e

B

Lad
(Spiw
Wiey

EXTENSIONS TO REAL-TIME OBJECT-ORIENTED
SOFTWARE DESIGN METHODOLOGIES

by

Timothy G. Woodcock

A Dissertation Submitted to the Faculty of
The College of Engineering
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Florida Atlantic University
Boca Raton, FL

December 1996

(© Copyright by Timothy G. Woodcock 1996

i

EXTENSIONS TO REAL-TIME OBJECT-ORIENTED SOFTWARE
DESIGN METHODOLOGIES

by

Timothy G. Woodcock

This dissertation was prepared under the direction of the candidate’s dissertation
advisor, Dr. Eduardo B. Fernandez. Department of Compnter Science and Engineer-
ing, and has been approved by the members of his snpervisory committee. It was
submitted to the faculty of The College of Engineering and was accepted in partial
fulfillment of the requirements for the degree of Doctor of Philusophy in Computer
Science.

SUPERVISORY COMMITTEE:

EvE Hipains

/g Dissertation Advisor
/

7S i

Department of Computer, Science and Engineering
, s]
D&z/Cullege of Engin??/;dngz /

(3 /5’/%

aduate S%dies and Research Date

111

ABSTRACT

Author: Timothy G. Woodcock

Title: Extensions to Real-Time Object-Oriented Software De-
sign Methodologies

Institution: Florida Atlantic University

Dissertation Advisor: Dr. Eduardo B. Fernandez

Degree: Doctor of Philosophy in Computer Science

Year: 1996

Real-time systems are systems where time is considered a system resource
that needs to be managed. Time is usually represented in these systems as a deadline
to complete a task. Unfortunately, by adding timing to even simple algorithms, it
complicates them greatly. Real-time systems are by nature difficult and complex to
understand.

Object-oriented methodologies have attributes that allow real-time systems
to be designed and implemented with less error and some control over the resultant
complexity. With object-oriented design, the system is modeled in the environment
that it will be used in. Objects themselves, are partitions of the system, into logical,
understandable units.

In this dissertation, we start by surveying the current real-time object-oriented
design methodologies. By comparing these methodologies and developing a set of

criteria for evalnating them, we discover that certain aspects of these methodologies

v

still need sume work. The most important aspects of the methodologies are under-
standing the effects of deadlines on statechart behavioral models and understanding
the effects of deadlines when object models are inherited or undergo aggregation.
The effects of deadlines on statecharts are then explored in detail. There are
two basic ways that deadlines are added to statecharts. The first, and most popular,
is adding timing as a condition on a state transition. The second is adding a count
down timer to a state and forcing a transition if the timer reaches zero. We show
that these are equivalent and can be used interchangeably to simplify designs.
Next, the effects of deadlines on behavior models when the corresponding
object models undergo inheritance or aggregation are studied. We will first analyze
the effects on the behavior model when object inheritance is encountered. We found
eight ways that the behavior model can be modified and still maintain the properties

of inheritance. Finally, deadlines are added and the analysis is repeated.

CONTENTS

BABETRALUT . ., 0 s s 615 8n5ms 6 iss s 18 fsosssmssddna
FIGURES« convs 609t ko6 (68085 wmpsdss
TABIES .) ¢ = o5 o5 6 v 8 51 6 & % % 06 55 85 8 % €+ 6 8 5 8 55 6 & d 5
Chapter

I INTBODURSTEION « o 2 » 5 5 5 « 5 s 0 5 o006 85 5é %o o665 48

1.1 BealsTiune Systertist . - « « » « » 5 o o 2 5 = & 5 s 5 % 6 5 6 & & & % &
1.2 Object-Oriented Methodologies

2 REAL-TIME OBJECT-ORIENTED SOFTWARE DESIGN
METHODOLODGIES 05«5 vsomosaonsissasios

2] INtTOAUCHION & « « 9 5 o 0 5 4 € 5 5 =0 a5 @ @ E w o e . R
22 Buphwmroantd . . o v 50 » s s v s p s hs B a ek EEED S B E 4
2.2.1 Real-Time Systems
2.2.2 Object-Oriented Programming
2.2.3 State Machines and Petri Nets
2.3 Classification Criteria & v v i i v v vt e e e e
2.3.1 Support of Concwrrent Processing
232 Controller Architecture . . . - « <« ¢« c v v v v w2 0 s o o 4 4
2.3.3 Deadline Management
234 FirstDesign Decision . . + « « 5 « « s v« 5 5 5 s 5 6 « o & = »
2.3.5 System Behavior
2.36 UseofInheritance.

vi

11
13

16

17
138
18
18
19
19

24

2.5
28

237 LileOycle . . . o« v« 2 s 0o v v s oo s 0988+ 5 ks34
Design Methodologies

e T
242 COBRA
248 HOODPNLE o cosvvs same samscaommepossn
244 HRT-HOOD
245 DOTOPUS . . o oo a5 ¢t mssmesnmsnssn ena
246 OMT e
247 COPNels : o 505 6 ms cnosupssmassss suwiss
24.8 ROOM. e e
249 RBITC i o n wososos i 5 o s 9 6 a8 8 5 5 58 8 8 € 8 @ ©6 s 3 oa w w
2.4.10 Transnet L

Analysis e e e e e e e e e e e
Chapter Summary i i ittt e i

BEHAVIORAL MODELING WITH STATECHARTS

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

TOtPOAdUEtioN « w o o 26 ¢ G o @ 2 s % 0 5 & % @ oo W e 0w wm
About Time . . o . v v v o vt ot s s e e s s s e w6
Tirmed AVGOMBEA & o 4 « & 2 o 5+ & w5 5 5 % w0 & & o % o 5 oo w
SEateeharts . o o v « o 6 @ 5 o s 5 @ 6 % 5 e b s § 855 5 EE s B
OMT Statecharts « « « c v v i i i e e e e e e e e e e e
Timed Statecharts
Evalnation and Analysis . « « v s + s s v e s 2 6 6 08 59 3 2 8 2 5
Chapter Summary,

TIMED STATE STATECHARTS

4.1
4.2
4.3
4.4

Introdimchion. : & c s 58 ¢ ra o 96 08 5 & ¢80 95 €58 ae s s
Timed Transition Problems
Timed State Statecharts
hapier BOERT & o2 o v 8 9+ ¢ ¥ B¢ s B B ¥ $ L X K s ¥ N3

OBJECT AND BEHAVIOR MODELS

5.3 Object and Behavioral Inheritance
5.3.1 Inheritance Behavior

5.3.1.1 Addition of an Extra Transition
5.3.1.2 Retargeting and Splitting of a Transition
5.3.1.3 Weakening of a Precondition of a Transition
5.3.14 Strengthening of a Poustcondition of a Transition . .
5.3.1.5 Strengthening of an Invariant Relationship
5.3.1.6 Refinement of a State into Two or More States . .
5.3.1.7 Addition of New Attributes
5.3.1.8 Modification of a State

5.3.2 A Student System Example
533 Program Specificalions . . « + + s v s v s cx s m 3 s 4 0 n a

5.3.4 Multiple Inheritance
5.4 Relationships And State Diagrams
5.5 Object and Behavioral Aggregation

5.6 Chapter Summary

THE EFFECT OF DEADLINES ON OBJECT AND
BEHAVIOR MODELS ; c g ess 5523 88855 55ma

G IribemlomdBe . . 5 5 55 s 4 s m P2 S B EE S S S B A &L%o
62 Deadlifies . : o o 66 5 « 5 @ a s = 6% @ 68 05 G @55 48 FmE 5 1
6.3 Deadlines in Object Models and Behavior Models

6.4 Deadline Inheritance
6.4.1 Inheritance Behavior

6.4.1.1 Addition of an extra transition
6.4.1.2 Retargeting and splitting of a transition.
6.4.1.3 Weakening of a precondition of a transition

6.4.1.4 Strengthening of a postcondition of a transition . .
6.4.1.5 Strengthening of an invariant relationship
6.4.1.6 Addition of new attributes
6.4.1.7 Modification of astate

6.4.2 A Student System Example
6.4.3 Program Specifications L.

84

85

86
86
38
88
91
91

94

644 DNultipleInheritahoe . « o « « v 2 5 5 2 5 5 5 5 5 2 4 & & % 5 & 134

6.5 Relationships And State Diagrams 135
6.6 Object and Behavioral Aggregation 139
6.7 Chapter Summary EE R AET L ETE W E i R B 142
7 SCENARIOS AND EVENT TRACE DIAGRAMS 144
C.1 ot ueliom « » « 6 o % 2 ¢ s 2 2 6 v tE B § s F 0 m e b s 8w E e m e 144
7.2 Behavior Models with Deadlines 145
Vo Dorlgraiiil o » ¢ o s v o v s s v p i A mo s 56 @ %5 58 &% u & & 5 3 147
7.4 Scenarios with Deadlines 149
7.5 Event Trace Diagrams with Deadlines 149
7.6 Chapter Summaryttt 156
8 CONCLUSIONS e e e e e e e e e 159
8.1 Contributions e e e e 164
82 Pubure DiveeliolS < « o 5 « 5 © 25 2 8 53 4 x4 w o o 6 m 55 &5 & o n 164
BEFERENCES © & o ¢ 2 % s 8 5 ¢ 558 56 s s swmssssnsssns &da 166
WIS, r s w x> rawoc o mavwcamovs Sdbiiss B iR asE&s 4% 173

X

3.1

3.2

3.3

3.4

3.6

3.7

3.8

4.1

4.2

4.3

()]
p—

[S44
V)

(54
=

[y
[N

[y
(S

FIGURES

Example of a timed automata.
Statecharts Example
Example of Rumbaugh’s OMT statecharts.
Example of Cook and Daniels Statecharts Formalism
Example of a timeout condition
Timed Statecharts+ example
Comparing OMT statecharts with regular statecharts
Example of broadeast communication paradox.
Gas Burner example, a) Statecharts+ and b) TSSC
Ambiguity resolution with timed state statecharts.
Example of timed and untimed transitions in TSSC

Object and Behavioral Models

Inheritance that adds a transition to the behavioral model.

Inheritance where a transition is split and retargetted.
Inheritance weakening a precondition.

Inheritance where a state decomposes into two or more states.

46

51

95

o7

99

61

63

65

39

90

92

(94
=2

(51
N

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.17

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Inheritance where an additional set of attributes is included in the
subcelass. L L e

Object Model for a Student system.
Behavior model for the class student.
Behavior Model for class Foreign_Student.
Behavior Model for the class Undergrad.
Behavior Model for the state Grad Student.
Behavior Model for class Thesis_Student.

