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Real-time systems are systems where time is considered a system resource 

that needs to be managed. Time is usually represented in these systems as a deadline 

to complete a task. Unfortunately, by adding timing to even simple algorithms, it 

complicates them greatly. Real-time systems are by nature difficult and complex tv 

understand. 

Object-oriented methodologies have attrilmtes that allow real-time systems 

to be designed and implemented with less error and some control over the resultant 

complexity. With object-oriented design , the system is modeled in the environment 

that it will be used in. Objects themselves , are partitions of the system, into logical , 

understandable units. 

In this dissertation , we start by snrveying the current real-time object-oriented 

design methodologies. By comparing these methodologies and developing a set of 

criteria for evaluating them , we discover that certain aspects of these methodologies 
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still need sume wurk. The must important aspects uf the methudulugies are under­

standing the effects uf deadlines on statechart. behavioral models and understanding 

the effects of deadlines when object models are inherited or undergo aggregation. 

The effects of deadlines on statecharts are then explored in detail. There are 

two basic ways that deadlines are added to statecharts. The first , and most popular, 

is adding timing as a condition on a state transition . The second is adding a count 

down timer to a state and forcing a transition if the timer reaches zero. We show 

that these are equivalent and can be used interchangeably to simplify designs. 

Next , the effects of deadlines on behavior models when the corresponding 

object models undergo inheritance or aggregation are studied. We will first analyze 

the effects on the behavior model when object inheritance is encountered. We fotmd 

eight ways that the behavior model can be modified and still maintain the proverties 

of inheritance. Finally, deadlines are added and the analysis is reveated. 
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Chapter 1 

INTRODUCTION 

1.1 Real-Time Systems 

Real-Time software is increasingly important. in today 's world. As processors 

Gecome less expensive, tiny eml>edded real-time systems are showing np in devices 

that wonld not. have Geen imagined a few short. years ago. Larger real-time systems, 

from military and space exploration. to complex medical lif~saving eqnipment.. are 

Gecoming more common place. Often , real-time systems monitor life critical systems 

where failme means a loss of life. 1Iany real-time systems have catastrophic effect.s 

if they fail t.o perform their funct.ions correctly. 

Real-time systems are by natnre difficnlt tv work with because there are 

many aspeds of real-time software that. make it nniqne and difficnlt.. One vf those 

aspects is that. t.ime is considered a critical system resomce that mnst. Ge managed. 

t.hns there is a reqnirement. that. some tasks comlJlete in a SlJecified amount of time. 

Not. all tasks in a system will have deadlines, but the ones that do , often Gecome 

critical to the correct performance of the system. Often. the system must. know that 
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the resomces a task needs to complete are available, Lefore it will allow a task to 

Le invoked on the system. 

Real-time systems are also very periodic in nature, m that tasks are often 

need t.o l>e performed within a window of time, and may need to be performed again 

in some snbseqnent windows of time. The scheduling of these tasks is a complex, 

often NP hard , prt'blem. 

l'vlany real-time systems also execute in distributed processors and thus have 

concurrent processing as another aspect of their systems. Distril>uted systems that 

are made up of several connected communicating processors must also take commu­

nication time into their deadline management calculations. Concurrency, even on a 

single processor, has implications for completing tasks by the deadlines. 

Real-time software is also characterized Ly its nonportability. Software wri t ­

ten fur a SlJerifir appliratiun often can only work on that application. Changes to 

the environment, no matter how small, could render that whole system inoperative. 

This relationship to the environment becomes part of the software design. 

These aspects of real-time software make it difficult. to design and implement. 

Often the code has very long implementation and test cycles, and once finished is 

very difficult and expensive to change or correct. In the lJast , the software in these 

systems was composed of hand-tnned, asseml>ly language functions that were very 

difficnlt tu create, maintain , or improve. 
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1.2 Object-Oriented J.\;lethodologies 

Ooject-oriented software methodologies have oeen shown to have advantages 

over classical software design techniques, such as structured design. Ooject-oriented 

designs are more extensible, and have better reuse than classical designs. Object.­

orienteJ methods may also have an advantage in productivity. By encapsulating 

the software and designing around objects that take the environment into account, 

object methods may have a distinct. advantage when used to create real-time soft-

ware. 

Object-oriented methodologies , however, still need t.o be developed further 

before oecoming the methodology of choice for real-time system environments. The 

goal of this dissertation is to explore some of the areas that need work and to identify 

other areas for future shtdy. 

First.. we start oy looking at. several existing oo_ject-oriented real-time design 

methodologies and from this we compile a list. of areas where further work needs t.o 

be done. Next, we examine oehavior models and study how real-time deadlines affect 

them. Then , we explore the different ways that deadlines can be added to behavior 

models. A study of t.he relationship between ooject and behavior models when 

object models nndergo the techniqnes of generalization, aggregation. and association 

is given next.. Finally, we look at. how the addition of deadlines affects the object 

and oehavior model relat.ionships. 
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Chapter 2 

REAL-TIME OBJECT-ORIENTED SOFTWARE DESIGN 

METHODOLOGIES 

2.1 Introduction 

In real time systems, time is considered a limited resource that must he man­

aged . Creating software where tasks and messages may have deadlines is difficult . 

Object-oriented met.hudulugies have heen shown tu innease jJrugrammer jJruductiv­

ity, software reuse. and software maintainahility. It is uf interest therefore to see if 

ohject-uriented techniques provide henefit.s for real time environments. 

There are several ohjectives for this chajJter. The first is to understand the 

issnes that. are nniqne to object-oriented real-time software development. Then we 

analyze how existing methods approach these issues. We also want to identify t.he 

deficienries uf the existing methodologies. From there, we want to develop a set of 

uhjertives fur a more comprehensive methodology. Finally we want tu develop a 

set of criteria for selection uf a methodology fur a specific type of a:jJplicat.iun. This 

study could be uf value hecause it allows the developer t.o look at the problem he is 
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trying to solve and then understand what methodology features would enhance the 

soluti on to the vroLlem. 

There are few studies have Geen vuLlished looking at both real time and 

object o c·ient.ed programming. Kelly and Sherif did a similar analysis on real time 

softwm(' develovment methodologies [35]. Their analysis included only one object­

oriented methodology and three other software development methodologies. 

In this chavter, we will look at ten oLject oriented methodologies for devel­

oping real-time systems. These methodologies were chosen only to represent some 

of the availaLle real-time oLject-oriented methodologies, and not as an all inclusive 

list of all such methodologies. The following methodologies will be examined: 

• ARTS - Real-Time Ol>ject f\'lodel 

• COBRA- Concurrent Object Based Real-Time Analysis 

• HOOD /PNO - Hierarchical Ol>ject-Oriented Design Gy means of Petri-Net 

Ol>ject.s 

• HRT-HOOD- Hard Real Time Hierarchical Ol>ject.-Orient.ed Design 

• OCTOPUS - Object-Oriented design method for emoedded real-time systems 

• OMT - OLject-Oriented design and analysis methodology 

• OPNet.s - Ol>ject-Oriented high-level Petri Net model 
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• ROOM - Real-Time Object-Oriented Modeling 

• RTO - Real Time Objects 

• Transnet.- Object-oriented technique using Petri nets 

First thrungh , some background on object-oriented methodologies , real-time 

syst<:>ms , state machines and Petri nets is discussed in section 2.2. In section 2.3, 

we describe the criteria used to compare the different methodologies. In section 2.4, 

we examine each of these methodologies briefly. In section 2.5, each methodology 

is contrasted to the others in terms of the comparison criteria. Finally, section 2.6 

states some conclusions and indicates possible future directions. 

2.2 Background 

2.2.1 Real-Time Systems 

Real-time software systems manage time by including deadlines for tasks 

and messages. All real-time systems must be considered in the context of their 

environment.. One way to interpret the deadlines of real-time software is to consider 

all the data as perishable. If the data is not used before the time expires, it becomes 

old and can nut be nsed, thns , verishable. 

Periodicity is another asvect. of real-time systems, in that, some tasks must 

be performed at veriodic intervals , called frames . Other tasks are evoked only when 

a certain event occurs. Some tasks need to wait for other tasks to complete before 
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they can start. Often , the tasks that need t.u Ge nm in a time frame can Ge verformed 

in a numLer of seqnences. 

Task scheduling is a proGlem in real time systems that continues tu have a 

great. deal uf research devoted to it [6); [7], [8], [9], [21], and [64]. The scheduling 

algorithms are affected Gy the criticality uf the task t.ask precedences, availaGle 

resources, and task deadlines [60). Also, tasks have tu communicate and synchronize 

with other tasks. Scheduling algorithms in real time systems must ensure that task 

deadlines are met. This is different from nunreal time systems where the goal is 

faster response time. Stankovic vuints out that the dynamic environment often 

reqnires adaptive scheduling algorithms. Scheduling in this environment is an NP-

Hard vruGlem [62]. 

Shin and Ramanathan showed that all real time tasks, both periodic and 

aperiodic will have une uf three tyves uf deadlines [60]. 

• llanl - There are catastrophic conseqnences fur missing a hard deadline. 

• Finn - The cunseqnences fur missing a firm deadline are not severe, Gut the 

resnlts uf any task with a firm deadline are verishaGle; that is, they will cease 

to be nsefnl when the deadline exvires. 

• So.fl - All other deadlines are soft. The resnlt.s of a soft deadline task will 

also decrease in nsefnlness uver time after the deadline expires, but. at a much 

slower rate than a firm deadline. 
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Periodic tasks often have hard deadlines and are characterized as t ime critical , 

where the system will fail (often catast.ruphically) if the deadline is not met . 

Predictal>ility is another important concept in real-time systems. Predictabil­

ity means that at design time it can be shown that all the constraints of all the tasks 

can Le met with 100% certainty. This requires prior knowledge of the exact charac­

teristics and nm time resource requirements fur all the tasks in the system. Usually 

this can Le done only in very small systems. In large systems the definition is relaxed 

fur noncritical tasks. 

For noncritical tasks, predictability is shown either probabilistically or run­

time deterministically. For a probal>ilistic guarantee, a t.ask can be shown to meet 

its constraints with a certain prol>ability. In run-time determinism, the system looks 

at a task Lefore accept.ing it and determines if it can meet the task 's constraints 

without endangering any other rnnning t.asks constraints. If it can , t.he task is 

accepted; otherwise , t.he task is rejected. 

Another concept that occurs often in real-time em·irunments is that of sys­

tem concurrency. Real-time software can have many tasks active at the same time. 

An example would Le several active threads or prucesse.s in an operating system. 

Another example wunld Le the active phone calls in a telephone switch . Bnt, con­

currency alone is nut. enungh to make real-time suft.ware systems difficult. It is 

the asychronous nature of the system that makes the concurrency more difficult to 

handle. Fur example , the activity of a robot cell in a distributed manufacturing 
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system. even if there were 100 rol>ots, wonld not be so difficnlt if they all operated 

in lock step. It is their asychronons activity that. makes them difficult to control. 

Concmrent systems often must be proven to be deadlock free. 

The dynamic nature of real-time systems can also contribute to programming 

difficnlty. Some conemrent processes can l>e created and l>ecome active while others 

are becoming inactive and being destroyed. An example wonld be telephone calls 

in a telephone switch. At. any instance in time, any numl>er of calls could l>e in any 

number of states indnding dialing , connecting, talking, and disconnecting. 

Another important issue in the design of real-time systems is at what. level 

of abstraction one should introduce the concept of time and how to map time con­

st.raints defined at some level to the lower levels. 

There is a tacit assumption that in a true real-time system, the requirement to 

interface with low level hardware while meeting stringent hard deadlines , prohil>its 

the use of high level languages in the software. In other words , assembly language 

mnst. l>e used. Stankovic [62] points out. that this is a common misconception about 

real time software. He also points out that clever hand-coded optimized machine 

language software is lal>or intensive. Also , this code often contains timing Lugs 

that are difficult to trace, debug , or modify. Daponte et al. [19] show that the 

real concern should l>e whether the target language allows us access to the low level 

hardware interfaces without adding a rnn-t.ime support. penalt.y that is unacceptal>ly 

high. 
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The issue uf reliaGility is also imvurtant. in real-time systems. Software re­

liaLility criteria can Le met through the use of n-version programming. ReliaLility 

can also be svecified and quantified through the use of formal methods. However, 

both n-version programs and formal methods are difficult to use on large complex 

systems. 

Real-time systems are very dependent on the environment of the system. The 

software for a jet airplane would nut function outside of the airplane. Likewise, the 

software for an automoLile engine comvuter would not be able to function without 

the engine sensors. The importance of the environment in real-time systems indi-

cates that any methodology used must be able to revresent the physical environment 

also; in this sense the oLjed.-oriented approach provides clear advantages. 

EmLedded systems are usually real-time systems. One of their main char­

act.erist.ics is that. they require ftexiGility and ext.ensiLility (different envirunment.s 

and different avplications). The object-oriented apvroach appears very promising 

to satisfy this requirement. 

Real-time systems are usually multiprocessors. Obviously, satisfying dead­

lines will depend on the specific multiprocessor configuration at hand. A design 

methodology must. consider this effect. There are some real-time operating systems 

that help accomplish this task, for examvle CHAOS [26], [56], and Clouds [14], [20]. 

[50]. 
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2.2.2 Object-Oriented Programming 

Object-oriented programming techniques have been shown to have advan­

tages over classical design techniques such as structured design . One advantage is 

their enhanced abili :-.y to provide extensible designs. Another would be the increased 

amount of rense uf design artifacts and code. Overall. object-oriented methods 

do ap]Jear to improve ]Jrudnctivity [2]. Object-oriented techniques also have sev­

eral ad,·antages in a real-time environment. Some researchers believe that current 

(nonobjed.-oriented) real time software development techniqnes will not be adequate 

for meeting the challenges of the future generations of complex real time systems 

[59]. The object. oriented paradigm offers a better way of creating and controlling 

the develo]Jment of complex real time systems; for exam]Jle , they might make it 

easier tu IJl'OVe IJredictabili t.y. 

An im}>ottant. advantage of object-oriented met.huds is their modeling ]Jower, 

it is possible to lmild a model fur some systems that. refierts its semantics mnrh more 

closely than with other methods. This is an important advantage for the design of 

real-time systems that have complex relationships between components and with 

the emirunment. 

A significant as]Jed. of real-time systems is the fact that they are composed of 

physical units and they can be modeled using a hierarchic approach [24]. The envi­

ronment of the real-time systems are also important.. Object-oriented methodologies 

SHIJport t.hese views of the software better than other methodologies. 
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In the uLjed.-uriented varadigm , infurmation hiding alluws a designer tu have 

a variety uf imvlementations for each method in an object. each satisfying a different 

type uf constraints. Fur examvle, an object might have three different methods for 

verfurming a task, each uf which was guaranteed to cumplete in a set amount uf 

t.ime (sluw. medium , fast, ur 5 ms , 2 ms. 1 ms, etc.). 

