter, we look at real-time deadlines in Section 6.2. Second, we look

116

	00_0cover
	00_1
	00_2
	00_3
	00_4
	00_5
	00_6
	00_7
	00_8
	00_9
	00_10
	00_11
	00_12
	00_13
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139
	00140
	00141
	00142
	00143
	00144
	00145
	00146
	00147
	00148
	00149
	00150
	00151
	00152
	00153
	00154
	00155
	00156
	00157
	00158
	00159
	00160
	00161
	00162
	00163
	00164
	00165
	00166
	00167
	00168
	00169
	00170
	00171
	00172
	00173
	00174