Behavior Model for the class PhD_Student.

Example of relationship in the object model and its temporal
nature in the behaviormodel. 0000

Object model for traffic light controller
Behavior model for traffic light controller
Coordinating Aggregation
Inheritance adding a transition to the behavior model.
Inheritance where a transition is split and retargeted.
Inheritance with weakening of a timed precondition.
Inheritance where an additional set of attributes is included.

Object Model for the class Student.

Behavior model for the class student.

x1

93

95

96

97

98

100

101

130

6.8

6.9

6.10

6.11

ok

7.2

7.3

7.4

7.5

7.6

7.7

Behavior Model for the class Grad Student.
Example of Multiple Inheritance.

Example of relationship in the object model and relationship’s

temporal nature in the behavior model when deadlines are present.

Behavior model for traffic light controller.
Typical scanario for phonecall.
Scenario with timing information.
Typical event trace diagram for phone call.
Event trace diagram with timing information.
Event trace with time interval requirement.
Event trace diagram with timing interval on event generation.

Statechart for typical telephone line.

xii

138

154

TABLES

2.1 Summary of Methodologies 41

3.1 Comparison of Three Methodologies 66

Xiii

Chapter 1

INTRODUCTION

1.1 Real-Time Systems

Real-Time software is increasingly important in today’s world. As processors
become less expensive, tiny embedded real-time systems are showing up in devices
that would not have been imagined a few short years ago. Larger real-time systems,
from military and space exploration. to complex medical lifesaving equipment. are
becoming more common place. Often, real-time systems monitor life critical systems
where failure means a loss of life. Many real-time systems have catastrophic effects
if they fail to perform their functions correctly.

Real-time systems are by nature difficult to work with because there are
many aspects of real-time software that make it unique and difficult. One of those
aspects is that time is considered a critical system resvurce that must be managed.
thus there is a requirement that some tasks complete in a specified amount of time.
Not all tasks in a system will have deadlines, but the unes that do, often become

critical to the correct performance of the system. Often. the system must know that

the resources a task needs to complete are available, before it will allow a task to
be invoked on the system.

Real-time systems are also very periodic in nature, in that tasks are often
need to be performed within a window of time, and may need to be performed again
in some subsequent windows of time. The scheduling of these tasks is a complex,
often NP hard, problem.

Many real-time systems also execute in distributed processors and thus have
concurrent, processing as another aspect of their systems. Distributed systems that
are made up of several connected communicating processors must also take commu-
nication time into their deadline management calculations. Concurrency, even on a
single processor, has implications for completing tasks by the deadlines.

Real-time software is also characterized by its nonportability. Software writ-
ten for a specific application often can only work on that application. Changes to
the environment, no matter how small, could render that whole system inoperative.
This relationship to the environment becomes part of the software design.

These aspects of real-time software make it difficult to design and implement.
Often the code has very long implementation and test cycles, and once finished is
very difficult and expensive to change or correct. In the past, the software in these
systems was composed of hand-tuned, assembly langnage functions that were very

difficult to create, maintain, or improve.

1.2 Object-Oriented Methodologies

Object-oriented software methodologies have been shown to have advantages
over classical software design techniques, such as structured design. Object-oriented
designs are more extensible, and have better reuse than classical designs. Object-
oriented methods may also have an advantage in productivity. By encapsulating
the software and designing around objects that take the environment infu account,
object methods may have a distinct advantage when used to create real-time soft-
ware.

Object-oriented methodologies, however, still need to be developed further
before becoming the methodology of choice for real-time system environments. The
goal of this dissertation is to explore some of the areas that need work and to identify
other areas for future study.

First, we start by looking at several existing object-oriented real-time design
methodologies and from this we compile a list of areas where further work needs to
be done. Next, we examine behavior models and study how real-time deadlines affect
them. Then, we explore the different ways that deadlines can be added to behavior
models. A study of the relationship between object and behavior models when
object models undergo the techniques of generalization, aggregation. and association
is given next. Finally, we look at how the addition of deadlines affects the object

and behavior model relationships.

Chapter 2

REAL-TIME OBJECT-ORIENTED SOFTWARE DESIGN

METHODOLOGIES

2.1 Introduction

In real time systems, time is considered a limited resource that must be man-
aged. Creating software where tasks and messages may have deadlines is difficult.
Object-oriented methodolugies have been shown to increase programmer productiv-
ity, software reuse, and software maintainability. It is of interest therefore to see if
object-oriented techniques provide benefits for real time environments.

There are several objectives for this chapter. The first is to understand the
issues that are unique to object-oriented real-time software development. Then we
analyze how existing methods approach these issues. We also want to identify the
deficiencies of the existing methodologies. From there, we want to develop a set of
objectives for a more comprehensive methodology. Finally we want to develop a
set. of criteria for selection of a methodology for a specific type of application. This

study could be of value because it allows the developer to look at the problem he is

trying to solve and then understand what methodology features would enhance the
solution to the problem.

There are few studies have been published looking at both real time and
object uriented programming. Kelly and Sherif did a similar analysis on real time
software develupment methodologies [35]. Their analysis included only one object-
oriented methodology and three other software development methodologies.

In this chapter, we will look at ten object oriented methodologies for devel-
oping real-time systems. These methodolugies were chusen only to represent some
of the available real-time object-oriented methodologies, and not as an all inclusive

list of all such methodologies. The following methodologies will be examined:

ARTS - Real-Time Object Model

COBRA - Concwrrent Object Based Real-Time Analysis

HOOD/PNO - Hierarchical Object-Oriented Design by means of Petri-Net

Objects

HRT-HOOD - Hard Real Time Hierarchical Object-Oriented Design

OCTOPUS - Object-Oriented design method for embedded real-time systems

OMT - Object-Oriented design and analysis methodology

OPNets - Object-Oriented high-level Petri Net model

e ROOM - Real-Time Object-Oriented Modeling

e RTO - Real Time Objects
e Transnet - Object-oriented technique using Petri nets

First th.rough, some background on object-oriented methodologies, real-time
systems, state machines and Petri nets is discussed in section 2.2. In section 2.3,
we describe the criteria used to compare the different methodologies. In section 2.4,
we examine each of these methodologies briefly. In section 2.5, each methodology
is contrasted to the others in terms of the comparison criteria. Finally, section 2.6

states some conclusions and indicates possible future directions.

2.2 Background

2.2.1 Real-Time Systems

Real-time software systems manage time DLy including deadlines for tasks
and messages. All real-time systems must be considered in the context of their
environment. One way to interpret the deadlines of real-time software is to consider
all the data as perishable. If the data is not used before the time expires, it becomes
old and can not be used, thus, perishable.

Periodicity is another aspect of real-time systems, in that, some tasks must
be performed at periodic intervals, called frames. Other tasks are evoked only when

a certain event occurs. Some tasks need to wait for other tasks to complete before

they can start. Often, the tasks that need to be run in a time frame can be performed
in a number of sequences.

Task scheduling is a problem in real time systems that continues to have a
great deal of research devoted to it [6], [7], [8], [9], [21], and [64]. The scheduling
algorithms are affected by the criticality of the task, task precedences, available
resources, and task deadlines [60]. Also, tasks have to communicate and synchronize
with other tasks. Scheduling algorithms in real time systems must ensure that task
deadlines are met. This is different from nonreal time systems where the goal is
faster response time. Stankovic points out that the dynamic environment often
requires adaptive scheduling algorithms. Scheduling in this environment is an NP-
Hard problem [62].

Shin and Ramanathan showed that all real time tasks, both periodic and

aperiodic will have une of three types of deadlines [60].

e [lard - There are catastrophic consequences for missing a hard deadline.

e [irm - The consequences for missing a firm deadline are not severe, but the
results of any task with a firm deadline are perishable; that is, they will cease

to be useful when the deadline expires.

e Soft - All other deadlines are soft. The results of a soft deadline task will

also decrease in usefulness over time after the deadline expires, but at a much

slower rate than a firm deadline.

Periodic tasks often have hard deadlines and are characterized as time critical,
where the system will fail (often catastrophically) if the deadline is not met.

Predictability is another important concept in real-time systems. Predictabil-
ity means that at design time it can be shown that all the constraints of all the tasks
can be met with 100% certainty. This requires prior knowledge of the exact charac-
teristics and run time resource requirements for all the tasks in the system. Usually
this can be done only in very small systems. In large systems the definition is relaxed
for noneritical tasks.

For noncritical tasks, predictability is shown either probabilistically or run-
time deterministically. For a probabilistic gnarantee, a task can be shown to meet
its constraints with a certain probability. In run-time determinism, the system looks
at a task before accepting it and determines if it can meet the task’s constraints
withont endangering any other running tasks constraints. If it can, the task is
accepted; otherwise, the task is rejected.

Another concept that occurs often in real-time environments is that of sys-
tem concirrency. Real-time software can have many tasks active at the same time.
An example would be several active threads or processes in an operating system.
Another example would be the active phone calls in a telephone switch. But, con-
ciurrency alone is not enongh to make real-time software systems difficult. It is
the asychronons nature of the system that makes the concwrrency more difficult to

handle. For example, the activity of a robot cell in a distributed manufacturing

system. even if there were 100 robots, would not be so difficult if they all operated
in lock step. It is their asychronous activity that makes them difficult to control.
Concurrent systems often must be proven to be deadlock free.

The dynamic nature of real-time systems can also contribute to programming
difficulty. Some concirrent processes can be created and become active while others
are becoming inactive and being destroyed. An example would be telephone calls
in a telephone switch. At any instance in time, any number of calls could be in any
number of states including dialing, connecting, talking, and disconnecting.

Another important issue in the design of real-time systems is at what level
of abstraction one should introduce the concept of time and how to map time con-
straints defined at some level to the lower levels.

There is a tacit assumption that in a true real-time system, the requirement to
interface with low level hardware while meeting stringent hard deadlines, prohibits
the use of high level languages in the software. In other words, assembly langnage

must be used. Stankovic [62] points out that this is a common misconception about
real time software. He also points out that clever hand-coded optimized machine
langnage software is labor intensive. Also, this code often contains timing bugs
that are difficult to trace, debug, or modify. Daponte et al. [19] show that the
real concern should be whether the target language allows us access to the low level

hardware interfaces without adding a run-time support penalty that is unacceptably

high.