Object-oriented varadigms may alsu have sume adYantages in ap}Jlying strate­

gies such as n-versiun fault tolerance. The object view uf the of the physical units of 

the syst.em may allow an easier way of creating and using n-version software. For­

mal methods apvear also to enhance object-oriented designs. This can result in an 

increased aLility to pruve system reliaLility, safety, and uther vroverties. Currently, 

there are two main avvruaches tu including furmal met.huds in the OOA. The first. 

is tu vlace the axioms in the uLjects [18], [57], and the secund method is tu vlace 

the axiums in the st.at.e transitiuns [22]. [25]. [31], [41], [65]. and [66]. 

On the uther hand, there are sume disadvantages to using an object-oriented 

met.hudulugy. There is a dichotomy between the underlying principles of object­

oriented methodologies and software performance, which could affect its ability to 

satisfy deadlines ur its predictability. Fur example, it is nut clear what is the effect 

uf inheritance uf deadlines. Must general vurpuse uL.iect oriented methodologies 

have mudeling SlllJ}JUlt that is inadeqnate fur real time suftware. It is not dear in 

must. methudulogies huw to exvand states to vrovide fur details at. lower levels of 

aLstract.iun. The proLlem is exasperated by message deadlines and concurrency. 
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Another possiGle disadvantage of object-oriented systems fur emGedded ap-

plicat.ions is their requirement of efficient use of memory. In object-oriented imple-

mentatiuns, a class may contain many operations that will not Ge nsed in a given 

application but will take memory space. It is necessary to consider ways for selecting 

only the needed operations in a given application. 

The implementation language will also need to be considered. No matter 

what oGject-oriented language is used, C++, Ada, Eiffel, Smalltalk, or Java, ex-

tensions will need to be made to support the real-time environment. An extended 

language like RTC++ or Ada 9X may work, but further extensions are still likely. 

2.2.3 State l\fachines and Petri Nets 

The modeling uf the Gehavior of objects in the oGject oriented paradigm, is 

most often done with either state machines or Petri nets. \Vhile both modeling 

techniques can descriGe the Gehavior uf the oGjects, they also have limitations tu 

what. can Ge described with the techniques. A Grief descri]Jtion of state machines 

and Petri nets follows . 

State machines, or deterministic finite state automata. can be used to model 

t.he Gehaviur uf many kinds of systems [42]. State machines consist of a finite 

numGer of states, a set of transitions between states, and a list of the events or 

inputs that trigger the transition from a state. This is usually expressed as a 5-

t.nple l\I= { Q, ~~ li , q0 , F'} vvhere: 

Q is a finite set. uf internal states 
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I: is the input. alphauet 

b : Q x I: -~ Q is the transition function 

(jo E (J is the initial state 

F ~ Q is a set. uf final states. 

A state marhine starts off in the initial state , (jo. When an input (from I:) 

arrives it. rauses one of the transitions from b to Ge used to move to a new state (or 

sometimes stay in the same state) of Q. If the marhine is in one of the final states, 

F, then the state machine can terminate . 

To use state machines to analyze object-oriented software, one only needs to 

map the uLject-oriented concepts onto the state machine. For examvle, I:, are the 

set of messages that. an object conld receive. The transition fnnction , b, and the 

state of the oLject determine what. happens when a message is received. The object 

ronld arrept the message and transition to a new ~tate, ignore the message and stay 

in the same state, etr. The states of the oLjects determine what methods need to 

Le invoked by the different objects. 

One of the vroblems with state machines is that of state explosions. If the 

nnmLer of states involved are smalL then the proLlem can Le dealt with . Most 

proLlems of even lovv comvlexity have a large nnmLer of states. One way to deal 

with this proLlem is through the nse of stat.echarts, which are a modification of 

state machines to allow the nesting of states [54]. Statecharts not only have a more 

concise way of revresenting comvlex states , Lut also allow suLst.ates to inherit and 
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evuke state t.ransitiuns uf the parent states. The states in a statechart. are descril>ed 

in a hierarchical strncture that alluws a cumvact. yet. vrecise representation uf the 

dynamic L>ehaviur uf the ul>jects. Statecharts are usually mure convenient than state 

machines. 

Petri nets are similar in some ways tu state machines [1 J. They can L>e viewed 

as anut.her type uf automaton, or as a way of representing different kinds uf systems. 

There are several kinds of Petri nets, but for this paper, we limit ourselves to Marked 

Petri nct.s only. A Marked Petri net is a 4-tuple C = (T , P, J1, AI), where, 

T = {1. 1 ,/.2 , . .. ,ttl} is a set of transitions. 

P = {pJ , P2 , ... , Pm} is a set of places. 

J1 <::;;; {'!' x J>} U {JJ X 1'} is a set of directed arcs. 

!II = { :r 1, :r2 , • . . , :c111 } where :ri 2 0, assigning a numl>er uf tukens tu each place 

in the net . Thi s is called the marking uf the Petri net. 

In a Petri net., a transition can fire unly if there is a tuken waiting in each 

place attached tu it. The act uf firing causes the tukens tu Le remuved frum the 

inputs vlaces to the transition and placed in the uutvnt places. \Vhen two transitions 

are enaLled and du nut share an inpnt place , they can fire concurrently. When twu 

enaLled transitions du share an input place, firing either wunld remuve the tuken 

frum the shared place, disaLling the uther transition. This is knuwn as couJlict.. In 

a cunflict. the chuice of which transition will fire is arbitrary. 

The cuncept.s uf reachaLility and p-invariants are also used with Petri nets. 
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A marking !1/ is said tv Ge reachaGle frvm M' if start.ing with 1\/ ', tlwre exist.s svme 

series vf transit iuns that can Ge fired that results in !11. A p-invari ant is a set vf 

places, I. that have the property that the sum of all the tvkens of all the places in 

the set, for any n 1m king vf the set is a constant. That is 

c = 'L flt(p) 
pt: I 

Where !1/ is a reachaGle marking and I dves not have any prvper suGsets that. are 

p-invariants. The reachaGility chart and the p-invariants vf the netwvrk can be nsed 

to verify the Gehavivr of the Petri net. 

Petri nets also suffer from state explosion. Similarly t.v statecharts, Petri nets 

can Ge arranged in a hierarchical system t.hat cvnt.rvls the state explosion. Petri nets 

can model very well aspects such as parallelism and nvndet.erminism. Petri nets can 

model cvncmrenry. Gy expliritly showing the parallelism, and Ge used tv prvve that 

a system is deadlock free . Petri nets can also Ge modified intv colored Petri nets or 

into timed Petri nets in order tv increase their aGility tv mvdel certain applications. 

For example, a timed Petri net can Ge introduced so that the deadlines of the real 

time software ran Ge modeled. However , adding cvlvrs or timing detracts from the 

Petri nets aGility tv detert deadlocks vr other conditions. 

2.3 Classification Criteria 

Based vn the disrnssivn in Sections 2.2.1 and 2.2.2. the following criteria will 

Ge used as guidelines fvr comparison of the design methodologies . 
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• SlliJIJult uf runrnnent. prucessing. 

• Cuntruller ard1it.ed.m e. 

• Deadline management.. 

• First design derisiun. 

• Mudeling uf system Lehaviur. 

• Use uf inheritance. 

• Life Cycle. 

A discnssiun uf each criteriun fulluws. 

2.3.1 Support of Concurrent Processing 

Real-time suftwme is uften characterized Ly a large amonnt. uf system cun­

cnrrency. If, in general, tasks cummnnicate, synchronize, ur interact wit.h a nnml>er 

of other indeiJendent asychrununs tasks and external events, then the system has 

a large amount. uf system cunntrrency. The cuncurrency can range from seiJarat.e 

IJrucessurs cunnected via a cummunicatiuns facility tu asychronuus events in one 

prucess . Becanse the exiJression of cuncnrrency is an imiJultant issue in real-time 

soft.ware, the design met.hudulugy shunld reflect it. 
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2.3.2 Controller Architecture 

The srhednling algurithms fur real time suftware are implemented by a cun­

t.roller. Thus the cunt.ruller should be given cunsideration as part uf the uverall 

system. Each design methodology supports either a distributed controller mecha­

nism ur a single uLjert r·ontrvller mechanism. In a distriLuted contruller, each object 

will cuntain the cude necessary for synchrunizatiun and message J?assing and mes­

sage handling. In a single object contrul design, one oLject is specifically designed 

fur handling message traffic, synchronization , and the states uf the uther uLjects. 

2.3.3 Deadline J.\;lanagement 

One uf the mure impurtant characteristics of real-time suftware is that every 

task and every message may have a deadline that. must be cunsidered. In sume of 

the design met.hodologies t.he deadlines are considered in the design J?hase. In uther 

systems, the deadlines are handled Ly the target )?rugramming language in the 

imJ?lementation J?hase. In any real time system with hard real time deadlines, this 

is a key issue tube decided. Fmthermore. any system that does not have deadlines, 

ur whose deadlines are never cunsidered Ly the methudulugy are nut tmly real time 

systems. They may be relative t.ime syst.ems. L1tt they are not real time systems. 

2.3.4 First Design Decision 

Kelly and Sherif [;35] puinted uut that the first decisiuns that are made in a 

design are often the hardest. tu change later in the suftware life cycle. Thus, these first 
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design decisiuns are lJruGlematic in that they are the must. persistent. decisiuns made, 

yet. t.hey are made at a time when little is knuwn auunt the resultant system. Fur 

examlJle, lJartitiuning a large system into sectiuns early un in a lJruject could result 

in a puor design if lat.er in the design it is discovered that message traffic Getween 

parts of the system will use a seriuus amount of system resumces. Cunsidering the 

first design decision as a lJart of the methodology alluws the designer to make a 

bett.er choice in the design of the system. This criteriun is of the lesser imlJurtance 

when unly ouject-uriented systems are Geing cunsidered. 

2.3.5 System Behavior 

During the design 1Jhase of the life cycle. the behavior of the design artifacts 

must Ge analyzed. In the methodulugies presented in this lJaper, only state machines 

and Petri nets are used tu model the system Gehavior. Each technique has sume 

advantages. State machines are easy to use and can Ge exlJanded in the mure 

puwerfnl st.atecharts when necessary. Petri nets are mure puwerful and have the 

aGility to model t.he concelJt of concurrency and show that. the system is deadlock 

free. Petri net s can Ge exlJanded into timed ur culored Petri nets if desired. 

2.3.6 Use of Inheritance 

In uujed.-oriented methodologies, inheritance is a ,·alnal>le mechanism tu 

reuse exis t.ing classes uf ul>jects . There are several issues with inheritance in real­

time software Geyond the general ul>ject-urient.ed inheritance 1ssues. SlJecifically, 
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t.]1e issnes vf the inheritance vf deadlines and uehavivrs are imvvrtant in real-t-ime 

svftware. Hvw are dass deadlines inherited? If a snudass uverrides a svft deadline 

with a hard deadline , can the methodvlogy ensme the vredidauility vf the svftware? 

What is the relativnshiv uet.,l·een deadlines at different levels vf design austract.ivn, 

·when mvre detailed state tr<1nsitiuns are invulved? 

2.3.7 Life Cycle 

Every methudvlugy Sll]Jport.s some phase uf the software life cycle. Sume unly 

suvvurt. the analysis ur design phases uy vffering tvvls and techniques that vnly helv 

in these vhases . Svme Sllp]Jvrt a fnll life cyde uy uffering tuvls and techniques that. 

start. with the svecifirativns and enfvrce cumvleteness and rvnsistenry all the way 

tv the rude release. It rvnld Ue desiraiJle tv even Sll)Jpvrt the life cycle iJeyond 

cvde release and intv cvde maintenanre. In general. fnll life cyde methvdulvgies 

are preferaule tv vartiallife cycle methvdolvgies uecanse the t.ovls of each phase are 

integrated tvgetl1E'r. A ung fL-x in the code that resnlts in a change tu the design , 

shonld start in the design tvol. 

2.4 Design l\:fethodologies 

The ten met hvdvlogies that are examined here are all frvm recent. pnulicativns 

and have ueen ltsed vn real prvject.s. In this sertivn. each met hvdology will ue uriefiy 

discnssed. The design steps , majvr charact.eristirs . and strengths and weaknesses 

will ue vntlined. 
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2.4.1 ARTS 

ARTS is an uu.iect-urient.ed met.hudulugy fur designing real-t.ime systems [-15] . 

It. is im}Jlemented in RTC++ which is an extension of C++ intended tu support 

this methodology [:J-t]. It provides not only data encapsulation l.mt also timing en­

cavsnbtion. This methodology is more concerned with the low level design and 

im}Jlementatiun issues (such as issues with RTC++) than with high level design 

issues (like l>ehaYiur modeling). RTC++ is a language that could be used to imple­

ment. any of the methodologies discussed in this }Ja}JeL 

Showing that a system is predictal>le is one uf the key aspects of the ARTS 

methodology. fur which it uses rate monotonic scheduling. 

In ARTS the ul>jects can l>e single threaded or multithreaded, out the mul­

tithreaded ul>jerts have Letter predictal>ility. Both types of ul>jects can have the 

prul>lem uf priurit~' inversion. which happens when a task uf high priority is l>lucked 

l>y a task uf low priority. By using a property called priority inheritance, \Yhich is 

nut. the same as ol>ject-oriented inheritance, priority inversion can l>e overcome. In 

most. cases, priorit:v inheritance is used to change the priority of a low J:>riurity task 

that is l>lucking a higher J:>riurity task tu the priority uf the higher priority task. In 

multithreaded ul>jects. a free thread can l>e used tu run the higher }Jriurity task. 

Their use uf the term 'inheritance ' in J:>riority inheritance is confusing. It is 

also unclear in ARTS how the l>ehavior of the ol>jects is modeled. It is dear that 

ARTS SUJ:>pults J:>redidal>ility and provides a solution to J:>riurity inversion . out this 
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dues nut. a}>}>ear tied t.u ul>ject. l>ehaviur. 

2.4.2 COBRA 

The Cuncmrent Ol>ject-Based Real-Time Analysis (COBRA) methodology 

was develu}>ed l>y Gumaa [27]. It. is a Glend uf cunce}>tS frum Real-Time Strnctmed 

Analysis (RTSA). Ol>ject.-Orient.ed Analysis (OOA) . and Jacksun System De,·elu}>­

ment (JSD). COBRA nses the RTSA notation and state diagrams. It is similar 

tu JSD in that its mudel uses cuncmrent processes for ol>jects and functions. Like 

OOA, it. uses ul>ject st.rudming criteria. 

The main st.e}>S uf the COBRA met.hudulugy are the fulluwing: 

1. Decum}>use the syst.em intu inde}>endent distril>nt.ed snl>systems. Here dis­

tril>nted im}>lies mure than jnst cuncmrent. l>nt }>tucesses that can actually 

reside un separate }Jrucessurs . 

2. Ident.i(y the ul>ject.s fur each snl>system. 

3. IdentifY the operatiuns fur each ol>ject . 

4. Create a statechart mudel frum the ul>ject.s treating each as a concnrrent task. 

5. Analyze the l>ehaviur uf each ul>ject. with event. seqnencing scenarios. 

COBRA ·s decum}>usit.iun uf each problem intu snl>systems with an emphasis 

un a dist.ril>nted environment, is snp}>urted by a stmcturing criteria and a ma}>ping 
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tv the distrilmted nudes . COBRA 's SUlJlJVrt fur thi s decvmiJvsitivn alJIJrvach gives 

thi s methodology an advantage in distrilmted environments such as a manufacturing 

Cf:'ll with indeiJendent ruuuts. 

The criteria SUlJlJOrted Gy COBRA considers the following five types of ob-

.iecl s as the must. relevant. 

1. /';:c:fcnwl /)c·nir.r: 1/0 viJjects, which malJ every 1Jhysical ent.it.y in the real world 

tv a software vuject that. models the device. 

2. Conf.n.Jl objects, which control all the other vGjects in the system. 

:3. Dat.a absfmcfion vGjects, which encapsulate data that the system needs to 

rememuer. 

4. Algorithm ouject.s, which encaiJsulate algorithms nsed in the proGlem domain. 

5. U.•;er· vGjed.s, which are needed t.u model the rule uf nsers in the model. The 

user uGjects are different frvm the external device uGjects, Gnt the difference 

is nut dear in Gumaa's IJaper. AIJparently. they are jnst nser interfaces. 

The viJerativns fur each uGject. are characterized Gy their IJerivd. There are 

two types vf VlJerat.ivns: asynchrvnuns and IJeriudic. Asyrhrvnvns viJerat.iuns are 

activated Gy an vGject. vr event. tv IJerfvrm an action. Periodic viJerativns activate 

themselves at regular intervals. Both kinds vf viJerativns can Ge nnregnlated vr 
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devendent npun the state of the object.. Overatiuns that are dependent nvun the 

state of the object. may perform different tasks depending upon the object state. 

The system is then modeled using the objects and uveratiuns. Each object 

Is treated as a concurrent task, so that the system model supports a great deal 

uf external concurrency. The system behavior is modeled using event sequencing 

scenanus. Event sequencing scenarios use control objects that respond to incoming 

events from the external environment and control the system state transitions. This 

is the same as in Rumbaugh [54]. 

One disadvantage of COBRA is that deadlines are not considered. Another 

disadvantage is that the event sequencing scenarios are not able to prove the system 

is deadlock free, becanse they are just specific scenarios, not a complete representa­

tion such as statecharts ur Petri nets. 

2.4.3 HOOD/PNO 

Hierarchical Object-Oriented Design (HOOD) is a design methodology fur 

real time software defined by the European Space Agency. It has been extended 

with Petri net objects (PNO) tu model the system behavior (HOOD /PNO) [49]. 

PNO is a method uf describing the cuntrul strnctme and behavior uf each object 

using Petri nets. The HOOD /PNO met.hudulugy covers the entire software life cycle 

including analysis, design, and implementation 

HOOD /PNO nses a parallel recursive life-cycle process that takes a level of 
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austract.iun , defines t.he Lehaviur at. that level, and decumvuses it intu the next luwer 

level. The steps uf this methodology are as follows: 

1. Determine the relevant objects of the system from the physical system require-

ments. 

2. For the current level of austraction, collect the oujects into object classes. 

3. Describe the vhysical objects in terms of their external behavior, their internal 

structure and their relation to other objects. 

4. Redefine physical objects and classes into software objects and classes. (The 

authors claim that generally the physical description does not take into accotmt 

all the responsiuilities required by the svecifications.) 

5. For a given level of austract.ion, define the uverations fur each object. 

6. Fur a given level of austraction , define the uperatiuns of the object. 

7. Describe the objects' behavior by Petri nets and verify the properties of bound­

edness , liveness, and safeness in the design . Then computing the p-invariants 

of the Petri net model , decompose the objects into next lower level of abstrac-

tiun. 

HOOD /PNO is an uuject oriented design methudulugy that includes object­

oriented design analysis (OODA) , HOOD , PNO, and implementation rnles for trans­

lating detailed designs intu specific target language code. The strength of this 

25 



methodology is that it covers the entire life cycle from requirements tu code. This 

met.hudulugy can Ge applied with a top down approach or a bottom up approach. 

The stevs above show the top down approach. 

One disadvantage of HOOD/PNO is that it dues not directly deal with the 

vroGlems of concmrency. While concurrency can Ge modeled using Petri nets , it is 

nut sverifically designed into the software. Also, the issues of object deadlines are 

left tu the implementation language and not dealt with as design issues. 

2.4.4 HRT-HOOD 

The Hard Real Time Hierarchical Object-Oriented Design (HRT-HOOD) is 

another adavtatiun uf HOOD for real time environments [10]. In this case the 

emphasis is un supvurting the aGstractions that are typically needed by hard real­

time system designers. This allows the designer Getter conceptual tools for specifying 

and analyzing the deadline requirements of the software. 

HRT-HOOD was develuved based on the belief that the design methodology 

must. vruvide the following support: 

• uGjects that recognize the kinds of activities and artifacts found in real-time 

systems . 

• the appropriate scheduling varadigms. 

• explicit definition of the timing requirements for each uGject. 
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• definition of the relative importance of each ouject tu the overall s1 tccessful 

functioning uf the system. 

• support for different modes of operation. (i.e. An airplane will have different 

modes of operation such as on ground and in flight.. It is reasonable to expect 

the software tu Lehave differently in these different modes of operation.) 

• explicit definition and use of resource control oujects , which are olJjects that 

interface to system resom-ces (i.e. sensors, memory, etc.) .. 

• decomposition into a software architecture that facilitates processor allocation , 

scheduling paradigm analysis , and timing analysis . 

• tuuls tu perform wurst case execution time and schedulability analysis. 

HRT-HOOD seiJarates the high level design activity into two parts: the lug­

ical design and the }Jhysical design. The logical design is concerned with satisfying 

the functional reqnirements that can be made independently of the constraints im­

posed lJy the execution environment. The physical design addresses the timing 

and schedulability from the fun ctional req11irements and the other constraints. The 

physical design can lw viewed as a refinement uf the lugical design , they are Goth 

i tera tive and concllnent JHuresses. 

The res11lt of the logical design is a set of objects that can not be fmther 

decomiJosed (terminal olJjects). HRT-HOOD supports five kinds of objects: 
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• PASSIVE - Ol>jed.s that. are invoked Ly ut.her ul>ject.s . They have nu SlJunt.a-

neuus control over their own or other oLject's operations. 

• ACTIVE- The must general class of oLjects with the least restrictions placed 

un them. These objects can control when their own operations are executed 

and can call uiJeratiuns in other objects. Since the effect. of these objects can 

nut Le analyzed, they are allowed for background activities only. 

• PROTECTED- This is an extension of the Lasic HOOD object types. These 

oLjects can control when their operations are executed but can not call opera­

tions in other objects. These oLjects must be analyzed for the blocking times 

they impose un the uLjects that call them. 

• CYCLIC - This is another extension of the Gasic HOOD object types. These 

are the 11eriudic activities uf the system . Their operations are demands fur 

immediate attention. They can also SlJOntaneuusly invoke operations in other 

oLjed.s. 

• SPORADIC - This is another extension uf the Lasic HOOD object types. 

These oLject.s represent the sporadic activities of the system. 

Every uLject has code to control its Leha\'iur and synchronization which is 

called the uLject control strnctme (OBCS). The cuncnrrent activities inside the ob­

jects are called THREADs. An ul>ject. can have une ur more THREADs that operate 
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indevendent.ly hum the uverat.iuns uf the ol>ject and whuse urder of execution is con­

trolled Gy the OBCS. At the highest level of design each system is represented Gy 

a single CYCLIC or SPORADIC object. These objects are decomposed into lower 

level objects at each iteration of the design cycle. 

The physical design maps the logical design onto the physical resources of 

the system. The physical design does the following: 

• allocate the ol>jects in the logical design to the physical processors. 

• schedule the communications network such that message delays are bounded. 

• schedule the prucessors so that all objects on all processors meet their dead-

lines. 

During the physical design , objects are assigned their timing attril>utes. Also 

the al>stractiuns fur handling timing errors are created. These can include stopping 

an ul>ject that uses more compute time than was requested, and stopping an object 

that executes past. its deadline. 

It. is clear that HRT-HOOD has very strong deadline management and is 

a true real-time design methodology. It. is not dear how well this methodology 

sHplJurts cuncmrency Geyund assigning ol>jects to physical processors and threads 

inside an ol>ject. 
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2.4.5 OCTOPUS 

OCTOPUS is a methudulogy for applying object-oriented techniques to em­

uedded real-time systems [69]. OCTOPUS contains extensions to OMT to handle 

specifir real-time emuedded system problems such as concurrency, synchronization, 

communication, handling uf interruvts, hardware interfaces and end-tu-end resvunse 

time. 

The stevs uf this methodology are as fulluws: 

1. Create the system requirements specification frum case scenarios. 

2. Create a system architecture to partition the system into independent subsys­

t.ems and svecifying the subsystem interfaces. 

3. Analyze the snLsystem and create the OMT uLject and dynamic mudels nee-

essary fur the snLsystem . 

4. There are twu required suLsystems: a hardware wravver and at least une uther 

snLsystem. The hardware wrapver isolates the software frum the hardware. 

The wrapper translat.es any external stimuli (ie hardware inputs, Lntt.ons, etc.) 

t.u logical stimuli (events) for the software. 

5. Analysis is first dune in implicit. cvncv.rn:ncy mude. where each suLsystem 

is designed and analyzed as if it had its uwn fast. prucessur. Processing is 

considered tu uccnr in zeru time. 
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6. Each event in t.he uiJject. and dynamic models are assigned a significance value 

(c. e, 0, 1). Here c re_~Jresents a hard deadline, thee re_~Jresents a soft deadline, 

the 0 represents no deadline, and the 1 re_~Jresents a deadline determined by 

sume other state. 

7. The e:r:plicit. concurrence mode is created by mapping the object model into 

event threads. 

OCTOPUS has strung design and analysis support for concurrency. The con­

troller design is implicit with an external hardware wrapper. Deadline management 

sup_l)urt is included. The first design decision is that of suLsystems. The methodol­

ogy uses statecharts for behavior modeling. Inheritance is sup_l)orted as in OMT. The 

life cycle covers the design and implementation phases. OCTOPUS is well suited to 

emLedded real-time development. Also, once the architecture decisions have been 

made, it. would Le difficult to change them, tmlike a regular uLject-oriented system, 

where changes are ex_l)ed.ed and isolated from the system. 

2.4.6 OMT 

OMT is an oLject-oriented methodology that enjoys great _l)u_l)ularity [54]. 

Unlike the other methods discussed , this is nut a real-time methodology, but a gen­

eral methudulugy. Several extensions and pro_~Jusals exist tu add real-time features 

to O~IT such as OCTOPUS (above) and [15]. 
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Originally 01\'IT consisted of three complementary models: the object. modeL 

the dynamic model. and the functional model. The functional model has Leen 

eliminated in the recent OMT - Brooch unified model (UML) . The object model 

descriLes the static relationship of the objects in the system. The dynamic model 

descriLes the Lehavior of the individual objects. 

Real-time e:tensions such as that of Chonoloes [15] capture the timing infor-

mation in the event. trace diagrams, scenarios, and statecharts. Rumbaugh's recent 

additions to OMT [53] also support real-time software with deadlines in the event 

trace diagrams and statecharts. Concurrency is not supported in OMT. 

2.4.7 OPNet~ 

OPNets is an uLject. oriented methodology that models the Lehaviur of the 

objects as Petri nets [-10]. One oft.he authors' mot.ivations for developing OPNets was 

to correct a vroLlem they saw in PNO. In PNO, an oLject 's control structmes and 

communications are not separated. Furthermore they saw the behavior of the oLject 

in the control structure of the whole system as only Leing imvlicitly defined. As a 

resnlt, a modification of an oLject.s ' inner control structure cunld result in a change to 

the control stmctme fur the whole system. To overcome this proLlem t.hey vruvosed 

the OPNets methudulugy. OPNets identifies objects Lased un their concurrency 

relationships. The oLject 's internal control strnct.ure and external structure are 

dearly sevarat.ed. High level Petri nets are used to model the behaviur of the 
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oGject.s and the relat.ionshivs Getween oGjects. This external structure then defines 

the message passing Get.ween objects. At the next lower hierarchical level the Petri 

net nodes are expanded to represent the internal control structure of the object. 

The internal structure is not visible to other objects in the model. 

There are two types of objects defined in OPNets. The first are primitive 

oLjects which are the basic unit of behavior representation. Primitive objects define 

sequential behaviors and static properties. These objects can not have concurrency 

in them. The second type of object are the composite oLjects. Composite objects 

are made up of primitive objects and other composite oLjects. Composite oLjects 

have concurrency, and synchronize the sequential behaviors of primitive objects. 

The stevs of this methodology are as follows: 

1. Define the system in terms of mutually communicating aggregate objects and 

their interconnection relations. 

2. Define external message passing structure and internal control structure of 

each oLject. 

3. Define static properties and behaviors for each primitive object. 

4. Model t.he behavior of each object with a Petri net. 

5. For each primitive object, analyze the local Lehavior, reachability, and firing 

sequences. 
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6. Fur earh rumvusit.e object , analyze its LehaYiur in terms of its internal objects. 

OPNet.s uses a hierarchical Petri net. avvruarh tu model very comvlex real 

time systems. Like Transnet. the methodology supports only :part of the life cycle , 

the analysis and design phase. OPNets can model runcmrent actions , Loth inside 

and outside of objects. OPNet.s do nut indnde deadline management in the design 

cycle. 

2.4.8 ROOM 

The Real-time Object-Oriented Modeling (ROOM) methodology was created 

tu gu beyond creating and verifying a design, into automatically producing imple­

mentations uf the design [58]. ROOM is Lased un severalvrincivles of how a design 

met.hudulugy should work. The key modeling concepts mnst be intuitive and domain 

sverifir. Each software domain has its own cuncevts that. are well nnderstood by the 

develu:pers . The develovment process should nut allow discontinuity. The authors 

des<TiLe this as a seamless formal relationship between the artifacts and activities 

of the analysis, design , implementation, testing. and documentation. Lastly, the 

methodology should supvort an iterative design vrucess. 

In ROOl\·1 syst.ems are modeled using h,·u varadigms. dimension and ab­

straction level. The dimension model vartitiuns the system Lased on the problem 's 

natme. The abstraction level partitions the system into three levels: the syst.em 

level fur modeling cuncevts at. the highest. level. the C01/.cun·ency level focusing un 
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issues of lJarallelism, and the ddaillevel which focuses on the im1Jlementatiun. The 

model technique is iterative, l.milding a model at. a level of abstraction and analyzing 

it, then refining the model at the next level of al>straction . The steps in the ROOM 

methodology are as follows: 

1. Analyze the current level of refinement using ROOM modeling concepts and 

lJaradigms. 

2. Design and imt>lement current abstraction in a ROOM model. 

3. Verify that. the model meets requirements. 

4. Move to the next level of abstraction and repeat. 

The ROOM model uses active objects called actors. The actors have ports 

that acrevt. messages . where messages are units of information that ftow between 

actors. Actors can l>e decumvosed into groups of actors and their messages , which 

are hidden from the higher levels of abstraction. The l>ehavior of the actors is 

formalized using finite state machines and statecharts. 

The advantages of ROOM are the iterative process and the abstraction levels. 