The issue of reliability is also important in real-time systems. Software re-
liability criteria can be met through the use of n-version programming. Reliability
can also be specified and quantified through the use of formal methods. However,
both n-version programs and formal methods are difficult to use on large complex
systems.

Real-time systems are very dependent on the environment of the system. The
software for a jet airplane would not function outside of the airplane. Likewise, the
software for an automobile engine computer would not be able to function without
the engine sensors. The importance of the environment in real-time systems indi-
cates that any methodology used must be able to represent the physical environment
also; in this sense the object-oriented approach provides clear advantages.

Embedded systems are usually real-time systems. One of their main char-
acteristics is that they require flexibility and extensibility (different environments
and different applications). The object-oriented approach appears very promising
to satisfy this requirement.

Real-time systems are usually multiprocessors. Obviously, satisfying dead-
lines will depend on the specific multiprocessor configuration at hand. A design
methodology must consider this effect. There are sume real-time operating systems
that help accomplish this task, for example CHAOS [26], [56], and Clouds [14], [20],

[50].

10

2.2.2 Object-Oriented Programming

Object-oriented programming techniques have been shown to have advan-
tages over classical design techniques siuch as structiwved design. One advantage is
their enhanced ability to provide extensible designs. Another would be the increased
amount of reuse of design artifacts and code. Overall. object-oriented methods
do appear to improve productivity [2]. Object-oriented techniques also have sev-
eral advantages in a real-time environment. Some researchers believe that current
(nonobject-oriented) real time software development techniques will not be adequate
for meeting the challenges of the future generations of complex real time systems
[69]. The object oriented paradigm offers a better way of creating and controlling
the development of complex real time systems; for example, they might make it
easier to prove predictability.

An important advantage of object-oriented methods is their modeling power,
it is pussible to build a model for some systems that reflects its semantics much more
closely than with other methods. This is an important advantage for the design of
real-time systems that have complex relationships between components and with
the environment.

A significant aspect of real-time systems is the fact that they are composed of
physical nnits and they can be modeled using a hierarchic approach [24]. The envi-
ronment of the real-time systems are also important. Object-oriented methodologies

support these views of the software better than other methodologies.

11

In the object-uriented paradigm, information hiding allows a designer to have
a variety of implementations for each method in an object. each satisfying a different
type of constraints. For example, an object might have three different methods for
performing a task, each of which was gnaranteed to complete in a set amount of
time (slow, medinm, fast, or 5 ms, 2 ms, 1 ms, etc.).

Object-oriented paradigms may also have sume advantages in applying strate-
gies such as n-version fault tolerance. The object view of the of the physical units of
the system may allow an easier way of creating and using n-version software. For-
mal methods appear also to enhance object-oriented designs. This can result in an
increased ability to prove system reliability, safety, and other properties. Currently,
there are two main approaches to including formal methods in the OOA. The first.
is to place the axioms in the objects [18], [57], and the second method is to place
the axioms in the state transitions [22]. [25], [31], [41], [65]. and [66].

On the other hand, there are sume disadvantages to using an object-oriented
methodology. There is a dichotomy between the underlying principles of object-
oriented methodologies and software performance, which could affect its ability to
satisfy deadlines or its predictability. For example, it is not clear what is the effect
of inheritance of deadlines. Most general purpuse object oriented methodologies
have modeling support that is inadequate for real time software. It is not clear in
most methodologies how to expand states to provide for details at lower levels of

abstraction. The problem is exasperated by message deadlines and concurrency.

12

Another possible disadvantage of object-oriented systems for embedded ap-
plications is their requirement of efficient use of memory. In object-oriented imple-
mentations, a class may contain many operations that will not be used in a given
application but will take memory space. It is necessary to consider ways for selecting
only the needed operations in a given application.

The implementation language will also need to be considered. No matter
what object-oriented language is used, C++, Ada, Eiffel, Smalltalk, or Java, ex-
tensions will need to be made to support the real-time environment. An extended

langnage like RTC++ or Ada 9X may work, but further extensions are still likely.

2.2.3 State Machines and Petri Nets

The modeling of the behavior of objects in the object oriented paradigm, is
most often done with either state machines or Petri nets. While both modeling
techniques can describe the behavior of the objects, they also have limitations to
what can be described with the techniques. A brief description of state machines
and Petri nets follows.

State machines, or deterministic finite state autumata, can be used to model
the behavior of many kinds of systems [42]. State machines consist of a finite
number of states, a set of transitions between states, and a list of the events or
inputs that trigger the transition from a state. This is usually expressed as a 5-

tuple M={Q, X, 6, qo, I'} where:

(0 is a finite set of internal states

13

¥ 1s the input alphabet
§: () x ¥ — (Q is the transition function
go € (0 1s the initial state

F'C () is a set of final states.

A state machine starts off in the initial state, ¢qy. When an input (from X)
arrives it causes one of the transitions from é to be nsed to move to a new state (or
sometimes stay in the same state) of (). If the machine is in one of the final states,
I, then the state machine can terminate.

To use state machines to analyze object-oriented software, one only needs to
map the object-oriented concepts onto the state machine. For example, ¥, are the
set. of messages that an object could receive. The transition function, é, and the
state of the object determine what happens when a message is received. The object
could accept the message and transition to a new state, ignore the message and stay
in the same state, etc. The states of the objects determine what methods need to
be invoked by the different objects.

One of the problems with state machines is that of state explosions. If the
number of states involved are small, then the problem can be dealt with. Most
problems of even low complexity have a large number of states. One way to deal
with this problem is through the wse of statecharts, which are a modification of
state machines to allow the nesting of states [54]. Statecharts not only have a more

concise way of representing complex states, but also allow substates to inherit and

14

evoke state transitions of the parent states. The states in a statechart are described
in a hierarchical structure that allows a compact. yet precise representation of the
dynamic behavior of the objects. Statecharts are usually more convenient than state
machines.

Petri nets are similar in some ways to state machines [1]. They can be viewed
as another type of antomaton, or as a way of representing different kinds of systems.
There are several kinds of Petri nets, but for this paper, we limit ourselves to Marked
Petri nets only. A Marked Petri net is a 4-tuple C = (7', P, A, M), where,

T ={ly,1y,....,1,,} 1s a set of transitions.

P ={pi,p2,....pm} is a set of places.

ACHT x PYU {1’ x T} is a set of directed arcs.

A = {xy,xy..., L} where x; > 0, assigning a number of tokens to each place
in the net. This is called the marking of the Petri net.

In a Petri net, a transition can fire only if there is a token waiting in each
place attached to it. The act of firing causes the tokens to be removed from the
inputs places to the transition and placed in the output places. When two transitions
are enabled and do not share an input place, they can fire concwrrently. When two
enabled transitions do share an input place, firing either would remove the token
from the shared place, disabling the other transition. This is known as conflict. In
a conflict, the choice of which transition will fire is arbitrary.

The concepts of reachability and p-invariants are also nsed with Petri nets.

15

A marking Al is said to be reachable from A’ if starting with A/’ there exists some
series of transitions that can be fired that results in A/. A p-invariant is a set of
places, 1. that have the property that the sum of all the tokens of all the places in

the set, for any maiking of the set is a constant. That is

C=> M(p)

pel

Where Al is a reachable marking and [does not have any proper subsets that are
p-invariants. The reachability chart and the p-invariants of the network can be used
to verify the behavior of the Petri net.

Petri nets also suffer from state explosion. Similarly to statecharts, Petri nets
can be arranged in a hierarchical system that controls the state explosion. Petri nets
can model very well aspects such as parallelism and nondeterminism. Petri nets can
model concnrrency. by explicitly showing the parallelism, and be used to prove that
a system is deadlock free. Petri nets can also be modified into colored Petri nets or
into timed Petri nets in order to increase their ability to model certain applications.
For example, a timed Petri net can be introduced so that the deadlines of the real
time software can be modeled. However, adding colors or timing detracts from the

Petri nets ability to detect deadlocks or other conditions.

2.3 Classification Criteria
Based on the discussion in Sections 2.2.1 and 2.2.2, the following criteria will

be used as guidelines for comparison of the design methodologies.

16

e Support of concwrrent processing.

Controller architecture.

Deadline management.

First design decision.

Modeling of system behavior.

Use of inheritance.

Life Cycle.

A discussion of each criterion follows.

2.3.1 Support of Concurrent Processing

Real-time software is often characterized by a large amount of system con-
currency. If, in general, tasks communicate, synchronize, or interact with a number
of other independent. asychronous tasks and external events, then the system has
a large amount of system conciurrency. The concurrency can range from separate
processors connected via a communications facility to asychronous events in one
process. Because the expression of concurrency is an important issue in real-time

software, the design methodology should reflect. it.

2.3.2 Controller Architecture

The scheduling algorithms for real time software are implemented by a con-
troller. Thus the controller should be given consideration as part of the overall
system. Each design methodology supports either a distributed controller mecha-
nism or a single object controller mechanism. In a distributed controller, each object
will contain the code necessary for synchronization and message passing and mes-

sage handling. In a single object. control design, one object is specifically designed

for handling message traffic, synchronization, and the states of the other objects.

2.3.3 Deadline Management

One of the more important characteristics of real-time software is that every
task and every message may have a deadline that must be considered. In some of
the design methodologies the deadlines are considered in the design phase. In other
systems, the deadlines are handled by the target programming language in the
implementation phase. In any real time system with hard real time deadlines, this
is a key issue to be decided. Furthermore, any system that does not have deadlines,
or whose deadlines are never considered by the methodology are not truly real time

systems. They may be relative time systems, but they are not real time systems.

2.3.4 First Design Decision
Kelly and Sherif [35] pointed out that the first decisions that are made in a

design are often the hardest to change later in the software life cycle. Thus, these first

18

design decisions are problematic in that they are the most persistent decisions made,
yvet they are made at a time when little is known about the resultant system. For
example, partitioning a large system into sections early on in a project could result
in a poor design if later in the design it is discovered that message traffic between
parts of the system will use a serivus amount, of system resources. Considering the
first design decision as a part of the methodology allows the designer to make a
better choice in the design of the system. This criterion is of the lesser importance

when only object-oriented systems are being considered.

2.3.5 System Behavior

Duwring the design phase of the life cycle, the behavior of the design artifacts
must be analyzed. In the methodologies presented in this paper, only state machines
and Petri nets are nsed to model the system behavior. Each technique has some
advantages. State machines are easy to use and can be expanded in the more
powerful statecharts when necessary. Petri nets are more powerful and have the
ability to model the concept of conciurency and show that the system is deadlock

free. Petri nets can be expanded into timed or colored Petri nets if desired.