Anut.her advantage is t.he formal support. of the methodology fur the entire life cycle 

from requirements to implementation and to verification. 
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2.4.9 RTO 

Real Time Objects (RTO) are a methodology that. has as its major goal the 

explicit prugramming of the real time scheduling [47], [48], [19]. The authors claim 

that this methodology is well suited for hard real time programming. RTO defines 

i t.s ohjects snch that internal concurrency is not allowed. 

The following are the RTO mechanisms that are supported by the method-

ology: 

• Object.s - RTO ohjects are single threaded ( at.vmic) ohjects. The object Le­

havior is modeled Ly a state machine. RTO ohject.s are reactive in that they 

are at rest. nntil a message arrives , then depending vn their state, they perform 

an action. Exerntivn vf an action ran not. be preempted. 

• Cla.s.w:s - RTO nses a decentralized synchronization control; therefore, each 

vhjed. has code tv synchronize concurrency. 

• Message Fassing- Ohjects communicate through asynchronous message pass-

mg. 

• l!nr::rpr:rf('(/ Messagr:s - When an ohject rece1ves a message that it can not 

handle, it ran decide tv do one of the following: 

- discard the unexpected message. 
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- defer the m essage 11ntil la ter, ass11ming that when the u l.Jject gues in tu 

another state it. will be able to deal with the message. 

pass the message to another object. This is different from the concept of 

inheritance in that the object can send the message to any other object 

not jnst its parent object. 

• Component.s and Cont.mllen; - To handle scheduling the idea of a component 

is introduced. A component is a collection of objects with similar time re­

qnirements operating on a (physical or virtual) processor. Each component 

has a special object called a r.or1.trvller. The controller collects all the message 

traffic, reorders the messages , and dispatches messages. With this implemen-

tation any user programmable control strategy can be used, or a standard 

controller can be imported from a library. 

• S t.anrlarrl Cont.roller'S - \Vhile the cont roller can be programmed by the user 

to implement any control strategy, RTO also has a default standard controller 

that. operates concurrently with the other objects inside its component and 

di spatches messages in FIFO order without. concern for time (soft deadline) . 

• ])riveT Ohjcd s - Driver objects encapsulate the physical system and external 

events into internal messages and vice versa. 

The advantages of RTO are tha t. it. supports concurrency, it. considers the 

object deadlines in the high level design , and that any scheduling algori thm can be 
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programmed intv the cvntrullers. RTO has a decentralized ccmtrul strategy because 

there are mnltiple rvmpcments (each containing vLjects with a similar deadlines) , 

and each rumpunent has its un71 runtruller, su the cuntrul cvde fur s ynchrunizatiun 

and communicativn is fvrced intv each cvmpvnenL 

2.4.10 Transnet 

Transnet is similar tv HOOD/PNO in that. it also uses Petri nets to model 

and verify the Lehavivr vf the system [55]. Transnet is different from that method 

in that it is cvncerned not only aLvut the functionality of the design but also with 

the deadlines vf the svftware and message passing and with oLject cvncurrency. 

The st.eps vf t.his methvdvlogy are as fvllvws: 

1. Identify the vLjed.s and the calls Letween the vbjects. 

2. Mvdel the vL,ject Lehavivr as high level Petri nets. 

3. Define data types as primitive sets together with their vperativns. 

4. Cvnstrnct the Petri net reachability trees. 

5. Analyze the trees fur reachaLility, safeness, deadlvck, and freedom from star-

vat.ion. 

6. Assign timing to Pet.ri nets. 

7. Validate timing and nH. execntion. 
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One disadvantage uf Transnet is that it only SlliJIJults the SIJecificatiun and 

IJreliminary design st.eps uf the life cycle. Its advantage is deadline management 

sup!Jutt and concurrence analysis. 

2.5 Analysis 

TaGle 2.5 shows a summary of the ten methodologies IJresented above. Each 

of the methodologies is comiJared according to the comiJarison criteria of Section 

Concurrency is often an important issue in real time software problems. 

The methodologies that have better support for concurrency are COBRA, RTO, 

Transnet, OCTOPUS, OMT and OPNets. Related to this is the control structure 

of the met.hudulugy. The methodologies that Sll!JIJOrt a single ul>ject. control are 

COBRA and Transnet. The other methodologies support distributed control mech­

anisms. A very concurrent system with hard or firm message passing deadlines 

wunld Genefit from a distrilJnted control structme system design. 

Another imiJurtant issue in real time systems is the handling of real time 

deadlines. Methodologies that du nut deal with the deadline issues me nut true real 

time methudulugies. In this paper, ARTS , HRT-HOOD. ROOM, and OCTOPUS 

have the Lest. snpiJurt fur real time deadlines. These all incorporate techniqnes for 

determining if t.he deadlines will be met and for showing the predictal>ility uf the sys­

tems. RTO and Transnet methudulugies Gut.h have some deadline handling supiJurt 
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lmt they du nut include any techniques fur analyzing the predictability uf the sys­

tem. The remaining methodologies all support deadlines only in the implementation 

}Jhase uf t.he design cycle and may not. Le true real time design methodologies. 

ln all uf the methodologies studied, except for COBRA and OCTOPUS, the 

first de~ign decision is selecting the oLjects. In COBRA, the first design decision is 

selecting the concmrent. processes. In OCTOPUS, the first decision is suLsystems. 

This is not. a surprising result in that. all the methodologies are of the object oriented 

paradigm. 

It. is not clear what Lehavior modeling technique is incorporated in ARTS 

and HRT-HOOD. The Lehaviur modeling for the COBRA met.hodolugy is event se­

quencing scenarios and st.atecharts. RTO, ROOM, OCTOPUS, and OMT also use 

scenarios and statechmts fur Lehaviur modeling. HOOD/PNO, Transnet., and OP­

Net.s use Petri nets. Selic point out that these modeling techniques are still limiting 

{59}. None uf these modeling techniq11es really allow the modeling of the deadlines 

uf tasks and messages in the real time system. The interaction of hard, firm , and 

soft deadlines in a system is nut considered Ly any of the modeling techniques. 

None of the methodologies studied in this }Ja}Jer discuss if, or how, deadlines 

and behaviors are inherited. If a class has a hard deadline and an object. inherits 

from this class, is the deadline inherited? Say a suLclass overrides a soft deadline 

with a hard deadline. How can the system ensure that this deadline will be met. 

when an inherited operation is performed? Another prublem is how is the object 
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Gehaviur inherited? It. is nut at all dear if Gehavior is inherited, and if it is, huw 

part.s uf the Gehaviur can Ge overridden Gy the suodass. 

ARTS COBRA HOOD/PNO HRT-HOOD I 
Concurrency SllpJ.wrt N y N N 

Control Dist.rib Central Distrib Distrib 
Deadline Management y N N y 

First. Design Decision Ol>ject.s Conc1trency Ol>ject.s Ol>ject.s 
Behavior Modeling St.atechart Statechart Petri Nets Statechart 

OCTOPUS OMTs OPNets Room 
Concnrrency Snppurt y N y y 

Control Distrib Central Distrib Dist.rib 
Deadline Management. y N N N 
First. Design Decision Subsystems Objects Objects Objects 

Behavior St.at.echart Stat.echart Petri Nets Stat.echart 

RTO Transnet. 
Concltrrency Snpport y y 

Cunt.rul Dist.rib Central 
Deadline Management y y 
First. Design Decision Objects Objects 

Behavior l'vludeling St.at.echart. Petri Nets 

Table 2.1: Snmmary of Methodologies 

2.6 Chapter Summary 

Ol>ject.-orient.ed design methodologies have several advantages in real time 

software design. First. , they have some general advantages snch as isolating the 

impact. uf changes un the design. and encouraging the rense uf design artifacts and 

code. The ul>jed.-uriented paradigm can model appropriately the environment in 

which the suft.'vvare will Le used , which is very important. for real-time systems. The 
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information hiding asped. can allow the real-time system to have several methods fur 

IJerfurm ing each task. There may also l>e some fault tolerance advantages. Lastly. 

the formal methods necessary to show the IJredictal>ility of the system can l>e easily 

and natmally incoriJorated into the system. 

Tl w dis~dvantage of ul>ject.-uriented techniques is that must general vmvuse 

ul>jed uriented methodologies have inadequate modeling SlllJlJort fur real time soft­

ware . Few methodologies even attempt to deal with deadlines, which is arguably 

the must imvurtant featme that separates real time software from regular software. 

In this chapter , we examined ten real-time ul>ject-uriented software design 

methodologies and wmpared their strengths and weaknesses. A design methodology 

fur real time software shunld help the designer deal with the svecial vrul>lems of the 

real time environment. If the environment has hard real time deadlines, then the 

metl1udulugy should suvpurt the consideration of this in the design stage, nut jnst 

at the implementation stage. Concurrency is another issne that can be handled in a 

nnmGer of ways. The design methodology should snppurt concurrency at the level 

that is required Gy the prul>lem at hand. 
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Chapter 3 

BEHAVIORAL MODELING WITH STATECHARTS 

3.1 Introduction 

Must. ul>jed.-oriented systems behavior models are based either on statecharts 

or un Petri nets. After reviewing both modeling techniques , we elected to concen­

trate un st.atecharts. Among the reasons for this decision is the fact that there is 

a mapping Getween statecharts and Petri nets, that is , they have similar modeling 

power fur must uf the cummun software applications. Personal preference may Ge 

the overriding deciding factor for choosing Getween the twu methods. 

Om first gual was to evaluate statecharts and the problems associated with 

extending them tu incorporate real-time deadlines. We first looked at the nature 

uf time measurements in software. Next , we looked at how simple automata are 

changed when timing is added. After that we reviewed statecharts. 

3.2 About Time 

Before we luuk at adding timing to antomat.a or statecharts , we should first 

louk at the natme uf t.ime. There are several ways uf thinking al>out time. Each 
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has different. at.trilmtes and causes us to think about um vrublems differently. 

The first way of thinking al>unt time we wunld call al>solnte time. Al>solnte 

time is very svecific. Ten o'clock, Tuesday, and July 4th are all expressed in al>sulute 

time. Al>suln le time is nut what we normally think al>uut when we deal with real 

time prugran nning. However, must. software today can read the system duck and 

use al>sulute time. 

When we are m a real time environment. we more often refer to time in a 

second way, relative time. With relative time, we are concerned with issues such as 

did one event happen before another. Time is expressed in terms of before , after , 

and within an interval. This can l>e much less specific than al>solute time but. more 

significant from the point. of view uf an apvlicat.ion. 

The third way uf expressing time is in the sense uf temvurallogic. Here the 

v1ew of t.ime is expressed as eventnally something happens, ur as something will 

never happen. This t.empurallugic view of t.ime is well snited fur making arguments 

al>unt pruvert.ies snch as safeness and liveness. 

Clearly all three of these views of time have a vlace m real-time softvvare. 

The first. view is nu different than exists in nun-real-time software. That is we can 

call fnnctiuns t.hat read the system duck and compare it t.u a valne. The second view 

of time is more uf a real-time view. This is the kind uf timing we are att.emvt.ing to 

add into the ul>ject l>ehaviur models. Finally, the temporal logic view uf time is an 

important view that we need fur reasoning about um designs. Adding this timing 
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alone dues nut make t.he software real-time software. 

3.3 Timed Automata 

Any aut.umata from simple state machines to Turing machines can be mod­

ified with timing. This can be dune by simply restricting the state transitions so 

that they can only Le t.aken dming specified time intervals. This simple change has 

far rearhing effect.s that include state explosion, intractaLilit.y, and undecidaLilit.y. 

However , real-t.ime systems require these timing constraints for 1mderstanding and 

verifying the critical timing interactions. 

One uf the Lest discussions of timed automata is that presented by Alur 

and Dill [3]. Here the timed automata are explained using sets of reset.able timers. 

These timers ran Le reset as an action on a state transition or can be used as a 

condition on a state transition. Figure 3.1 shows an example of a timed automata. 

In this example, the transition from state S0 to state S1 occurs when the symLul a 

is read Ly the automaton. This transition causes the timer x to be reset. to 0. The 

transition from state S1 Lack to state S0 is constrained by the condition (x<2)? In 

this example the transition will Le taken if the symLul L is read Lefure 2 time units 

have past after reading the symLul a . 

There are several pruLlems and issues addressed in the current literatme fur 

timed automata. These include: 

• Timed aut.umat.a suffer from state explosion when applied to realistic pruLlems. 
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a, x:=O 

b,(X<2)? 

Fig ure 3 .1: Example of a timed automata. 

• Analysis vf timed automata for properties such as reachal>ility, safeness , live­

ness , and others, is often intractable. 

• There is nv agreement. vn the nnml>er and kind vf ducks nsed in the antvmata. 

• There is nv agreement vn discrete versns dense ( cvntinnvns) time. 

The state exiJlvsivn issue is similar to the IJrvl>lem that led to the introduction 

of statecharts. The idea vf a hierarchy and concurrency can be used to control 

the exiJvnential state growth vf must. interesting IJrvl>lems. However, timing can 

canse e\·en faster state grv,:vt.h , l>ecanse each event can canse different. transit.ivns 

depending vn t.he amvnnt of time that has passed. 

The t.radauility vf timed antomata is significantly more cvmiJlex than that 

of regnlar automata. The issne of reachal>ility. which can be fairly straightforward 

in a simple state machine. is many times more cvmiJlex m timed state machines. 
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One example is the simt>le state machine that has an nnreachaule final state when 

an indnded timing constant is not an integer [37], [38]. Trying tu show that a timed 

automata is emlJty (nu strings reach the final state) is tmdecidable. 

The number of docks used in the automata is also an issue. Several authors 

recommend using mnltiple ducks [3], [5], [37], [38], and [.t6]. Others use the single 

cluck model (30], [~~3], and [43]. The multit>le clock models can ue reset by an action 

ur event.. And sume multiple clock models require that the clocks run synchronously 

and others du not. A model with multiple clocks that does not require synchronous 

clocks will definitely have more power when modeling a distributed system. 

The last issue is that uf discrete versus dense (continuous) time. If the docks 

increase munut.unically uy an integer amount, then the ducks are discrete. Some 

argue that dense time is needed fur must real-time sitnatiuns. Several hybrid models 

that inrutvurat.e uut.h t.imes have ueen lJlU_IJused [4]. It. dues appear that if the integer 

value uf increase in a discrete clock is small comvared tu the values that were tested 

fur. than we would nut be aule to observe a difference between discrete and dense 

time. 

There are several sulntiuns fur getting around the vroulems of timed au­

t.umata. Must. involve restricting the ant.omata in sume way su that the resulting 

ant.umata can ue easily analyzed. One example uf this restriction is the Alternating 

RQ timed antumata [37]. Here the timed automata is restricted to one that has a 

finite nnmuer uf ducks where each cluck can be queried unly once after it is reset. 
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Thus , on any vat.h through the automata the docks should alternate Letween resets 

and queries. Using t.his JE'st.rict.ion it. can Le shown that the resulting automata are 

tractable. However, this alsv results in mvre states, as extra states are necessary 

just. to keev the clucks understandable. 