2.3.6 Use of Inheritance
In object-oriented methodologies, inheritance is a valuable mechanism to
reuse existing classes of objects. There are several issues with inheritance in real-

time software beyond the general object-oriented inheritance issues. Specifically,

19

the issnes of the inheritance of deadlines and behaviors are important in real-time
software. How are class deadlines inherited? If a subclass overrides a soft deadline
with a hard deadline, can the methodology ensure the predictability of the software?
What is the relationship betveen deadlines at different levels of design abstraction,

when more detailed state transitions are involved?

2.3.7 Life Cycle

Every methodology supports some phase of the software life cycle. Some only
support the analysis or design phases by offering tools and techniques that only help
in these phases. Some support a full life cycle by offering tools and technigues that
start with the specifications and enfurce completeness and consistency all the way
to the code release. It could be desirable to even support the life cycle beyond
code release and into code maintenance. In general. full life cycle methodologies
are preferable to partial life cycle methodologies because the tools of each phase are
integrated together. A bug fix in the code that results in a change to the design,

should start in the design tool.

2.4 Design Methodologies

The ten methodologies that are examined here are all from recent publications
and have been used un real projects. In this section. each methodology will be briefly
discussed. The design steps, major characteristics. and strengths and weaknesses

will be ontlined.

20

2.4.1 ARTS

ARTS is an object-oriented methodology for designing real-time systems [45].
It is implemented in RTC++ which is an extension of C++ intended to support
this methodology [34]. It provides not only data encapsulation but also timing en-
capsiulation. This methodology is more concerned with the low level design and
implementation issues (such as issues with RTC++4) than with high level design
issues (like behavior modeling). RTC++ is a langnage that could be used to imple-
ment any of the methodologies discussed in this paper.

Showing that a system is predictable is one of the key aspects of the ARTS
methodology, for which it uses rate monotonic scheduling.

In ARTS the objects can be single threaded or multithreaded, but the mul-
tithreaded objects have Letter predictability. Both types of objects can have the
problem of priority inversion, which happens when a task of high priority is blocked
by a task of low priority. By using a property called priority inheritance, which is
not the same as object-oriented inheritance, priority inversion can be overcome. In
most. cases, priority inheritance is used to change the priority of a low priority task
that is blocking a higher priority task to the priority of the higher priority task. In
multithreaded objects. a free thread can be nsed to run the higher priority task.

Their use of the term ‘inheritance’ in priority inheritance is confusing. It is
alsu unclear in ARTS how the behavior of the objects is modeled. It is clear that

ARTS supports predictability and provides a solution to priority inversion. but this

21

doues not appear tied to object behavior.

2.4.2 COBRA

The Concurrent Object-Based Real-Time Analysis (COBRA) methodology
was developed by Gomaa [27]. It is a blend of concepts from Real-Time Structured
Analysis (RTSA). Object-Oriented Analysis (OOA). and Jackson System Develop-
ment. (JSD). COBRA uses the RTSA notation and state diagrams. It is similar

to JSD in that its model uses concurrent processes for objects and functions. Like
OO0OA, it uses object structuring criteria.

The main steps of the COBRA methodology are the following:

1. Decompuose the system into independent distribnted subsystems. Here dis-
tributed implies more than just conciurent. but processes that can actunally

reside on separate processors.
2. Identify the ubjects for each subsystem.
3. Identify the operations for each object.
4. Create a statechart model from the objects treating each as a concurrent task.

5. Analyze the behavior of each object with event sequencing scenarios.

COBRA's decompuosition of each problem into subsystems with an emphasis

on a distributed environment, is supported by a structuring criteria and a mapping

22

to the distributed nodes. COBRA’s support for this decomposition approach gives
this methodology an advantage in distributed environments such as a manufactiring
cell with independent. robots.

The criteria supported by COBRA considers the following five types of ob-

jects as the most relevant.

1. Isxternal Device 1/0 objects, which map every physical entity in the real world

to a software object that models the device.
2. Conirol objects, which control all the other objects in the system.

3. Data absiraction objects, which encapsulate data that the system needs to

remember.
4. Algorithm. objects, which encapsulate algorithms used in the problem domain.

5. User objects, which are needed to model the role of users in the model. The
user objects are different from the external device objects, but the difference

is not clear in Gomaa’s paper. Apparently. they are just user interfaces.

The operations for each object are characterized by their period. There are
two types of operations: asynchronous and periodic. Asychronous operations are
activated by an object or event to perform an action. Periodic operations activate

themselves at regular intervals. Both kinds of operations can be unregulated or

23

dependent npon the state of the object. Operations that are dependent upon the
state of the object may perform different tasks depending upon the object state.

The system is then modeled using the objects and operations. Each object
is treated as a concurrent task, so that the system model supports a great deal
of external concurrency. The system behavior is modeled using event sequencing
scenarivs. Event sequencing scenarios use control objects that respond to incoming
events from the external environment and control the system state transitions. This
is the same as in Rumbaugh [54].

One disadvantage of COBRA is that deadlines are not considered. Another
disadvantage is that the event sequencing scenarios are not able to prove the system
is deadlock free, because they are just specific scenarios, not a complete representa-

tion siich as statecharts or Petri nets.

2.4.3 HOOD/PNO

Hierarchical Object-Oriented Design (HOOD) is a design methodology for
real time software defined by the European Space Agency. It has been extended
with Pet1i net objects (PNO) to model the system behavior (HOOD/PNO) [49].
PNO is a method of describing the control structure and behavior of each object
using Petri nets. The HOOD/PNO methodology covers the entire software life cycle
including analysis, design, and implementation

HOOD/PNO uses a parallel recursive life-cycle process that takes a level of

24

abstraction, defines the behavior at that level, and decompuoses it into the next lower

level. The steps of this methodology are as follows:

Determine the relevant objects of the system from the physical system require-

ments.
For the current level of abstraction, collect the objects into object classes.

Describe the physical objects in terms of their external behavior, their internal

structure and their relation to other objects.

Redefine physical objects and classes into software objects and classes. (The
authors claim that generally the physical description does not take into account

all the responsibilities required by the specifications.)
For a given level of abstraction, define the operations for each object.
For a given level of abstraction, define the uperations of the object.

Describe the objects’ behavior by Petri nets and verify the properties of bound-
edness, liveness, and safeness in the design. Then computing the p-invariants

of the Petri net model, decompose the objects into next lower level of abstrac-

tion.

HOOD/PNO is an object oriented design methodology that includes object-

oriented design analysis (OODA), HOOD, PNO, and implementation rules for trans-

lating detailed designs into specific target langnage code. The strength of this

25

methodology is that it covers the entire life cycle from requirements to code. This
methodology can be applied with a top down approach or a bottom up approach.
The steps above show the top down approach.

One disadvantage of HOOD/PNO is that it dues not directly deal with the
problems of concurrency. While concurrency can be modeled nsing Petri nets, it is
not specifically designed into the software. Also, the issues of object deadlines are

left to the implementation language and not dealt with as design issues.

2.4.4 HRT-HOOD

The Hard Real Time Hierarchical Object-Oriented Design (HRT-HOOD) is
another adaptation of HOOD for real time environments [10]. In this case the
emphasis is on supporting the abstractions that are typically needed by hard real-
time system designers. This allows the designer better conceptual tools for specifying
and analyzing the deadline requirements of the software.

HRT-HOOD was developed based on the belief that the design methodology

must provide the following support:

e objects that recognize the kinds of activities and artifacts found in real-time

systems.
e the appropriate scheduling paradigms.

e explicit definition of the timing requirements for each object.

26

e definition of the relative importance of each object to the overall successful

functioning of the system.

e support for different modes of operation. (i.e. An airplane will have different
modes of operation such as on ground and in flight. It is reasonable to expect

the software to behave differently in these different modes of operation.)

e explicit definition and use of resource control objects, which are objects that

interface to system resources (i.e. sensors, memory, etc.)..

e decomposition into a software architecture that facilitates processor allocation,

scheduling paradigm analysis, and timing analysis.

e tools to perform worst case execution time and schedulability analysis.

HRT-HOOD separates the high level design activity into two parts: the log-
ical design and the physical design. The logical design is concerned with satisfying
the functional requirements that can be made independently of the constraints im-
posed by the execution environment. The physical design addresses the timing
and schedulability from the functional requirements and the other constraints. The
physical design can be viewed as a refinement of the logical design, they are both
iterative and concurrent processes.
The result of the logical design is a set of objects that can not be further

decomposed (terminal objects). HRT-HOOD supports five kinds of objects:

27

e PASSIVE - Objects that are invoked by other objects. They have no sponta-

neous control over their own or other object’s operations.

e ACTIVE - The most general class of objects with the least restrictions placed
on them. These objects can control when their own operations are executed
and can call operations in other objects. Since the effect of these objects can

not be analyzed, they are allowed for background activities only.

e PROTECTED - This is an extension of the basic HOOD object types. These
objects can control when their operations are executed but can not call opera-
tions in other objects. These objects must be analyzed for the blocking times

they impose on the objects that call them.

e CYCLIC - This is another extension of the basic HOOD object types. These
are the periodic activities of the system. Their operations are demands for
immediate attention. They can also spontaneously invoke operations in other

objects.

e SPORADIC - This is another extension of the basic HOOD object types.

These objects represent the sporadic activities of the system.

Every object has code to control its behavior and synchronization which is
called the object control structure (OBCS). The concirrent activities inside the ob-

Jects are called THREADs. An object can have une or more THREADs that operate

28

independently from the operations of the object and whose order of execution is con-
trolled by the OBCS. At the highest level of design each system is represented by
a single CYCLIC or SPORADIC object. These objects are decomposed into lower
level objects at each iteration of the design cycle.

The physical design maps the logical design onto the physical resources of

the system. The physical design does the following:
e allocate the objects in the logical design to the physical processors.
e schedule the communications network such that message delays are bounded.

e schedule the prucessors so that all objects on all processors meet their dead-

lines.

During the physical design, objects are assigned their timing attributes. Also

the abstractions for handling timing errors are created. These can include stopping
an object that uses more compute time than was requested, and stopping an object
that executes past its deadline.

It is clear that HRT-HOOD has very strong deadline management and is
a true real-time design methodology. It is not clear how well this methodology
supports concurrency beyond assigning objects to physical processors and threads

inside an object.

29

2.4.5 OCTOPUS

OCTOPUS is a methodology for applying object-oriented techniques to em-
bedded real-time systems [69]. OCTOPUS contains extensions to OMT to handle
specific real-time embedded system problems such as concurrency, synchronization,
communication, handling of interrupts, hardware interfaces and end-to-end response
time.