While svme vf thi s work on timed automata is theoretical in nature , the 

prol>lems of intract.al>ility, undecidability, and reachal>ility will also appear in timed 

statecharts. Thus we need to look closely at these solutions and see hvw we can 

incorporate them into future models. These solutions can be incorporated both 

directly (via a rule fur the models) or indirectly in the way we structure the modeling 

technique. In any event, we should consider the above vroblems when looking at 

timed st.at.echart.s. 

3.4 Statechart::> 

Harel's st.atechart.s [29] are extensions tv state machines that incorporate the 

cvncevt.s vf hierarchy, concurrency, and cvmmunicat.ivns. St.at.echarts, which are 

also known as Hare! Diagrams, have Lecome vne uf the must. important. tools fur 

svecifying and analyzing complex systems. They are nuw Leing used in a wide 

variety vf tvvls. 

St.atechart s originated while examining the vrvl>lems with specifying n :ar!.i1 ,r· 

sys/.ems. These systems are difficult tv svecify Lecause they must react tv a wide 

range vf internal and external stinmli. This stimuli and the resulting act.iuns are 
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complex and often have timing constraints. As a resnlt, the traditional state ma­

chines are unmanagealJle, due to the exponential growth of the number vf states 

needed tv specify even moderately sized prolJlems. 

The exponential growth of state machines is a side effect of their limitations 

when descrilJing concurrency. State machines consist vf states and transitions. In 

a finite state machine. only one state can Le active and all the others are inactive. 

Transitions are directed connections between two states. Each transition has a 

associated event. and action. When an event arrives a transition is taken from the 

active state tv another state and the associated action is performed. As the number 

of possilJle conditions of the system grows, the number of simple states necessary 

to represent each vf these conditions grows and the numlJer vf connections between 

all the states grows. Every event that can happen must have a transition (fi'<:ed or 

implied) from every state. Events that are not. exvlicitly defined for a state must 

have an imvlicit transition, such as transition to an error state or ignoring the event. 

Statecharts are an extension to the basic state machine that uses concurrency and 

hierarchy to eliminate the need for many states and transitions. 

The concept. vf generalization hierarchy is incor]Jvrat.ed into statecharts using 

superstates and sulJst.ates. A subst.ate is contained Ly a superstate. If the sulJstate 

is active then the superstate is also active. Thns. more than one state is active at. a 

t.ime. The details vf a superstate can Le ignored Ly zooming out, and looking only 

at the external interactions of the state. In the same manner. we can zvvm in and 

49 



lvvk vnly at. the internal vf the superstate, thus allvwing vmselves the aGility tv use 

hierarchy tv rvnrentrat.e unly vn t.he level vf detail needed tv svlve the prvl>lem at 

hand. 

A superstate ran alsv allvw more than one snbst.at.e to L>ecome active at the 

same t.ime. This allvws rvn<mTenry in the system design. Concurrent states, shown 

together but separated l>y a dotted line in Harel diagrams, helps restrict the number 

vf states necessary tv build the system. The ronrmrent states can be synchronized 

by having t.ransitivns that cause state changes in all parts of the concurrent states. 

Otherwise the states are unsynchrvnized. 

Communication L>etween the states JS based on the broadcast mechanism. 

There are several shvrt.hand conventions necessary fur keeping the diagrams undnt-

t.ered. A transitivn tv a superstate implies that. the marked default. sul>st.at.e is the 

state entered. A t.ransitivn frvm a superstate implies that. , when the rundit.ivn fur 

t.he t.ransit.iun is enrvnntered, t.he transitivn is taken nv matter which snLst.ate 1s 

adive at the time. Transitivns frvm suLst.ates and tv suLstates are also allvwed. 

Figme ~~.2 is an example vf a simple staterhart. Entering state A autvmati­

rally enters suLst.ates B and D simultanevnsly. If the event that triggers T3 uccms 

then stat.e D wvuld rease hJ Le artive and state F \\"uldd Lecome active. If state 

F is active and the event. that triggers T7 vccms . then state A Lecvmes inactive, 

regardless uf which vf states Band C were active. Like\\·ise. if transition T8 is taken, 

state A Lecvmes inactive nv matter which sul>states were active. 
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Figure 3.2: Stat.echarts Example 
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The result is that statecharts are a lJOWerful tool used to visualize the states 

of a com!Jlex system. This tool allows us to concentrate on only the pieces of the 

problem that we need to at any }Joint in time, yet result in a complete overall picture 

of the system. 

Several extensions have been added to statecharts since they were introduced. 

One exam!Jle of this is t.he extension of statecharts to be a graphical language for 

the programming of CNC machines [28]. In this exam!Jle , the statechart is used 

as a gra}Jhical user interface (GUI) to create programs and to program numerical 

controllers of machine-tools (CNCs). The pa!Jer claims, but does not. show, that 

the statecharts can IJe translated directly into CNC programs that have real-time 

considerations. 

3.5 OMT Statechart~ 

An important. variation of stat.echarts is the one used iJy Ruml>augh in 01\IT 

[54]. This extension is one of the most. com!Jlete from a design consideration. It. 

includes the conce!Jh3 of conditional events that trigger actions , state activities , and 

lamLda transit ions. 

One oft he key featmes of OMT statecharts is the specificat.ion of the transi­

tions. All f·he transitions are controlled Ly a criteria t.hat inclndes an event. . condi­

tions, and actions . This is \vritten as P-'IW1i.l.(at.lrilmtc)fcundit.io11jj aclion and attached 

to each transition as a laLel. The event is the event. that triggers the tran sition and 
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the att.ril.mtes are infunnatiun passed alung with event, l.mt sevarate frum it. For 

example. the event can L>e a signal from the keyboard controller signalling that a 

key was devressed. The attril>ute could l>e the information on which key was de­

pressed. In many cases , the event is really an e1'ent.-e.r.pression that is a l>uolean 

express it•n desrril>ing atomic events. The events can be single events (say event. a), 

a combinat.iun of events (a. V b, a 1\ b), or other special events (time-onts, A events, 

negations, etr.) . 

The condition m an OMT statechart transition lal>el is an expression that 

descril>es the set uf conditions necessary to enal>le the transition. This is usually a 

descrivtion of other states that mnst be active (or inactive) for this transition to be 

enal>led. Events that uccm when the condition has the transition disabled do not 

canse a stat.e change. 

Artiuns are events created l>y the transition. There dues nut apvear t.u be 

any limits un how many events can Le generated ur what kinds of events can Le 

generated. 

One feat me of O.lviT stat.echarts that. is very different from Harel 's statecharts 

IS the activities that. urrnr inside the states. We can svecify activit.ies that will 

hapven when a state is entered. Likewise , we can specify activities that will havven 

when a state is exited. We can alsu svecify activities that. will havven when certain 

events uccm . even if that do nut reqnire, or cause a state change. These activities 

are specific. and have dmatiuns. As a resnlt. we can specify lambda transitions that 
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will ucc1tr, causing state changes, Lased on the activities in the st.at.e completing. 

On une hand these state activiti es are convenient additions t.u statechart.s. 

Many activities that will be performed in a state, can Le aLstracted to a high level 

entry, exit , or event activity. However , the ~ ~e ad.ivities may require further reduction 

int.u a statechart as we move into lower le vels (jf design al>straction. It is important 

tu note that these activities do not give OMT statecharts any more modeling power 

over any other stat.echart.s met.hod. Anything that can be modeled using activities 

can Le modeled using suLstates in the statecharts. 

One important benefit of using the OMT method is that a designer is strongly 

reminded that states do something and are not just parking places. Activities are 

performed inside states. That activity may be to perform functions, write to files, 

sleep. ur wait fur a key to ue pressed, but it is still doing something. 

There is une other difference uetween Ol\IT statecharts and other methods. 

There is an underlying assumption in most st.at.echarts that. all transitions are in­

stantaneous. When an event occurs , the transition does not take any time to change 

states. However , in O.tviT statecharts , a state can have exit activities , that take time 

toLe performed. While this may not ue a prol>lem in nun-real-time software, it adds 

a definite complication tu real-time systems. 

Figme :3. :3 shows an example of Ruml>augh 's Ol\IT stat.echarts. As we can 

see. the states can have activities in them. These can ue regular, entry, and exit 

activit.ies. Fmt·her more there can also ue activities that are triggered uy external 
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State1 
do activity1 event1 (attribs 1 )[condition 1 ]/action 1 
entry/activity2 1-----------------1:~1 
exit/activity3 
event/activity4 

I 

State2 

\ 

Figure 3.3: Example of Rumbaugh 's OMT statecharts. 

events . Transitions are triggered Ly event.s with conditions, which cause actions. 

Artivities are similar to actions except that activities take a significant time to com-

plet.e . Artions on t.he other hand are so quick to complete that they are considered 

instantaneous. 

Hooman et.al. used an axiomatization formalism to make formal assertions 

al>ont the }Jroperties of statecharts [31]. In their pajJer, the authors show how logical 

specifirations ran Le added to the st.at.echarts in order to make formal assertions 

al>ont safeness and liveness properties. 

Another example of formalism being added to statecharts is the Syntropy 

method of Cook and Daniels [18]. They argue that the graphical notations of stat-

echarts. while powerful, often lack expressive power. To overcome this, written 
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wurds are uft.en added t.u statechart.s, Lut the wurds are t.hemselves uften amLigu-

uns. Something mure furmal is needed. 

The Syntropy methud is Lased on O:MT. This Legins by associating each part 

uf the OMT nut.atiun with a precise mathematical meaning. For example, a one tu 

many assuciatiun is interpreted precisely as ~ t ma thematical fnnctiun mapping the 

uLjects of the first set intu the oLjects uf the second set. This can Le a very simple 

function , a E b, or a mnch more complex fnnction. 

In their nse uf statecharts unly events, cause state changes. The design must 

specify which uLject.s are affected by what events, when events can hapven, and 

what are the cunseqnences of the events. Tu do this, each state has a list of the 

events t.u whirh the state will resvond. Transition guards cuntrul when states can 

resvund tu events (change states). Events that are on the list but can not trigger 

st·ate dwnges a re considered nndefined. It is nut d ear \Yhy they alluw events un the 

li st that wunld Le considered undefined. unless it was tu enaLle them for suLstates. 

Figure :3 .4 is an example of a Cuuk and Daniels statechart.. This example 

shuws a simplist.ir traffic light. cont.roller that alluws the traffic light to be in a reset 

stat.e where all the yellow lights flash ur in the nurmal fnndiuning state (Running) 

where the lights cycle thuruugh their sequence. These states are switched l>etween 

by the ewnts Reset. and Nut.Reset. The mles uf this kind uf statecharts say that 

an event. that. is nut un the li st uf events fur the rurrent. artive state. rannut. be 

generated. The sert iun at. t he butt.um uf the staterhart labeled 'Alluw' shuws what 
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Traffic-Light ( ,r­
~ ------------------1 

I 
I 

Allow: 

Yellow­
Flash 

Reset 
NotReset 

Running 

NotReset 

F igure 3.4: Example of Cook and Daniels Stat.echarts Formalism 

events t.his staterhart. will accept. In this case it is t he events Reset and NotReset. 

Cook and Daniels descriLe this as an implied contract that reqnires the design 

to ensme that all events are allowed before Leing generated. This is a somewhat 

limiting rest.rirt.ivn. 

Once generated, t.he events can cause one or more vf several consequences. 

First. they ran cause a state change in the stat.echart. They can also cause a change 

tv t.he oLject's prvperties , or they can cause a change to the membership associations 

vf the vL.iert. Also , they ran generate other events. And. lastly, they can cause the 
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termination uf the uLject. In all cases, the cunseqnenres uf the event can Le d early 

stated and prerisely desniued. 

3.6 Timed Statecharts 

One uf the signifirant shortcomings of statecharts fur real-time systems is 

their inauility tu descriue and model timing constraints. There are several ways to 

intrudnce timing intu stat.echarts. One way was prupused Ly von der Beeck [65] , whu 

added the cuncept uf timed transitions tu stat.echarts. A timed transition has an 

npper and luwer time Luund fur the transition; that is , the event must be active for a 

minimnm amount of t.ime (the lower bonnd) before the transition can be taken, but 

it must Le taken Lefure the maximum amount of time elapses (the upper bound). 

This allows the int.rudud.iun uf the concepts uf delay and time-unt into the model. 

The formal syntax uf the transitions are as follows: 

c[r-]/a fur nntimed transitions 

([r:] f(n · I) / a fur timed transitions 

where c is an event., c is a condition , a is a sequence uf generated actiuns and events, 

and 1 is a time interval {l , 'lt.}, that specifies an npper Luund u, and a lower Lunnd 

l, fur the dmatiun uf the time interval. Using the timed and untimed transitions, 

the real-time syst.em characteristics uf delay. t.ime-unt . and preemption can all Le 

mudeled. In this mudel , the transitions triggered Ly ewnts are always unt.imed. 
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([true] for {t,t}) 11 e 

o~ A 

Figure 3.5: Example uf a timeunt condition 

This t.iming techniqne does appear powerfnl in SIJecifying delays and timeont.s. 

An example uf a time unt condition is shown in figure 3.5. If state A is active and 

event c ucrms Lefure l time nnits pass. then state B becomes active. However, if l 

time nnit.s pass Lefure event. (~ occms, then state C Lecumes active. 

Another example is the extension uf stat.echarts into uojectcharts [ 16] . Here 

st.at.echart.s are extended with defanlt states. glooal timing. and timed transitions . 

The timed transitions are the same as those above. Each state in an objectchart 

that has hierarrhy. mnst have a defined start. state. This is the same as Harel 's 

defanlt st.at.e. 

Oojed.rhart s reqnire a glooal cluck. The global duck needs to be available t.o 

every uojert. Also all the states in the uojectchart need t.u have access to the cluck. 

How this wunld Le handled in dist.riont.ed syst.ems is nut dear. 
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Lastly, uLjectcharts uses timed transi tiuns fur timing. Transi tiuns can have 

specified minimum and maximum delays. Any ubjectchart transitions can use time 

as a firing runsideratiun . 

Another avvruach for introducing time into statecharts is statecharts+, which 

are based on the model of timed automata [66]. Like the timed statecharts, stat.­

echarts+ have timed state transitions. In addition, statecharts+ also have timed 

states. However, there is a difference in the Lehaviur of these timed states and timed 

transitions compared to the aLove. 

The timing constraints on the states contain upver and lower bounds. For 

example, a st.at.e may have a time svecifi.cation like [l , u] where l is the minimum 

amount of time the state must Le active before a transition can Le taken and 'U is 

the maximum amount of time that a state can Le active Lefure transition must Le 

taken. It is nut dear what havvens if t.he state times out and no transitions are 

availaLle. 

The statecharts+ timed transitions are the same as the vrevious timed tran­

sitions. The timing is used to restrict. when a transition is enabled. If an event 

uccms when the transition is enabled it must Le taken. To accomplish this, a set of 

clurks mnst. Le est.aLli shed and driven Ly a master cluck. The ducks fur a transition 

can Le reset (as the resnlt of an action) Lnt the ducks fur t.he states can not. 

An examvle of this is shown in figme 3.6. Here state A has a timing constraint 

where it mnst stay in the state fur l 8 time units . and mnst leave the st.at.e Ly '11 8 time 
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(A' e[lt,ut] 
.. B . 

[Is, Us] 

Figure 3.6: Timed Statecharts+ example 

units. The transitivn taken when event e occurs between l1 and '1./.1. time units leads 

t.v state B. 

3. 7 Evaluation and Analysis 

Tv make a detailed analysis of the way staterharts are nsed tv desniGe and 

analyze the Gehavivr vf vGject-uriented vGjects. we chvse three methods to study. 

We chuse Ol'vlT. Culeman. and Cook and Daniels. We chuse Rumbaugh et.al. [5.!] 

OMT. Geranse it is a pvpnlar method that is well dvrnmented. We chose Coleman 

et .al. [16] and Cvvk and Daniels [18] t.o cvmpare t.he st.rnct.me vf their transit.ivn 

speci ficativns. 

By analyzing the strengths and weaknesses vf these three methvds. we will 

have a Gett.er understanding of what feat.mes are desired in a statechart Gehavioral 

desrriptivn. 
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The OJ\IT st.af.erharts ran have very detailed states th a t. SIJerify what artivi­

ties orcm when the state is artive. In this way, OMT statecharts are different from 

Harel's original stat.erhart.s. This dues cause a IJrvulem with the assumption that 

state transitions vccm inst.antaneuusly. In OMT, there are entry and exit. actions 

that. take t.ime tv ue performed. In nun-real-time suft.ware. this is nut a IJroLlem. 

However, in real-t.ime software these actions need to ue carefully considered and the 

time tv IJerfunn them accounted for. 

The activit.iE's in an OMT statechart could ue considE>red a high level textual 

descriiJtiun of thE' lvwE'r level states in a statechart. Fur E'Xample, figme 3.7 a shows 

a dE>tailE'd OMT st.atechart.. In figme 3. 7 b there is an equivalent maiJping of this 

to a HarE>l st.at.E>rhart. Rumuaugh et.al. advises using entry and exit activities when 

all the transitions into or unt of a state cause the same actions. 

The Cvuk and Daniel method gathers the common information auuut the 

transition SIJerificat.iuns int.v each state. Where it. is necessary, formal mat.hematirs 

are added to clarify the svecificatiuns. Since all the cvmmvn information for the 

transitions arE' specified in one vlace, it is fairly easy to analyze the uehaviur of 

thE' staterhmt . The transitions only need to carry the infvnnation unique to each 

transition. 

ThE' Coleman method has all the information for thE' transitions in the t.ransi-

t.ivn prerundit.ivns and }Jvst.cundit.iuns. This is nut as easy tv follow as thE' Cook and 

Daniels mE>thvd. Fur instance, it is more difficult. to understand ·when transitions are 
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state1 
entry/act1 

-~exit/act2 

state1 

state 1.1 
act1 

tate2 

event 

a. 

b. 

F igure 3.7: Cvmvaring OMT statecharts with regular statecharts 
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affert.ed Gy a rvnditivn change. The use vf transit.ivn conditivns makes it easier tv 

add new t.ransit.ions and states, thus this met.hvdvlogy facilitates design iterations. 

Twv different ways of revresenting time avvear in these three methods. OMT 

11ses aLsol11t.e time only Here there are no local clocks. but the system clock can 

Ge read . Cvvk and Daniels also uses only absolute timing. In this method, there 

is only a glvGal dvrk that. every object can access and read. This is rudimentary 

timing and can only Ge used to restrict two processes frvm overlavving. To Ge really 

useful for real-time vrvgramming Goth methods need to include expanded timing 

information. The Coleman method uses relative timing. In this case, a local clock 

can Ge started when a state is entered. This clock can then be used as a condition 

for state changes and triggering events in the model. 

Anvt.her way vf cvmvaring mvdels is to look at how the objects and states 

communicate wit.h vne anvt.her. There are twv Gasic mvdels: the Groadcast. and 

the client server mvdel. In the Grvadcast. model, all states are aware of all events 

and condit.ivns generated. If a state dves not change when an event occurs, it is 

ignvred. In rvnt.rast., the voint to voint or client server model sends the events only 

to specifir st.ates . Each state must know what. events it expects and what transitions 

are assvciat.ed with each event. Undefined events are not allowed. OMT and Covk 

and Daniels use the Grvadcast communication method. Events can occur in varallel. 

and vcrur inst.untly everywhere. 

There me paradvxes that can occm when Groadcas t is used , Gut specia l rules 
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[~]~---b/a~•['------'] 

Figure 3.8: Example of broadcast communication paradox. 

are pnt in to rontrul them. Several examples are shown in [31]. These problems 

orcnr because of onr assumption that all the transitions occur instantaneously and 

simnltaneonsly. Consider the rase in fignre 3.8 where in concurrent parts of the stat­

erhart event. a triggers a transition that generates action b. In the same statechart, 

the occurrence of event. b triggers a transition that generates action a. At this point. 

the orcurrence of either event a or b will canse the other to occur instantaneously. 

The Coleman met.hod nses the client server form of communicat.ion. In this 

model , all events happen instantly Lmt seqnentially. Events are only sent to specific 

states. Event traces are nsed to map ont. t.he scenarios. The paradoxes of the 

Lruadrast method are avoided . 
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II OMT Cook and Daniels I Coleman et.al. 

Cunc1 nrency implicit implicit implicit 
Expression uf time Absolnte Absolnte Relative 

Real-t.ime Yes Yes Yes 
Commnnicatiun Broadcast Broadcast Client Server 

Clucks G lol>al Clock Glol>al dock Local clucks 
St.ructnre uf Transitions Transi t.ions Transitions 

timing and states 

Table 3.1: Cumparisun of Three Methodologies 

Finally. we snmmarize the three methodologies examined al>ove. OMT is 

less graphical than the uther methuds. Mnch uf the information for the Lehavior is 

recorded textually inside the states. When this is used correctly it can be powerful, 

huwever, it dues nut. increase the modeling power of the method. 

The Cuok and Daniels methodology is the easiest to analyze since information 

is gathered in a tal>le in the states. Bnt fur the same reasuns it is more difficult 

to design with. It. is difficult to add new transitions and event.s mnst, be carefnlly 

specified Lefure Leing generated. Concnrrency is implicit and commnnication is 

broadcast tu leave mure freedom t.o the designer. 

The Coleman methodology is easier to design with. for the same reason that 

Cuuk and Daniel s is nut. That is, transitions can Le added with relative ease. 

Huwever. thi s methud dues not facilitate analysis. Each transition mnst be examined 

individually dming analysis. It. has fair expression of timing characteristics , bnt 

cunld be bet.t.er with timers. Coleman has alsu dearly addressed the communication 

Jssne . It. appears that. t.his method and t.he Cuuk and Daniels method have the same 
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modeling pvwer, and this suggests that it may be possil>le tv transform l>etween 

them to cvml>ine the easier design ability of this method and the easier analysis of 

the Cook methvd . 

While svme vf the methvds here discuss part of the relationship of the behav­

ior model tu the ul>ject model, nvne uf the methods details how this should happen. 

There is nu discussion of the relation of composition of objects or inheritance and 

the l>ehaviur uf the statecharts. In OMT, Rumbaugh skirts the issue by advising 

that only objects with meaningful dynamic behavior should be modeled with a stat­

echart. Rumbaugh also advises that events in the statecharts are the methods from 

the object model. Clearly, more work needs to be done exploring the link between 

the object and behavioral models. 

3.8 Chapter Summary 

The Lehaviur models used in must object-oriented design methodologies are 

either statechart.s or Petri nets. In this chapter we concentrated on statechart.s, 

looking at t.he problems associated with incorporating real-time deadlines into the 

Lehavivr models. 

First we examined the difficulties in adding deadlines into simple automata. 

From this analysis we found that time constraints add a high level of complexity to 

simplest. of automata. These time constraints often make it difficult to prove simple 

automata properties, such as showing that every state is reachable. 
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Next we examined three methuds uf adding formali sm to st.atecharts. Vle 

examined the methuds of Cook and Daniels, Culeman, and Rnmbaugh 's OMT. 

These three methudulugies were similar tv one another in must respects. All lacked 

snpport. fur inheriting deadlines and nvne snpported only timed state automata. 
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Chapter 4 

TIMED STATE STATECHARTS 

4.1 Introduction 

All the methods of adding timing to statecharts in the previous chapter used 

or included timed transitions. We wondered if timing could be specified in the 

st.at.echarts using only timed states. In some cases, using only timed states results 

in a model that is easier to design with, is more extensible, and that better represents 

the deadlines we are trying to model. 

In the t.imed state met.hodology the deadlines are modeled with count. down 

timers. Upon entering a state with a deadline a timer is started. If the deadline 

expires uefore the state has been left, an exception or time-out event is created. 

This real-t.ime uehavior modeling meth•Jdology can ue easier to evaluate than the 

timed transition met.hodology. 

4.2 Timed Transition Problems 

In the previous chapter , timing was added to statecharts by making time a 

condition on a state transition as follows: 
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c[r]/ a for untimed transitions 

([r] for 1)/a for timed transitions 

where r· is an event , r. is a condition, a is a seqnence of generated actions and events, 

and 1 is a time interval { l, u}, that specifies an npper bonnd u, and a lower bonnd 

l. for the duration uf the time interval. Another approach to modeling time in the 

state transitions is to simply add a time interval to every transition. Transitions 

that we want tu behave as untimed transitions would have a zero to infinity timE"' 

interval. The formal syntax of this transition model would be: 

c([r].for· i)/a fur all transitions 

where r. is an event.. r is a condition. a is a sequence of generated actions and events, 

and 1 is a time interval { l , u}. that specifies an upper bound u. and a lower bonnd 

l, fur t.he dmat.iun uf the t.ime interval. To model all the sit.nations that can occm in 

real-time systems we will need some special events such as a A event or a time out 

event. tu trigger a state change. This gives this model all the power of the previous 

model plus some as events can now trigger timed transitions. 

There is one im1Jurtant ambiguity that. is treated in different ways m the 

literature. Huw the lllJlJer bound uf the time interval is interlJreted is an im1Jortant 

diHerenre . In some cases , the U1Jper bound is treated as a gate that simply turns 

uH the ability uf the transition to be taken. This is called weak lime semanl.ics. 
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Fur examJ->le, events that. uccm after the upper time Lunnd has J->ast are treated 

as any unexpected event. wuuld be. In the other case. the upper time bound is a 

requirement. Here the transition must L>e taken L>efore the time limit expires. This 

is called st.nmg lime semant.ics. Part of the analysis of the system would be to show 

that the event was indeed generated before the time limit expired. 

Like the U!Jper time L>ound ambiguity there is a similar ambiguity concern­

ing the lower time l>uund. One way to consider the lower bound is that it is the 

specification of the amount of time, since entering the state, that must pass before 

a transition can L>e considered. In other words, if event e occurs before time l , it 

is ignored, and if it occurs after time l, the transition is taken to a new state. A 

different way uf thinking abunt the lower time bound is the amount of time the 

event. must L>e true Lefore the transition can Le taken. Here the timing starts only 

when the event (with t.he conditions) l>ecomes active and if the event stays true 

fur the minimum time, the transition can then L>e taken to the next state. This 

nondeterministic form is nut found often. 

4.3 Timed State Statecharts 

The timed statecharts al>uve all have sume disadvantages. First. there is 

aml>iguity in the meaning uf the common implementations. In most uf the imple­

mentations. it is nut dear if the model uses weak or st.mng time semantics. Second, 
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there can Le vLscnre design fiaws. Tv overcome these vrvLlems we look at mov­

ing the timing information frvm the transitions tv the states. A fmther refinement 

where time intervals are changed to st.at.e timers, with strong time semantics , re-

sults in a new design method that results in better models. We call this Timed 

State Statecharts vr TSSC. 

This new timed statechart method is similar to normal state machines in 

that. all transitions are freed from timing constraints. If an event occurs, and the 

conditions are true, the transition is taken. States can have timers, and suLstates 

are snLservient tv snverstate timers. When a state timer counts down to zero a new 

event is generated called a state time-vnt. The t.ime-ont. event is used to transition 

tv a new st.at.e. In svme cases , additional states are necessary to model the behavior 

vf the system. In some cases these are dummy or place holder states. However, these 

extra states are far frvm state exvlvsivn, and in fact serve tv clarify the design. 

The fvllvwing additions are necessary create TSSC frvm st.at.echarts: 

1. States can have a timer that is reset to its starting value whenever t.he state 

is entered. States withvnt timers can Le considered states wit.h timers set tv 

infinity. The nvtat.ivn nsed is St.at.e[t.]. 

2. Ewry timer in t.he syst.em has the same period. Lnt. incorvorates whatever 

granularity is needed by the state. This incorporates the idea of the master 
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duck, Lmt allows llS tv use hour , minute , second, or even microsecond timers 

if that is what the design calls for. 

3. When a state timer counts down to zero, a time-out event IS created. A 

transition that nses this event should exist in the st.atechart. 

4. All transitions are untimed and will be taken if the state allows the transition. 

This vccms regardless vf the state timer. 

As an exam11le of how TSSC works, we use the gas burner example of [66]. 

The specificat.ivn of the problem can be stated as follows: 

• A leak shvnld be detected within one second. 

• When a leak is detected, the gas should be turned vff. 

• After :w seconds the gas can be turned vn to see if the leak still exists. 

In figure 4.1 the Statecharts+ solution vf Wang and Chen is shown along 

with om TSSC solnt.ivn. As we can see the Statechart+ solution uses both timed 

states and timed transitions. The default. state is ' Leak (not leak). If a leak occurs 

the event. Leak changes t.v state Leak[O ,l]. In this state the leak must be detected 

within vne second. sv the state Leak has a time limit vf vne second re11resented by 

the [0.1]. The shnt.dvwn transition must be taken within one second. This changes 

tv a new state which Wang and Chen unfortunately gave the same name as the 
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default sta te , Leak. Aft.er :w seconds the gas can Ge turned un to see if the leak 

still exists. This is J.mrpurtedly shown Gy the transition Leak[30 , ] back tu the state 

Leak. In this case the timed state (Leak[O,l]) may Ge redundant and if eliminated 

would nut alter the Gehavior. Also the unfortunate use names in this example makes 

it difficult tu follow . 

The TSSC solution 11ses two timed states and one nntimed state. State Cason 

is a super state uf t.imed state Leaktest. Leaktest cycles performing a leak test every 

minute . If a leak is detected event Leak causes a state change to state Gassoff and 

causes action sh11tduwn tu occur. When state Gassoff times ont the transition tu 

state Gasun uccms and action Fireup is started. 

One advantage uf the timed state statecharts is that the time Lound amui­

guities are handled explicitly. An example of this is shown in figure 4.2. In figme 

..t .2a. the timed transition statechart. is shown . In thi s example if state Sl is active 

and event e uccms Letween time x and time y, then state S2 will become active. As 

di scnssed earlier the weak / strung time semantic ambiguity exists in Loth the upper 

and lower t.ime Luunds. In figme 4.2b , the timed state statechart is shown in the 

case where event. c m11st. uccnr at or before the 11pper time Gunnd. In part c we 

show the case where the transition is disal>led if t.he upper time bound is past before 

event e uccnrs . In t.hi s examvle, we only consider the more common lower bo11nd 

where the transition is nut enabled until the lower time Luund has vast. A similar 

expansion can Le dune tu incorpora te the other lower time Lunnd amuiguity. As we 
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[30, 1 

Figure 4.1: Gas Bnrner example, a) Statecharts+ and IJ) TSSC 
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can see. these ambignities are explicitly defined when nsing timed state statecharts. 