The steps of this methodology are as follows:

1. Create the system requirements specification from case scenarios.

2. Create a system architecture to partition the system into independent subsys-

tems and specifying the subsystem interfaces.

3. Analyze the subsystem and create the OMT object and dynamic models nec-

essary for the subsystem.

4. There are two required subsystems: a hardware wrapper and at least one other
subsystem. The hardware wrapper isolates the software from the hardware.
The wrapper translates any external stimuli (ie hardware inputs, buttons, etc.)

to logical stimnli (events) for the software.

5. Analysis is first done in @mplicil. concurrency mode. where each subsystem
is designed and analyzed as if it had its own fast processor. Processing is

considered to oceur in zero time.

30

6. Each event in the object and dynamic models are assigned a significance value
(c.e, 0, 1). Here c represents a hard deadline, the e represents a soft deadline,
the (0 represents no deadline, and the 1 represents a deadline determined by

some other state.

7. The explicit concurrence mode is created by mapping the object model into

event threads.

OCTOPUS has strong design and analysis support for concurrency. The con-
troller design is implicit with an external hardware wrapper. Deadline management
support is included. The first design decision is that of subsystems. The methodol-
ogy uses statecharts for behavior modeling. Inheritance is supported as in OMT. The
life cycle covers the design and implementation phases. OCTOPUS is well suited to
embedded real-time development. Also, once the architecture decisions have been
made, it would be difficult to change them, unlike a regular object-oriented system,

where changes are expected and isoulated from the system.

2.46 OMT

OMT is an object-oriented methodology that enjoys great popularity [54].
Unlike the other methods discussed, this is not a real-time methodology, but a gen-
eral methodology. Several extensions and proposals exist to add real-time features

to OMT such as OCTOPUS (above) and [15].

31

Originally OMT consisted of three complementary models: the object model,
the dynamic model. and the functional model. The functional model has been
eliminated in the recent OMT - Brooch unified model (UML). The object model
describes the static relationship of the objects in the system. The dynamic model
describes the behavior of the individual objects.

Real-time extensions such as that of Chonoloes [15] capture the timing infor-
mation in the event trace diagrams, scenarios, and statecharts. Rumbaugh’s recent
additions to OMT [53] also support real-time software with deadlines in the event

trace diagrams and statecharts. Concurrency is not supported in OMT.

2.4.7 OPNets

OPNets is an object. oriented methodology that models the behavior of the
objects as Petri nets [40]. One of the authors’ motivations for developing OPNets was
to correct a problem they saw in PNO. In PNO, an object’s control structures and
communications are not separated. Furthermore they saw the behavior of the object
in the control structure of the whole system as only being implicitly defined. As a
result, a modification of an objects’ inner control structure could result in a change to
the control structure for the whole system. To overcome this problem they proposed
the OPNets methodology. OPNets identifies objects based on their conciurency
relationships. The object’s internal control structure and external structure are

clearly separated. High level Petri nets are used to model the behavior of the

32

objects and the relationships between objects. This external structure then defines
the message passing between objects. At the next lower hierarchical level the Petri
net nodes are expanded to represent the internal control structure of the object.
The internal structure is not visible to other objects in the model.

There are two types of objects defined in OPNets. The first are primitive
objects which are the basic unit of behavior representation. Primitive objects define
sequential behaviors and static properties. These objects can not have concuurency
in them. The second type of object are the composite objects. Composite objects
are made up of primitive objects and other composite objects. Composite objects
have concurrency, and synchronize the sequential behaviors of primitive objects.

The steps of this methodology are as follows:

1. Define the system in terms of mutually communicating aggregate objects and

their interconnection relations.

2. Define external message passing structure and internal control structure of

each object.
3. Define static properties and behaviors for each primitive object.
4. Model the behavior of each object with a Petri net.

5. For each primitive object, analyze the local behavior, reachability, and firing

sequences.

33

6. For each compuosite object, analyze its behavior in terms of its internal objects.

OPNets nses a hierarchical Petri net approach to model very complex real
time systems. Like Transnet the methodology supports only part of the life cycle,
the analysis and design phase. OPNets can model conciurent actions, both inside
and outside of objects. OPNets do not include deadline management in the design

cycle.

2.4.8 ROOM

The Real-time Object-Oriented Modeling (ROOM) methodology was created
to go beyond creating and verifying a design, into automatically producing imple-
mentations of the design [58]. ROOM is based on several principles of how a design
methodology shonld work. The key modeling concepts must be intuitive and domain
specific. Each software domain has its own concepts that are well understood by the
develubers. The development process should not allow discontinuity. The authors
describe this as a seamless formal relationship between the artifacts and activities
of the analysis, design, implementation, testing. and documentation. Lastly, the
methodology shonld support an iterative design process.

In ROOM systems are modeled using two paradigms. dimension and ab-
straction level. The dimension model partitions the system based on the problem’s
nature. The abstraction level partitions the system into three levels: the system

level for modeling concepts at the highest level. the concurrency level focnsing on

34

1ssues of parallelism, and the detail level which focuses on the implementation. The
model technique is iterative, building a model at a level of abstraction and analyzing
it, then refining the model at the next level of abstraction. The steps in the ROOM

methodology are as follows:

1. Analyze the current level of refinement using ROOM modeling concepts and

paradigms.

2. Design and implement current abstraction in a ROOM model.

3. Verify that the model meets requirements.

4. Move to the next level of abstraction and repeat.

The ROOM model uses active objects called actors. The actors have ports
that accept messages. where messages are units of information that flow between
actors. Actors can be decomposed into groups of actors and their messages, which
are hidden from the higher levels of abstraction. The behavior of the actors is
formalized nsing finite state machines and statecharts.

The advantages of ROOM are the iterative process and the abstraction levels.

Another advantage is the formal support of the methodology for the entire life cycle

from requirements to implementation and to verification.

35

2.49 RTO

Real Time Objects (RTO) are a methodology that has as its major goal the
explicit programming of the real time scheduling [47], [48], [19]. The authors claim
that this methodology is well suited for hard real time programming.. RTO defines
its objects such that internal concurrency is not allowed.

The following are the RTO mechanisms that are supported by the method-

ology:

e Objects - RTO objects are single threaded (atomic) objects. The object be-
havior is moudeled by a state machine. RTO objects are reactive in that they
are af rest until a message arrives, then depending on their state, they perform

an action. Execution of an action can not be preempted.

e (Classcs - RTO uses a decentralized synchronization control; therefore, each

object has code to synchronize concurrency.

e Message Passing - Objects communicate through asynchronous message pass-
Ing.

o [/ncapcecled Messages - When an object receives a message that it can not

handle, it can decide to do one of the following:

— discard the unexpected message.

36

— defer the message nuntil later, assuming that when the object goues intu
another state it will be able to deal with the message.

— pass the message to another object. This is different from the concept of
inheritance in that the object can send the message to any other object

not just its parent object.

o Components and Controllers - To handle scheduling the idea of a component
is introduced. A component is a collection of objects with similar time re-
quirements operating on a (physical or virtual) processor. Each component
has a special object called a controller. The controller collects all the message
traffic, reorders the messages, and dispatches messages. With this implemen-
tation any user programmable control strategy can be used, or a standard

controller can be imported from a library.

e Standard Conlrollers - While the controller can be programmed by the user
to implement any control strategy, RTO also has a default standard controller
that operates concurrently with the other objects inside its component and

dispatches messages in FIFO order without concern for time (soft deadline).
e Driver Objeels - Driver objects encapsulate the physical system and external
events into internal messages and vice versa.
The advantages of RTO are that it supports concurrency, it considers the
object deadlines in the high level design, and that any scheduling algorithm can be

37

programmed into the controllers. RTO has a decentralized control strategy becanse
there are multiple components (each containing objects with a similar deadlines),
and each component has its own controller, so the control code for synchronization

and communication is forced into each component.

2.4.10 Transnet

Transnet is similar to HOOD/PNO in that it also uses Petri nets to model
and verify the behavior of the system [55]. Transnet is different from that method
in that it is concerned not only about the functionality of the design but also with
the deadlines of the software and message passing and with object concurrency.

The steps of this methodology are as follows:

1. Identify the objects and the calls between the objects.

2. Model the object behavior as high level Petri nets.

3. Define data types as primitive sets together with their uperations.
4. Construct the Petri net reachability trees.

5. Analyze the trees for reachability, safeness, deadlock, and freedom from star-

vation.
6. Assign timing to Petri nets.

Validate timing and net execution.

~I

38

One disadvantage of Transnet is that it only supports the specification and
preliminary design steps of the life cycle. Its advantage is deadline management

support and concurrence analysis.

2.5 Analysis

Table 2.5 shows a summary of the ten methodologies presented above. Each
of the methodologies is compared according to the comparison criteria of Section
2.3.

Concurrency is often an important issue in real time software problems.
The methodolougies that have better support for concurrency are COBRA, RTO,
Transnet, OCTOPUS, OMT and OPNets. Related to this is the control structure
of the methodology. The methodologies that support a single object control are
COBRA and Transnet. The other methodologies support distributed control mech-
anisms. A very conciurent system with hard or firm message passing deadlines
wortld benefit from a distributed control structure system design.

Another important issue in real time systems is the handling of real time
deadlines. Methodologies that do not deal with the deadline issues aie not true real
time methodologies. In this paper, ARTS, HRT-HOOD, ROOM, and OCTOPUS
have the best support for real time deadlines. These all incorporate techniques for
determining if the deadlines will be met and for showing the predictability of the sys-

tems. RTO and Transnet methodologies both have sume deadline handling support

39

but. they do not include any techniques for analyzing the predictability of the sys-
tem. The remaining methodologies all support deadlines only in the implementation
phase of the design cycle and may not be true real time design methodologies.

In all of the methodologies studied, except for COBRA and OCTOPUS, the
first design decision is selecting the objects. In COBRA, the first design decision is
selecting the concirrent processes. In OCTOPUS, the first decision is subsystems.
This is not a surprising result in that all the methodologies are of the object oriented
paradigm.