The ability uf timed state st.atechart.s to explicitly resolve ambiguities does 

nut. diminish their ability tu model any desired behavior. As shown in figure 4.3, we 

see huw tu mudel a set. uf states where there is a combination uf timed and untimed 

transitions. In t.his case fignre 4.:3 a shows an example where when state S2 is 

active. a timed transition would make state Sl active and an untimed transition 

wuuld make state S3 active. Thus if event e havvens bet.ween times x and y then 

state Sl Gecumes active. If event. el happens at any time then state S3 becomes 

active. Figme 4.3 b shows how TSSC would vreform the same tasks. State S2 is 

shown as using nested states. The default state is TSl. If event el occurs at any 

time state S~3 (nut shuwn in figme 4.3 b) wunld Gecume active. If state TSl is active 

fur x time , a time unt occurs that makes state TS2 active. Now if event e occurs 

state Sl (nut shu,,·n in figure -L3 b) ,,-unld Gecume artive. If state TS2 is active 

fur time y. then a timeout makes state TS3 active, disabling event. e but not event 

e L Thns Gy using the hierarchical vower of statecharts and the simplicity of timed 

states. it is always clear what Gehaviur is desired. 

There are several advant.ages tu timed stat.e st.atecharts. They are a closer 

representat.iun tu the real-time systems that '"'e are trying tu model. Real-time 

systems are uften concerned vvith tasks completing inside a time interval. Timed 

st·.ates is a cluser model uf this requirement. 

Timed state stat.echarts alsu du nut have any amGiguity in their nutation . 
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Figure 4.2: Ambiguity resolution with t.imed state st.at.echarts. 
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Figure 4.3: Exam]Jle uf timed and nntimed transitions in TSSC 
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This sometimes resnlts in a few more states in the statechart. However , these extra 

states will more often than not be swept. np Ly the hierarchy of the statecharts. 

Therefore, these extra states are not a proLlem. 

Timed state statecharts will expose poor designs quicker than timed transi­

tion statecharts. One reason for this is that it is easy to examine the timer of the 

onter most timed state and then see that the cumulatiYe t.ime of all strings of timer 

inside this state add up to less than the outer most timer. We can easily examine 

all the timed states inside a timed state and ensure that they are reachable before 

the state exvires. Further more this can be repeated frum the lowest to the highest 

level in the statechart hierarchy. 

While TSSC have several real advantages, almost all of the important real­

time objed.-orient.ed methodologies nse timed transitions to model the timing in 

their Lehavioral models. In order to make the next chavters nnderst.andaLle to 

the main stream oLject-oriented researchers. timed transition models will Le used 

almost exclnsively. 

4.4 Chapter Summary 

In this chapter we examined the modeling power of statecharts with real-time 

deadlines, v,rhere the deadlines are modeled Ly timed states. We defined how timed 

state statecharts work and nsed them to model real-time deadlines. These timed 

state statecharts were then compared to timed transition statecharts. 
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We fmther identified the and di srnssed the strung time - weak time semantic 

pruGlem. \Ve shuwed where the timed state statecharts eliminated thi s semantic 

vruGlem in the real-time environment. 

Timed state statecharts have the advantage of better representing real-time 

deadlines. Furthermore, they do nut have amGiguity in their nutation . They can 

result in mure states Geing defined , Gut this is cuntrullalJle with the statechart 

hierarchy. Timed state statecharts also can expose design problems quicker than 

timed transition statechart models can. 
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Chapter 5 

OBJECT AND BEHAVIOR MODELS 

5.1 Introduction 

This chapter deals with the relationship between ol>ject and behavior models. 

The effects of generalization inheritance, aggregation, and relationship associations 

on the object models are well known . These associations are a key part. of the 

difference l>etween object-oriented and other design methodologies. In some object 

methodologies the behavior model is not considered until after all the object relations 

have l>een settled. 

Object models have a well defined inheritance notation with clear meanings 

associated with it. Behavior models are less defined with no clear notation and no 

dear understanding of how to reuse the Lehaviur models. ;\lust methodologies rely 

un complete restJerificatiun uf the st.atecharts [63]. 

First.. we will examine how the Lehavior model changes during object model 

inheritance. The term inheritance has two meanings in object-oriented terminology. 

The first is called snbtyping and the second is called redefining of methods. This 
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chavter cuncent.rat.es un snl>t.yving as it is the mure desired form of inheritance as 

well as the mure restrictive. 

There are eight ways that the behavior model can be changed after object 

mudel inheritance. and still maintain subtyving. Each of these is examined in detail. 

Th<>se nll fall int.o three major categories , refinement of transitions, refinement of 

states, ur refinement of attril>ut.es. Examples are used tu illustrate the methudulugy. 

Next, we examine huw the object model association of relationship affects the 

L>ehaviur mudel. An ubject model relatiunshiv connection shuws the communication 

paths Letween oLjeds. There is a corresponding behavior model connection that 

defines the temvural nature of the communication path. This allows a clearer and 

fuller description uf the oLject relationships. We introduce a new model notation 

fur clearly showing t.his relationship. 

Finally. we examine the ul>ject mudel aggregation and how this affects the 

corresvunding Lehaviur mudel. OL>ject mudel aggregation causes some form uf con­

currency in the Lehavior mudel. Through the use of examvles we show the resultant 

COnClUTency. 

We alsu shuw huw to incurvorate coordinating aggregation in the behavior 

mudel. By int.ruducing another new nutation we shuw huw a difficult concevt can 

L>e easily and clearly exvlained in t.he L>ehavior model. 

In this chavter. we look at how ol>ject models and Lehavior models are re­

lated in Section 5.2. Second, we luok at oLject and L>ehavioral inheritance, including 

82 



mnltiple inheritanre , in Section 5.3. Next, we look at oGject and Gehavioral associ­

ation in Section 5.4, while we explore how these models are affected by aggregation 

in Section 5.5. Lastly, we present some conclusions in Section 5.6. 

5.2 Object l\'lodels and Behavior 1\Iodels 

OGjed. oriented methodology is the definition of a problem and the envi­

ronment of its solntion it terms of oGjects. These objects have a name, a list of 

at.t.ril.mtes , and a list of actions (also called operations or methods) that they per­

form. Using the techniques of aggregation, generalization, and relationship these 

oLjects can Le comLined to create software to control or simulate the system. 

Each oLject has a behavioral model associated with it. In this paper, we 

\vill nse the graphics shown in Figure 5.1 to represent the object and behavioral 

models. The behavioral model is usually represented as some variety of statechart 

[29]. Exploring the relationshiv of the oLject and Lehavior models Ly considering the 

effects of inheritance and aggregation is of prime imvortance to develop strategies to 

make bett.er use of object-oriented technology and these asvects have not yet been 

exvlored murh. 

The statecharts nsed in this paver fur the Lehavior models are Harel's stat­

echart.s. Specifically, we nse the basic statechart constructs of hierarchy, Lroadcast 

rommunicat.ion , and concnrrency. Hierarchy is used to simplify the models andre­

duce the numLer of transit.ions that must be shown. Broadcast communication is 
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Object 
Model -----------· Behavior 

Model 

Figure 5.1: OLject and Behavioral .Models 

assumed to make the models easier to constnwt.. For this vwrk we do not need to 

use any of the advanced features of Harel 's statecharts. such as the history entry 

point or states that have multiple modes of concmrency. 

5.3 Object and Behavioral Inheritance 

The conce]Jt. that oLject.s are related Ly inheritanre and generalization is im-

]Jortant. in oLjed.-oriented technology. A suLclass inherits when it takes the pro]Jer-

ties of the SU]Jerclass and specializes Ly incor]Jorating features that make it unique. 

Inheritance is valnaLle when a class is Leing reused from a previous problem or from 

a software liLrary. In generalization , ol>jects have their similarities factored ont into 

a snperdass . This leaves each snl>dass ol>ject. descriLing only what is different from 

the rommon properties of the snperclass . 

Coleman point. ont. that there are two types of inheritance S'Ublyping and 

n~rl1:{ining o.f mc/.lwrls [16]. Sul>typing reqnires that the child class can L>e substitnted 
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fur tl1e IJarent. dass anywhere. Furthermore, any event trace that wunld have been 

acceiJted Gy the parent class must. also be acceiJted by the new class. The set of 

event traces are also referred to as the set of value vectors [44]. For subtyping to 

hold the set uf traces of the parent should be a proper suuset of the set of traces 

uf the child. Note that. this set of event traces is not the same as the event trace 

diagram that. will Ge dismssed later. 

Redefining of methods can be seen m ROO:Mcharts [57]. In ROOMcharts 

all generalization is considered redefining of methods fur pragmatic reasons. Selic 

Gelieves that, even if overriding was disallowed, that it would not be possible to 

ensnre Gehaviural equivalence. Both Coleman etal. and Selic point out examples 

where snut.yiJing inheritance could not be achieved, even when following a rigid 

criteria. The issne of snbt.yping vs redefining of methods remains an open issue 

where further researrh is warranted. 

5.3.1 Inheritance Behavior 

We have identified the following eight different ways that the behavior model 

can Ge affect.ed dming inheritance [16, 17. 44]. They are also illustrated on the 

following pages. 

1. Addition uf an extra transition . 

2. Retargeting and Split.ting of a transition. 
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J. Weakening of a vrecondition of a transition . 

.J. Strengtlwning of a vost.cundition of a transition. 

5. Strengthening of an invariant relationshiv 

6. Refinement of a st.at.e into hvo or more states. 

7. Addition of new attributes resulting in additional indevendent states. 

8. !v1odifiration of a state to change its interpretation lmt result.ing m an 1111-

changed diagram. 

5.3.1.1 Addition of an Extra Transition 

The addition of a transition is fairly straightforward. When a transition is 

added to the Lehavior model of the child class it still models the behavior of the 

parent. class. Lut. t.he extra transition adds new Lehaviurs. An examvle of this tyve 

of inheritanre is shown in Fignre 5.2. 

5.3.1.2 Retargeting and Splitting of a Transition 

Retargeting a t.ransition changes t.he transition to a new internal snl>state of 

the original state. This is often used in conjunction with the refinement of a stat.e 

into t.wo or more states Lelow. Here we modify the transit ion to ]Joint. to a new 

S]Jecifir internal state of the original state. 
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a. 

b. 

Figure 5.2: Inheritance that adds a transition tu the Lehavioral model. 
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At the same time, a transition can Le svlit intu twu ur mure transit.iuns. These 

new transitions can Le controlled Ly different conditions, Lut the comuinatiun of 

conditions needs t.u logically OR'ed intu the original conditions. There are two ways 

splitting is used: t.u go to different internal states Lased on conditions, or to emanate 

from different internal states , and generating different events when triggered. Fur 

examvle, in Figme 5.3 event e1 is split devending un condition cord and retargeted 

to state 4 and st.ate 5. Similarly event e2 can t.rigger different events depending on 

the substate uf state 3 that was active when the event occurs. 

5.3.1.3 Weakening of a Precondition of a Transition 

A child class can also weaken a vrecundition of a transition. In this case , the 

child class alluws the transition to occur more uften. Fur example, in Figure 5.4a. 

in the varent class the event e 1 triggers a transi tiun frum state s2 to state s3 when 

cunditiun d is t.rne. In J.>art b of the figme the }.>recondition has been weakened so 

that event el causes the transition frum state s2 tu state s3 whenever conditions 

cl or c2 are trne. Care must be taken here however, as Coleman [16] pointed out, 

Lecause it is pussiule tu create cases where changing a vrecundition that affect s 

internal class chuices can resnlt in inheritance that is nut. suutyping. 

5.3.1.4 Strengthening of a Postcondition of a Transition 

Strengthening a vustcunditiun is similar t.u weakening a J.>reconditiun. In 

this case , Culeman means setting fewer cunditiuns when the t.ransitiun is taken 111 
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s1 

e1 (c] 

e1 (d] 

b. 

Figure 5.3: Inheritance where a transitiun is split and retargetted. 
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a. 

b. 

Figure 5.4: Inheritance weakening a precvnditivn. 
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the snbdass than the parent class sets. This also has the IJroulem with internal 

class chuices puint.ed ont in [16]. Coleman dearly use weakening a precondit.iun to 

mean the nniun of additional terms in the condition statement. Likewise they use 

strengthening a postcondition to mean the intersecting of additional terms in the 

IJostcondition. It. is not dear that this is universal as Lecoeuche and Sourrouille [39] 

appear to allow Lehavior that contradicts this. Both may Le correct.. 

5.3.1.5 Strengthening of an Invariant Relationship 

An invariant relationship is an assertion that is always true for a class. This 

could Le something as straightforward as the fact that the attribute 'miles' in a class 

'f1ruck can never decrease. Again, care must be taken when using specialization that 

uses invariant strengt.hening in order to maintain strict subtyping. The invariants 

are usnally handled in the functional model. Since this paiJer will not deal with the 

functional model, this relationship will Le exiJlored in a futme work. 

5.3.1.6 Refinement of a State into Two or More States 

A state can be refined into two states. An examvle of this is shown in Figure 

5.5. In t.his case, the Lehavior will be the same as that of the parent except for 

some svecific conditions where it will have a finer definition. This may be the most 

cummon furm of inheritance. 
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s1 

~ s3 
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Figure !:> .!:>: Inheritance where a state deromvoses into two or more states. 
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s1 

a. 

s1 

b. 

Figure 5.6: Inheritance where an additional set of attributes 1s included in the 
snlx lass. 

5.3.1.7 Addition of New Attributes 

Additional at.tril.mtes also conld Le inclnded in the snLdass, as shown in Fig-

me 5.6, which ronld resnlt in a snLdass having additional states that are concurrent 

with the original states. This is also a very common form of inheritance. 
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5.3.1.8 lVIodification of a State 

A state can Ge modified (usually Gy overriding) for Getter performance. In 

this case, the Gehavioral model does not change. Since the behavior model does not 

change, suLtyping will Le maintained. 

5.3.2 A Student System Example 

To Let.ter illnst.rate how these inheritance cases apply to a real model consider 

Figme 5.7, an oLject. model for a Student system. Here we see that the class Student 

has three suLclasses that inherit its properties, the classes Foreign_Student , Under­

grad, and Grad Student. Foreign .. Student is specialization of the class Student 

with t.he additional at.triLut.e of Visa_ Status. In this model the class Grad_ Student 

is fmther sperialized into two classes , Thesis _ Student and MS __ Non thesis. Thesis­

Student is further specialized into PhD _ Student and l\IS _ Student. 

The class Student has the Lehavioral model sho,,·n in Figure 5.8, where the 

up era tion wlmil creates a student in the Admitted state. If the student's G PA falls 

Geluw some limit, the student. is placed on academic probation and enters state On­

ProLation. \Vhen the student 's GPA rises aLove the threshold, he is placed Lack 

into the admit.t.ed state. When the condition prugram-romplet.ed Lecomes trne, the 

event. get-degree orcms and the final state is entered . At any time the student may 

withdraw. This is the Lasic Gehavior of all oLject.s of the class Student. 

Next., let 's look at the class of Foreign Student. In Figure 5.9 we see that 

94 



Student 

Name 
Number 
GPA 
Enroll 
Withdraw 
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Figure 5.7: Ol.Jject Model fur a Student. system. 

95 



admit 

Student 
Name 
Number 

__ ..,.. 
GPA 

Enroll 
Withdraw 
Compute GPA 

Figure 5.8: Behavior model for the class student. 

the ol>.ied model for the class Foreign _Student is specialized l>y the addition of 

some new at.t.ril>ut.es. The behavior model gets the addition of the concurrent state 

containing the sul>stat.es of Visa-OK and Residence-Problem. This is an examvle of 

inheritance that causes model concnrrency. 

For suLrlass Undergrad the Lehavior model is almost. the same as for Student. 

As we can see in Figme 5.10 the only change is that the Limit. has been strengthened 

Ly revlacing the varial>le Limit with a specific value. This indicates that a GPA of 

2.0 is necessary to keev the student. off vroLation. 

In Figme 5.11 we see the Lehavior model for t.he class Grad __ Student. Here 

the rhanges indude the change of the GPA limit and the state Admitted has Leen 

decomposed into two states , that reflect the additional need for a graduate stndent 

t.o apply for randidacy. Note that this examvle, Lecanse of the transition out of 

Candidate state. sl ightly violates suLtyving. We can accevt this when the semantics 
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Figure 5.9: Behavior Model for class Foreign . Stndent. 
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~ndergrad 

Limit=2.0 

t 
admit 

Figure 5.10: Behavivr lVIodel fur the class Undergrad. 
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of the specifirat.ion d early requires it. 

In Figme 5.12 we have the behavior model for the class Thesis_Student. In 

this case , the state Candidate has Leen decomposed into two states Cand1 and 

Preparing __ Thesis. Likewise in Fignre 5.13, for PhD _Student the state Admitl has 

been decomposed into two states. These examples demonstrate the most common 

ways of inheri t.ance specialization for the behavior model. 

5.3.3 Program Specifications 

All the models are related through the program specification. It is the pro­

gram svecification that prescriLes how the objects are related including their be­

havioral differences. As an illustration of this point, we refer to our student system 

examvle from above. The vrogram svecification will include a definition of a stu­

dent. The behavior of the student also will be described as the actions that can 

IJe performed on the oiJject student. For example, the specification might include 

statements like, "The student can withdraw at any time. " . or "If the students CPA 

falls below the limit, the student will be vlaced on probation.", or even "The stu­

dent can not comvlete the J:>rugram and get a degree if the student is on J:>roLation." 

From these and other statements, the Lehavior model of the student in Fignre 5.8 

was neated. 

The svecification also will descriLe each specialization of the student oLject, 

such as the Grad __ Student object. Here the svecification describes the graduate 
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Figure 5.11: Behavior Mvdel for the state Grad Student. 
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Figure 5.12: Behavior Model for dass Thesis __ Student. 
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Apply_for_candidacy 

[program_ com pleted]/get_ degree 

Figure 5.13: Behavior Model for the class PhD _ Student. 
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student 's additional behavior of having to apply for candidacy uefore being allowed 

to complete the program and get the degree. It is from these descriptions in the 

specifications that the specialized ouject and uehavior models are obtained. Of 

comse, in many cases, the program specification is ambiguous or incomplete, which 

may make the decision auout snustates more complex. 

5.3.4 Multiple Inheritance 

One area that is not dealt with much is that of multiple inheritance [44). One 

reason for this is that multiple inheritance can become complicated. While multiple 

inheritance can be avoided most of the time, there are occasions where its use can 

simplify the design greatly. 

When multiple inheritance is used , the object model is relatively straight­

forward. The program specification will show what parts of the each object will 

ue inherit.ed in the new ouject. However, the uehavioral model is not so clear. To 

demonst.rat.e this we nse another example in om student system. Shown in Fig­

me 5.14, om specificat.ion states that we can combine the Foreign_Student and the 

Grad .. Student. to create a new class of Foreign _ Grad_ Student. 

In mult.iple inheritance , the behavior model will inherit the parts of the par­

ent. model t.hat contain the most specialized aspects. For example, Foreign_Student 

and Grad Stndent are Goth suuclasses with differing semantic aspects, and, we 

shonld inherit. the most specialized aspects of each branch. In the case of the 
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Foreign Grad Stndent., the details that make the Foreign Student different. frum 

Stndent are inherited. Likewise , the details that made Grad _ Student different from 

Student are inherited. Thns, the new model has both the concurrent residency status 

states and the states that. represent the requirement for applying for candidacy. 

5.4 Relation::;hip::> And State Diagrams 

Perhaps the must common object model association is that uf relationship . 

With relationship uLjects are associated to one another with links that describe how 

they cooperate together in a meaningful way. Fur example, the uLject person can 

Le linked to the uLject company Ly the association '' works for ". The multiplicity 

uf an assoriahun specifies how many instances of one class are related to a single 

instance uf another. 

In general , a relationship implies a coordinated action Letween two classes 

and is a path fur uLject cummnnicatiun. While t.he uLjen model shows the stat.ic as­

ped s uf a relationship , the Lehaviur model shows the d:·namir and temporal aspects 

uf the relationship. Usnally two oLjects in different classes can only communicate 

when they are in SIJerifi.C' states. This is Lest exposed in the Lehavior model. 

Cook and Daniels [18] showed some asiJed.s of the connection between the 

oL.iect model assuriatiuns and the behavior model. The:· oLserved that associations 

in the uLject. model may resnlt. in conditions on the LehaYiur model transitions. Fm­

thermore they showed how these associations runld be given IJrecise mathematical 
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Figure 5.14: Examvle uf Multiple Inheritance 
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expressions t·hat resnlted in accurate behavior models. 

Om apprvarh tv expressing the temporal aspects vf relationship is tv intrv­

duce a graphical cvnnectiun in the statechart. (In our st.atecharts we shvw these 

temporal relationships with dashed lines.) These do not represent allowable state 

changes, jnst. allvwaLle cummnnicativn paths. This method of showing the relation­

ships can easily angment, and can Le augmented Ly, the mathematical expressions 

nsed by Cvvk and Daniels. 

For example. in the object model in Figure 5.15 we see that the class Fac­

nlty is related tv the class Thesis Stndent by the relationship Advises. Further­

more, each Thesis __ Student is advised by only vne Faculty, bnt a Faculty can ad­

vise several Thesis_ Students. However , this is only half vf the relationship, be­

canse there is still a temporal aspect of this relationship nut apparent in the object 

mvdel. In the LehaYivr model in Figme 5.15, we see that the Thesis_Stndent can 

vnly engage in the cvmmunicativn with the Facnlty when Thesis Student is in the 

state of Preparing Thesis. Likewise, the Faculty can vnly communicate with the 

Thesis Stndent. dass when the Facnlty is in the Research _ Activity state. At other 

times this cvmmnnicatiun path is not valid and nu commnnicat.ion can take place. 

5.5 Object and Behavioral Aggregation 

Anvther impvrtant cvncept in the vLject-vriented methodology is that uf 

aggregat.ivn. Aggregation is a fvrm vf assuciativn where a class is composed of 
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Figure 5.15: Example uf relatiur:ship m the object model and its temporal natme 
in the Gehaviur mudel. 
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distinct. oujert-s in a part of relationship. We think of the snuclass as L>e ing one 

of several di ssimilar parts of the snperclass. We think of the superclass as L>eing 

an entire assemuly composed of the subclass components. When the object model 

uses aggregation. the corresponding behavioral model is represented uy concurrent 

states. Concnrrency can also happen within a given state diagram (intraouject 

roncnrrenry). This kind of concurrency is not related to aggregation. 

A simple examt>le of this can be found in the traffic light controller from 

Dmsinsky [2:3]. The specification for Drusinsky 's traffic light controller is as follows: 

• There are two directions, Main and Secondary, with alternating lights. 

• Lights aH.ernate L>ased on a Timeout. signal read frum the Timeout variaule. 

• The initial state (All-y) is for all lights to ftash ~'ellow. Reset. occnrring in 

All -y state start s On-going. Reset in On-going retnrns to All-y. 

• A ronnt.er ronnt.s the cars waiting in the mam direction. The connter can 

sense the difference uetween cars and trncks. 

• If main is red and fonr or more cars or one or more cars followed uy a trnck 

are waiting in t·he main direction , a hidden ramera shouts the intersection. 

Part uf the uuject model for this traffic light controller is shown in Figure 

5.16 and the uehaviur model is shown in Figure 5.17. In these figures, we see that 

the aggregation ranses the uehavior model to have a more comt>lex nature. Still the 
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activate 
~eactivate 

y 
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!Camera !Counter Light 
color 
timeout 

shoot count turn-green 
~urn-on reset turn-yellow 

turn-off turn-red 
flash-yellow 

Figure 5.16: OLject model for traffic light controller 

Lehavior model exhiLits concnrrent Lehavior in the camera and connter components , 

althongh in this case their states only make sense as nested states within specific 

states of the aggregate (camera and connter only work when the main light is red) . 

l\hny times , olJerations in aggregations must Le coordinated. The example 

in Figure 5.18 shuws a docnment that is composed of sections and each section is 

comlJused uf snusectiuns. For legal reasons the document is created in the original 

state. However, if any modification is made to the docnment , this mnst Le considered 

109 



reset reset 

On-going 

Red-main 

[new-truck] 

Figure 5.17: Behavior model fur traffic light controller 
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as modified. 

There are t.wu interesting effects that we wish to exlJlore fur this example. 

The first is t.hat of modifying a section ur suusection. If a section or subsection is 

mudified , its st.ate must. change from original to modified. If it was a subsection that 

was mudified t.hen t.he correslJonding section must alsu change state. Likewise, when 

any sectiun changes state t.he entire document must change into modified state. This 

reflects the requirement that any change to any section or suusect.ion will result in 

the ducument. ueing marked as changed. 

The secund effect is where the action of deleting a document or section re­

sults in the deleting of all the lower level parts. Deleting a section causes all the 

suusectiuns tu ue deleted. It would not make sense for a document to be deleted but 

fur the sed.iuns tu remain intact. This effect is related to propagation of operations 

in aggregations [51]. 

The modeling of this feature is shuwn in Figure 5.18 as dotted arrows con­

necting the state transitions. This is similar to the way we connected states for 

the temlJural lJart. uf associations earlier. In this case, the models could show this 

relatiun uy setting conditions and using the statechart communication mechanism 

tu lJerform the changes at the other levels. However , it is dear that these activities 

are needed when the new cunned.iuns are added tu the behavioral mudel. 
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Document 

create ---- -- ~ 
modify 

delet€1' 

7 
Section 

create_s ------ ~ ' modity_s 

delete_s 

7 
Subsec.11on 

create_ss ------ ~ 

modify_~s 

delete_ss 

Figure 5.18: Coordinating Aggregation 
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5.6 Chapter Summary 

As the demands fur complex software increases, so will the need for tools and 

methodologies tu Slll>l>urt this software. The object-oriented methodology is one of 

the most promising for increasing the ability to create, maintain, and understand 

complex software. However, the relationship of the object model and the behavior 

model in object. oriented methodologies must be examined. 

Having an object model implies that there is a corresponding behavior model. 

\Vhen the object model is related to other objects by the use of association, aggre­

gation. and generalization there are corresponding relationships with the behavioral 

model. The sim1>lest object association is that of relationship. The resulting behav­

ioral relationshii> is im1>lemented by t.he 11se of conditions on the state transitions. 

Association implies a commnnicat.ion path between objects. The behavioral model 

further strengt.hens this cuncel>t. by exposing any tem1>ural relationships in this com­

mllnication path. Th11s, we can clearly shuw when objects must be in specific states 

to cumm11nirate. 

The aggregation relationshii> is a more cuml>lex furm uf association. The sim­

plest Lehaviural model assuriated with object mudel aggregation is that of concur­

rency. In t.his rase, uLject mudel aggregation resnlts in behavior mudel concurrency. 

Huwewr , behavior mudel concurrency is not always t.he result of object model ag­

gregation. In uther rases, the behavioral model is more complex. Lut concurrency 

is alwa.'{S involved. Alsu , at times the need fur coordinated behavior is necessary. 
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OL>jed mudel generalization results in the most comjJlicated l>ehaviur model. 

When the ul>ject. mudel uf a snperdass is inherited, the L>ehavior model of a suLclass 

can be une where a new state or a new transition is added. Also, it could result 

in a model where a state is decomposed into two or more new states or the model 

could have a transition changed where a precondition is weakened, or where a post­

condition or invariant is strengthened. Finally, a st.ate can Le modified for better 

JJerformance. 
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Chapter 6 

THE EFFECT OF DEADLINES ON OBJECT AND 

BEHAVIOR MODELS 

6.1 Introduction 

This chapter dusely mirrors the previons chapter. In it we will reexamme 

all the issues discussed previously, except that now we will consider how real-time 

deadlines wunld Le refierted in the object and Lehavior models. 

First. , we will cunsider huw deadlines are introduced into the models. The 

deadlines are represented as at.triLut.es ur invariants in the oLject model and as time 

constraints un the transitions or states in the Lehavioral mudel. Since the Lehavioral 

mudel descriLes the temlJural natme of the system and deadlines are concerned with 

the temlJural aslJeds uf the system. it is apparent that the behavioral model needs 

tu Le examined dusely in a real-time system . 

\Ve then examine how the Lehavior model with deadlines can be changed 

dming uLjert. model inheritance. \Ve will again luuk a subt.yt>ing inheritance since it 

is the mure desired furm of inheritance. Bnt this time um concern is how deadlines 

affect um mudels. 
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In the vrevious chavter we saw that there are eight ways that the uehaviur 

model can ue changed after ouject model inheritance. and still maintain subtyping. 

Each of these is examined in detail. These all fall into three major categories , refine­

ment of transitions, refinement of states, or refinement of attributes. We concentrate 

on the differences necessary for incorvorating deadlines. 

After that., we examine how deadlines are incorporated into the object model 

association of relationship and how this affects the behavior model. Deadlines can 

affect the periods when the communication paths between oujects are valid. This 

can be easily shown in the behavior model connection that defines the temporal 

nature of the communication path. 

Finally. we examine how deadlines affect the ooject model aggregation and 

the rurresvunding uehaviur models . Deadlines can be incorporated into any part 

of an aggregation. Since the resultant Gehaviur model is concurrent by nat.me, 

uverlavving periods may result .. 

Because even simple real-time systems with soft deadlines are highly cum­

vlex when compared to nun-real-time software, the ouject-oriented techniques are 

appealing fur these syst.ems. However, many proolems need to be addressed Gefure 

object-oriented methodologies are routinely used for real-t.ime systems. There is 

lit.t.le agreement on how the deadlines should ue introduced into the oujed.-oriented 

models. 

In this chavter, we look at real-time deadlines in Section 6.2. Second, we look 
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