It is not clear what behavior modeling technique is incorporated in ARTS
and HRT-HOOD. The behavior modeling for the COBRA methodology is event se-
quencing scenarivs and statecharts. RTO, ROOM, OCTOPUS, and OMT also use
scenarivs and statecharts for behavior modeling. HOOD/PNO, Transnet, and OP-
Nets nuse Petri nets. Selic point out that these modeling techniques are still limiting

[59]. None of these modeling techniques really allow the modeling of the deadlines
of tasks and messages in the real time system. The interaction of hard, firm, and
soft deadlines in a system is not considered by any of the modeling techniques.
None of the methodologies studied in this paper discuss if, or how, deadlines
and behaviors are inherited. If a class has a hard deadline and an object inherits
from this class, is the deadline inherited? Say a subclass overrides a soft deadline
with a hard deadline. How can the system ensure that this deadline will be met

when an inherited operation is performed? Another problem is how is the object

40

behavior inherited? It is not at all clear if behavior is inherited, and if it is, how

parts of the behavior can be overridden by the subclass.

[| ARTS | COBRA | HOOD/PNO rHRT-HOOD7
Concurrency Support N ¥ N N
Control Distrib Central Distrib Distrib
Deadline Management Y N N Y
First Design Decision Objects Concurency Objects Objects
Behavior Modeling Statechart | Statechart Petri Nets Statechart
OCTOPUS OMTs OPNets Room
Concurrency Support Y N Y Y
Control Distrib Central Distrib Distrib
Deadline Management Y N N N
First Design Decision | Subsystems Objects Objects Objects
Behavior Statechart | Statechart Petri Nets Statechart
RTO Transnet,
Concurrency Support Y X
Control Distrib Central
Deadline Management, Y Y
First Design Decision Objects Objects
Behavior Modeling Statechart | Petri Nets

Table 2.1: Summary of Methodologies

2.6 Chapter Summary

Object-oriented design methodologies have several advantages in real time
software design. First, they have some general advantages such as isulating the
impact of changes on the design, and encouraging the reuse of design artifacts and
code. The object-oriented paradigm can model appropriately the environment in

which the software will be nsed, which is very important for real-time systems. The

41

information hiding aspect can allow the real-time system to have several methods for
performing each task. There may also be sume fault tolerance advantages. Lastly,
the formal methods necessary to show the predictability of the system can be easily
and naturally incorporated into the system.

The disadvantage of object-oriented techniques is that most general purpose
object oriented methodologies have inadequate modeling support for real time soft-
ware. Few methodologies even attempt to deal with deadlines, which is arguably
the most important feature that separates real time software from regular software.

In this chapter, we examined ten real-time object-oriented software design
methodologies and compared their strengths and weaknesses. A design methodology
for real time software should help the designer deal with the special problems of the
real time environment. If the environment has hard real time deadlines, then the
methodology should support the consideration of this in the design stage, not just
at the implementation stage. Concurrency is another issue that can be handled in a
number of ways. The design methodology should support concurrency at the level

that is required by the problem at hand.

42

Chapter 3

BEHAVIORAL MODELING WITH STATECHARTS

3.1 Introduction

Most object-oriented systems behavior models are based either on statecharts
or on Petri nets. After reviewing both modeling techniques, we elected to concen-
trate on statecharts. Among the reasons for this decision is the fact that there is
a mapping between statecharts and Petri nets, that is, they have similar modeling
power for most of the common software applications. Personal preference may be
the overriding deciding factor for choosing between the two methods.

Owr first goal was to evaluate statecharts and the problems associated with
extending them to incorporate real-time deadlines. We first looked at the nature
of time measinrements in software. Next, we looked at how simple automata are

changed when timing is added. After that we reviewed statecharts.

3.2 About Time
Before we look at adding timing to automata or statecharts, we should first

look at the nature of time. There are several ways of thinking about time. Each

43

has different attributes and causes us to think about our problems differently.

The first way of thinking about time we would call absolute time. Absolute
time is very specific. Ten o’clock, Tuesday, and July 4th are all expressed in absolute
time. Absolnie time is not what we normally think about when we deal with real
time prograinming. However, most software today can read the system clock and
use absolute time.

When we are in a real time environment we more often refer to time in a
second way, relative time. With relative time, we are concerned with issues such as
did one event happen before another. Time is expressed in terms of before, after,
and within an interval. This can be much less specific than absolute time but more
significant. from the point of view of an application.

The third way of expressing time is in the sense of temporal logic. Here the
view of time is expressed as eventunally sumething happens, or as something will
never happen. This temporal logic view of time is well suited for making arguments
about properties such as safeness and liveness.

Clearly all three of these views of time have a place in real-time software.
The first view is no different than exists in non-real-time software. That is we can
call functions that read the system clock and compare it to a valne. The second view
of time is more of a real-time view. This is the kind of timing we are attempting to
add into the object behavior models. Finally, the temporal logic view of time is an

important view that we need for reasoning about our designs. Adding this timing

44

alone does not make the software real-time software.

3.3 Timed Automata

Any automata from simple state machines to Turing machines can be mod-
ified with timing. This can be done by simply restricting the state transitions so
that they can only be taken during specified time intervals. This simple change has
far reaching effects that include state explosion, intractability, and undecidability.
However, real-time systems require these timing constraints for understanding and
verifying the critical timing interactions.

One of the best discussions of timed automata is that presented by Alur
and Dill [3]. Here the timed automata are explained using sets of resetable timers.
These timers can be reset as an action on a state transition or can be used as a
condition on a state transition. Figure 3.1 shows an example of a timed automata.
In this example, the transition from state Sy to state S; occurs when the symbol a
is read by the antomaton. This transition causes the timer x to be reset to 0. The
transition from state Siback to state Sy is constrained by the condition (x<2)? In
this example the transition will be taken if the symbol b is read Lefore 2 time units
have past after reading the symbol a.

There are several problems and issues addressed in the current literature for

timed automata. These include:

e Timed antomata suffer from state explosion when applied to realistic problems.

45

b,(x<2)?

Figure 3.1: Example of a timed antomata.
e Analysis of timed antomata for properties such as reachability. safeness, live-

ness, and others, is often intractable.

e There is no agreement on the number and kind of clocks nsed in the automata.
e There is no agreement on discrete versus dense (continions) time.

The state explosion issue is similar to the problem that led to the introduction
of statecharts. The idea of a hierarchy and conciurency can be used to control
the exponential state growth of most interesting problems. However, timing can
cause even faster state growth, because each event can cause different transitions
depending on the amount of time that has passed.

The tractability of timed antomata is significantly more complex than that
of regular antomata. The issue of reachability. which can be fairly straightforward

in a simple state machine, is many times more complex in timed state machines.

46

One example is the simple state machine that has an unreachable final state when
an included timing constant is not an integer [37], [38]. Trying to show that a timed
automata is empty (no strings reach the final state) is undecidable.

The number of clocks used in the automata is also an issue. Several authors
recommend using multiple clocks [3], [5], [37], [38], and [46]. Others use the single
clock model [30], [33]. and [43]. The multiple clock models can be reset. by an action
or event. And some multiple clock models require that the clocks run synchronously
and others do not. A model with multiple clocks that does not require synchronous
clocks will definitely have more power when modeling a distributed system.

The last, issue is that of discrete versus dense (continuous) time. If the clocks
increase monotonically by an integer amount, then the clocks are discrete. Some
argie that dense time is needed for most real-time sitnations. Several hybrid models
that incorporate both times have been proposed [4]. It dues appear that if the integer
valiie of increase in a discrete clock is small compared to the values that were tested
for. than we would not be able to observe a difference between discrete and dense
time.

There are several solutions for getting around the problems of timed au-
tomata. Most involve restricting the antomata in sume way so that the resulting
antomata can be easily analyzed. One example of this restriction is the Alternating
RQ timed antomata [37]. Here the timed antomata is restricted to one that has a

finite number of clocks where each clock can be queried only once after it is reset.

47

Thus, on any path through the antomata the clocks should alternate between resets
and queries. Using this restriction it can be shown that the resulting automata are
tractable. However, this also results in more states, as extra states are necessary
just to keep the clocks understandable.

While sume of this work on timed automata is theoretical in nature, the
problems of intractability, undecidability, and reachability will also appear in timed
statecharts. Thus we need to look clusely at these solutions and see how we can
incorporate them into future models. These solutions can be incorporated both
directly (via a rule for the models) or indirectly in the way we structure the modeling
technique. In any event, we should consider the above problems when looking at

timed statecharts.

3.4 Statecharts

Harel's statecharts [29] are extensions to state machines that incorporate the
concepts of hierarchy, concirrency, and communications. Statecharts, which are
also known as Harel Diagrams, have become one of the most important tools for
specifying and analyzing complex systems. They are now being used in a wide
variety of tools.

Statecharts originated while examining the problems with specifying reactive
systems. These systems are diffienlt to specify because they must react to a wide

range of internal and external stimmli. This stimuli and the resulting actions are

48

complex and often have timing constraints. As a result, the traditional state ma-
chines are unmanageable, due to the exponential growth of the number of states
needed to specify even moderately sized problems.

The exponential growth of state machines is a side effect of their limitations
when describing concirrency. State machines consist of states and transitions. In
a finite state machine. only one state can be active and all the others are inactive.
Transitions are directed connections between two states. Each transition has a
associated event and action. When an event arrives a transition is taken from the
active state to another state and the associated action is performed. As the number
of possible conditions of the system grows, the number of simple states necessary
to represent each of these conditions grows and the number of connections between
all the states grows. Every event that can happen must have a transition (fixed or
implied) from every state. Events that are not explicitly defined for a state must
have an implicit transition, such as transition to an error state or ignoring the event.
Statecharts are an extension to the basic state machine that uses concurrency and
hierarchy to eliminate the need for many states and transitions.

The concept of generalization hierarchy is incorporated into statecharts using
superstates and substates. A substate is contained by a superstate. If the substate
1s active then the superstate is also active. Thus, more than one state is active at a
time. The details of a superstate can be ignored by zooming out, and looking only

at the external interactions of the state. In the same manner. we can zoom in and

49

look only at the internal of the superstate, thus allowing vnrselves the ability to nse
hierarchy to concentrate only on the level of detail needed to solve the problem at
hand.

A superstate can also allow more than one substate to become active at the
same time. This allows concurrency in the system design. Concurrent states, shown
together but separated by a dotted line in Harel diagrams, helps restrict the number
of states necessary to build the system. The conciurrent states can be synchronized
by having transitions that cause state changes in all parts of the concurrent states.
Otherwise the states are unsynchronized.

Communication between the states is based on the broadcast mechanism.
There are several shorthand conventions necessary for keeping the diagrams unclut-
tered. A transition to a superstate implies that the marked default substate is the
state entered. A transition from a superstate implies that, when the condition for
the transition is encountered, the transition is taken no matter which substate is
active at the time. Transitions from substates and to substates are also allowed.

Figire 3.2 is an example of a simple statechart. Entering state A automati-
cally enters substates B and D simultaneously. If the event that triggers T3 occurs
then state D wonld cease to be active and state F would become active. If state
F is active and the event that triggers T7 occurs. then state A becomes inactive,
regardless of which of states B and C were active. Likewise, if transition TS is taken,

state A becomes inactive no matter which substates were active.

50

.
)L

-
N

TS

T4

!

Figure 3.2: Statecharts Example

51

The result is that statecharts are a powerful tool used to visualize the states
of a complex system. This tool allows us to concentrate on only the pieces of the
problem that we need to at any point in time, yet result in a complete overall picture
of the system.

Several extensions have been added to statecharts since they were introduced.
One example of this is the extension of statecharts to be a graphical language for
the programming of CNC machines [28]. In this example, the statechart is used
as a graphical user interface (GUI) to create programs and to program numerical
controllers of machine-tools (CNCs). The paper claims, but does not show, that
the statecharts can be translated directly into CNC programs that have real-time

considerations.

3.5 OMT Statecharts

An important variation of statecharts is the vne used by Rumbaugh in OMT
[54]. This extension is one of the most complete from a design consideration. It
includes the concepts of conditional events that trigger actions, state activities, and
lambda transitions.

One of the key features of OMT statecharts is the specification of the transi-
tions. All the transitions are controlled by a criteria that includes an event, condi-
tions, and actions. This is written as cvend (allribule)[condilion] /action and attached

to each transition as a label. The event is the event that triggers the transition and

52

the attributes are information passed alung with event, but separate from it. For
example. the event can be a signal from the keyboard controller signalling that a
key was depressed. The attribute could be the information on which key was de-
pressed. In many cases, the event is really an event-expression that is a boolean
expression describing atomic events. The events can be single events (say event a),
a combination of events (a V b, a A b), or other special events (time-outs, A events,
negations, etc.).

The condition in an OMT statechart transition label is an expression that
describes the set of conditions necessary to enable the transition. This is usually a
description of other states that must be active (or inactive) for this transition to be
enabled. Events that occur when the condition has the transition disabled do not
canse a state change.

Actions are events created by the transition. There doues not appear to be
any limits on how many events can be generated or what kinds of events can be
generated.

One feature of OMT statecharts that is very different from Harel's statecharts
is the activities that occur inside the states. We can specify activities that will
happen when a state is entered. Likewise, we can specify activities that will happen
when a state is exited. We can also specify activities that will happen when certain
events occur, even if that do not require, or cause a state change. These activities

are specific. and have durations. As a result we can specify lambda transitions that

53

will oeenr, cansing state changes, based on the activities in the state completing.

On one hand these state activities are convenient additions to statecharts.
Many activities that will be performed in a state, can be abstracted to a high level
entry, exit, or event activity. However, these activities may require further reduction
into a statechart as we move into lower levels of design abstraction. It is important
to note that these activities do not give OMT statecharts any more modeling power
over any other statecharts method. Anything that can be modeled using activities
can be modeled using substates in the statecharts.

One important benefit of using the OMT method is that a designer is strongly
reminded that states do something and are not just parking places. Activities are
performed inside states. That activity may be to perform functions, write to files,
sleep, or wait for a key to be pressed, but it is still duing something.

There is une other difference between OMT statecharts and other methods.
There is an underlying assumption in most statecharts that all transitions are in-
stantaneons. When an event occurs, the transition does not take any time to change
states. However, in OMT statecharts, a state can have exit activities, that take time
to be performed. While this may not be a problem in non-real-time software, it adds
a definite complication to real-time systems.

Fignre 3.3 shows an example of Rumbangh’s OMT statecharts. As we can
see. the states can have activities in them. These can be regular, entry, and exit

activities. Further more there can also be activities that are triggered Ly external

o4

s
State1 , . . State2
dvaivitg event1(attribs1)[condition1]/action1
eniry/activity2 —
exit/activity3
event/activity4

SR | ./

Figure 3.3: Example of Rumbaugh’s OMT statecharts.

events. Transitions are triggered by events with conditions, which cause actions.
Activities are similar to actions except that activities take a significant time to com-
plete. Actions on the other hand are so quick to complete that they are considered
instantaneous.

Hooman et.al. used an axiomatization formalism to make formal assertions
about the properties of statecharts [31]. In their paper, the authors show how logical
specifications can be added to the statecharts in order to make formal assertions
about safeness and liveness properties.

Another example of formalism being added to statecharts is the Syntropy
method of Cook and Daniels [18]. They argue that the graphical notations of stat-

echarts, while powerful, often lack expressive power. To overcome this, written

%)

words are often added to statecharts, but the words are themselves often ambign-
ous. Something more formal is needed.

The Syntropy method is based on OMT. This begins by associating each part
of the OMT notation with a precise mathematical meaning. For example, a one to
many association is interpreted precisely as & mathematical function mapping the
objects of the first set into the objects of the second set. This can be a very simple
function, a € b, or a much more complex function.

In their use of statecharts only events, cause state changes. The design must.
specify which objects are affected by what events, when events can happen, and
what are the consequences of the events. To do this, each state has a list of the
events to which the state will respond. Transition guards control when states can
respond to events (change states). Events that are on the list but can not trigger
state changes are considered nundefined. It is not clear why they allow events on the
list that would be considered undefined. nnless it was to enable them for substates.

Figire 3.4 is an example of a Couk and Daniels statechart. This example
shows a simplistic traffic light controller that allows the traffic light to be in a reset
state where all the yellow lights flash or in the normal functioning state (Running)
where the lights cycle thorough their sequence. These states are switched between
by the events Reset and NotReset. The rules of this kind of statecharts say that
an event that is not on the list of events for the ciurent active state, cannot be

generated. The section at the bottom of the statechart labeled ‘Allow’ shows what

56

i Traffic-Light AN

Yellow- Running

Flash

NotReset

Allow:
Reset

\ NotReset /

Figure 3.4: Example of Cook and Daniels Statecharts Formalism

events this statechart will accept. In this case it is the events Reset and NotReset.
Couk and Daniels describe this as an implied contract that requires the design
to enswre that all events are allowed before being generated. This is a sumewhat
limiting restriction.

Once generated, the events can cause one or more of several consequences.
First they can canse a state change in the statechart. They can also cause a change
to the object’s properties, or they can cause a change to the membership associations

of the object. Also, they can generate other events. And, lastly. they can cause the

o7

termination of the object. In all cases, the consequences of the event can be clearly

stated and precisely described.

3.6 Timed Statecharts

One of the significant shortcomings of statecharts for real-time systems is
their inability to describe and model timing constiaints. There are several ways to
introduce timing into statecharts. One way was proposed by von der Beeck [65], who
added the concept of timed transitions to statecharts. A timed transition has an
upper and lower time bound for the transition; that is, the event must be active for a
minimum amonnt of time (the lower bound) before the transition can be taken, but
it must be taken before the maximum amount of time elapses (the upper bound).
This allows the introduction of the concepts of delay and time-out into the model.

The formal syntax of the transitions are as follows:

c[e]/a for untimed transitions
([c] Jor I)/a for timed transitions
where ¢ is an event, ¢ is a condition, a is a sequence of generated actions and events,
and / is a time interval {/,u}, that specifies an upper bound u, and a lower bound
[, for the duration of the time interval. Using the timed and untimed transitions,
the real-time system characteristics of delay, time-out. and preemption can all be

modeled. In this model, the transitions triggered by events are always untimed.

58

([true] for {t,t}) e

A IS

-

Figure 3.5: Example of a timeout. condition

This timing technique does appear powerful in specifying delays and timeonts.
An example of a time ont condition is shown in figure 3.5. If state A is active and
event ¢ occurs before 1 time units pass. then state B becomes active. However, if (
time units pass before event. ¢ occurs, then state C becomes active.

Another example is the extension of statecharts into objectcharts [16]. Here
statecharts are extended with default states, global timing. and timed transitions.
The timed transitions are the same as those above. Each state in an objectchart
that has hierarchy, must have a defined start state. This is the same as Harel's
default state.

Objectcharts require a global clock. The global clock needs to be available to
every object. Also all the states in the objectchart need to have access to the clock.

How this wonld be handled in distributed systems is not clear.

59

Lastly, objectcharts uses timed transitions for timing. Transitions can have
specified minimnum and maximum delays. Any objectchart transitions can use time

as a firing consideration.

Another approach for introducing time into statecharts is statecharts+, which
are based on the model of timed automata [66]. Like the timed statecharts, stat-
echarts+ have timed state transitions. In addition, statecharts+ also have timed
states. However, there is a difference in the behavior of these timed states and timed
transitions compared to the above.

The timing constraints on the states contain upper and lower bounds. For
example, a state may have a time specification like [I,u] where [is the minimum
amonnt of time the state must be active before a transition can be taken and u is
the maximuum amonnt of time that a state can be active before transition must be
taken. It is not clear what happens if the state times ont and no transitions are
available.

The statecharts+ timed transitions are the same as the previous timed tran-
sitions. The timing is used to restrict when a transition is enabled. If an event
occurs when the transition is enabled it must be taken. To accomplish this, a set of
clocks must be established and driven by a master clock. The clocks for a transition
can be reset (as the resnlt of an action) but the clocks for the states can not.

An example of this is shown in figire 3.6. Here state A has a timing constraint

where it must stay in the state for I time units, and must leave the state by u, time

60

Figure 3.6: Timed Statecharts+ example

units. The transition taken when event ¢ occurs between [, and wu; time units leads

to state B.

3.7 Evaluation and Analysis

To make a detailed analysis of the way statecharts are nsed to describe and
analyze the behavior of object-oriented objects, we chose three methods to study.
We chose OMT. Coleman. and Cook and Daniels. We chose Rumbanugh et.al. [54]
OMT, because it is a popular method that is well dociumented. We chose Coleman
et.al. [16] and Cook and Daniels [18] to compare the structure of their transition
specifications.

By analyzing the strengths and weaknesses of these three methods. we will
have a better understanding of what features are desired in a statechart behavioral

description.

61

The OMT statecharts can have very detailed states that specify what activi-
ties occir when the state is active. In this way, OMT statecharts are different from
Harel's original statecharts. This does cause a problem with the assumption that
state transitions occur instantaneously. In OMT, there are entry and exit actions
that take time to be performed. In non-real-time software. this is not a problem.
However, in real-time software these actions need to be carefully considered and the
time to perform them accounted for.

The activities in an OMT statechart could be considered a high level textual
description of the lower level states in a statechart. For example, figure 3.7 a shows
a detailed OMT statechart. In figure 3.7 b there is an equivalent mapping of this
to a Harel statechart. Rumbangh et.al. advises using entry and exit activities when
all the transitions into or out of a state cause the same actions.

The Cook and Daniel method gathers the common information about the
transition specifications into each state. Where it is necessary, formal mathematics
are added to clarify the specifications. Since all the common information for the
transitions are specified in one place, it is fairly easy to analyze the behavior of
the statechart. The transitions only need to carry the information unique to each
transition.

The Coleman method has all the information for the transitions in the transi-
tion preconditions and pustconditions. This is not as easy to follow as the Cook and

Daniels method. For instance. it is more difficnlt to understand when transitions are

62

@tate1 k s/tate2 N
entry/acti event
—®exit/act2 R
\ £ N w.
a.
ﬁatm W

state 1.2
act?

Figure 3.7: Comparing OMT statecharts with regular statecharts

63

affected by a condition change. The use of transition conditions makes it easier to
add new transitions and states, thus this methodology facilitates design iterations.

Two different ways of representing time appear in these three methods. OMT
nses absolute time only. Here there are no local clocks, but the system clock can
be read. Cook and Daniels also uses only absolute timing. In this method, there
is only a global clock that every object can access and read. This is rudimentary
timing and can only be used to restrict two processes from overlapping. To be really
useful for real-time programming both methods need to include expanded timing
information. The Coleman method uses relative timing. In this case, a local clock
can be started when a state is entered. This clock can then be used as a condition
for state changes and triggering events in the model.

Another way of comparing models is to look at how the objects and states
communicate with one another. There are two basic models: the broadcast and
the client server model. In the broadcast model, all states are aware of all events
and conditions generated. If a state dues not change when an event occurs, it is
ignored. In contrast, the point to point or client server model sends the events only
to specific states. Each state must know what events it expects and what transitions
are associated with each event. Undefined events are not allowed. OMT and Cook
and Daniels use the broadcast communication method. Events can occur in parallel.
and ocewr instantly everywhere.

There are paradoxes that can occr when broadeast is used, but special rules

64

a/b

Figure 3.8: Example of broadcast communication paradox.

are put in to control them. Several examples are shown in [31]. These problems
ocenr because of our assumption that all the transitions occur instantaneously and
similtaneously. Consider the case in figure 3.8 where in concurrent parts of the stat-
echart event a triggers a transition that generates action b. In the same statechart,
the occurrence of event b triggers a transition that generates action a. At this point
the occurrence of either event a or b will cause the other to occur instantaneously.

The Coleman method nses the client server form of communication. In this
model, all events happen instantly but sequentially. Events are only sent to specific

states. Event traces are used to map out the scenarivs. The paraduxes of the

broadcast method are avoided.

65

” OMT I Cook and Daniels I Coleman et.aﬂ
Concurrency implicit, implicit implicit
Expression of time Absolute Absolute Relative
Real-time Yes Yes Yes
Communication Broadcast, Broadcast Client Server
Clocks Global Clock Global clock Local clocks
Strncture of Transitions Transitions Transitions
timing and states

Table 3.1: Comparison of Three Methodologies

Finally, we summarize the three methodologies examined above. OMT is
less graphical than the other methods. Much of the information for the behavior is
recorded textually inside the states. When this is used correctly it can be powerful,
however, it dues not increase the modeling power of the method.

The Cook and Daniels methodology is the easiest to analyze since information
is gathered in a table in the states. But for the same reasons it is more difficult
to design with. It is diffienlt to add new transitions and events must be carefully
specified before being generated. Conciurency is implicit and communication is
broadcast to leave more freedom to the designer.

The Coleman methodology is easier to design with. for the same reason that
Cook and Daniels is not. That is, transitions can be added with relative ease.
However. this method does not facilitate analysis. Each transition must be examined
individnally diring analysis. It has fair expression of timing characteristics, but

could be better with timers. Coleman has also clearly addressed the communication

issite. It appears that this method and the Cook and Daniels method have the same

66

modeling power, and this suggests that it may be possible to transform between
them to combine the easier design ability of this method and the easier analysis of
the Cook method.

While sume of the methods here discuss part of the relationship of the behav-
ior model to the object model, none of the methods details how this should happen.
There is no discussion of the relation of composition of objects or inheritance and
the behavior of the statecharts. In OMT, Rumbaugh skirts the issue by advising
that only objects with meaningful dynamic behavior should be modeled with a stat-
echart. Rumbangh also advises that events in the statecharts are the methods from
the object model. Clearly, more work needs to be done exploring the link between

the object and behavioral models.

3.8 Chapter Summary

The behavior models used in most object-oriented design methodologies are
either statecharts or Petri nets. In this chapter we concentrated on statecharts,
looking at the problems associated with incorporating real-time deadlines into the
behavior models.

First we examined the difficulties in adding deadlines into simple automata.
From this analysis we found that time constraints add a high level of complexity to
simplest. of antomata. These time constraints often make it difficult to prove simple

antomata properties, such as showing that every state is reachable.

Next we examined three methods of adding formalism to statecharts. We
examined the methods of Cook and Daniels, Coleman, and Rumbaugh’s OMT.
These three methodologies were similar to one another in most respects. All lacked

support for inheriting deadlines and none supported only timed state automata.

68

Chapter 4

TIMED STATE STATECHARTS

4.1 Introduction

All the methods of adding timing to statecharts in the previous chapter used
or included timed transitions. We wondered if timing could be specified in the
statecharts using only timed states. In some cases, using only timed states results
in a model that is easier to design with, is more extensible, and that better represents
the deadlines we are trying to model.

In the timed state methodology the deadlines are modeled with count down
timers. Upon entering a state with a deadline a timer is started. If the deadline
expires before the state has been left, an exception or time-out event is created.
This real-time behavior modeling methodology can be easier to evaluate than the

timed transition methodology.

4.2 Timed Transition Problems
In the previous chapter, timing was added to statecharts by making time a

condition on a state transition as follows:

69

ele]/a for untimed transitions
([e] for 1)/a for timed transitions
where ¢ is an event, ¢ is a condition, a is a sequence of generated actions and events,
and / is a time interval {/,u}, that specifies an upper bound w, and a lower bound
[, for the duration of the time interval. Another approach to modeling time in the
state transitions is to simply add a time interval to every transition. Transitions
that we want to behave as untimed transitions would have a zero to infinity time

interval. The formal syntax of this transition model would be:
e([e] for 1)/a for all transitions

where ¢ is an event, ¢ is a condition, a is a sequence of generated actions and events,
and / is a time interval {/,u}. that specifies an npper bound u. and a lower bonnd
[, for the duration of the time interval. To model all the sitnations that can occur in
real-time systems we will need some special events such as a A event or a time out
event to trigger a state change. This gives this model all the power of the previous
model plus sume as events can now trigger timed transitions.

There is one important ambignity that is treated in different ways in the
literatnre. How the npper bonund of the time interval is interpreted is an important
difference. In sume cases, the upper bound is treated as a gate that simply turns

off the ability of the transition to be taken. This is called wecak time semantics.

70

For example, events that occur after the upper time bound has past are treated
as any unexpected event would be. In the other case. the upper time bound is a
requirement. Here the transition must be taken before the time limit expires. This
is called sirong time semantics. Part of the analysis of the system would be to show
that the event was indeed generated before the time limit expired.

Like the upper time bound ambiguity there is a similar ambiguity concern-
ing the lower time bound. One way to consider the lower bound is that it is the
specification of the amount of time, since entering the state, that must pass before
a transition can be considered. In other words, if event ¢ occurs before time [, it
is ignored, and if it occurs after time [, the transition is taken to a new state. A
different way of thinking about the lower time bound is the amount of time the
event must be true before the transition can be taken. Here the timing starts only
when the event (with the conditions) becomes active and if the event stays true
for the minimum time, the transition can then be taken to the next state. This

nondeterministic form is not found often.

4.3 Timed State Statecharts
The timed statecharts above all have sume disadvantages. First, there is
ambignity in the meaning of the common implementations. In most of the imple-

mentations, it is not clear if the model uses weak or strong time semantics. Second,

there can be obscure design flaws. To overcome these problems we look at mov-
ing the timing information from the transitions to the states. A further refinement
where time intervals are changed to state timers, with strong time semantics, re-
sults in a new design method that results in better models. We call this Timed
State Statecharts or TSSC.

This new timed statechart method is similar to normal state machines in
that all transitions are freed from timing constraints. If an event occurs, and the
conditions are true, the transition is taken. States can have timers, and substates
are subservient to superstate timers. When a state timer counts down to zero a new
event is generated called a state time-out. The time-out event is used to transition
to a new state. In sume cases, additional states are necessary to model the behavior
of the system. In sume cases these are dummy or place holder states. However, these
extra states are far frum state explosion, and in fact serve to clarify the design.

The following additions are necessary create TSSC from statecharts:

1. States can have a timer that is reset to its starting value whenever the state
1s entered. States without timers can be considered states with timeis set to

infinity. The notation nsed is State[t].

2. Every timer in the system has the same period. but incorporates whatever

granularity is needed by the state. This incorporates the idea of the master

clock, but allows us to use hour, minute, second, or even microsecond timers

if that is what the design calls for.

3. When a state timer counts down to zero, a time-out event is created. A

transition that nses this event should exist in the statechart.

4. All transitions are untimed and will be taken if the state allows the transition.

This occnrs regardless of the state timer.

As an example of how TSSC works, we use the gas burner example of [66].

The specification of the problem can be stated as follows:

e A leak should be detected within one second.

e When a leak is detected, the gas should be turned off.

e After 30 seconds the gas can be turned on to see if the leak still exists.

In fignre 4.1 the Statecharts+ solution of Wang and Chen is shown along
with our TSSC solution. As we can see the Statechart+ solution uses both timed
states and timed transitions. The default state is "Leak (not leak). If a leak occurs
the event Leak changes to state Leak[0,1]. In this state the leak must be detected
within one second. so the state Leak has a time limit of one second represented by
the [0.1]. The shutdown transition must be taken within one second. This changes

to a new state which Wang and Chen unfortunately gave the same name as the

73

default state "Leak. After 30 seconds the gas can be turned on to see if the leak
still exists. This is pruportedly shown by the transition Leak[30, | back to the state
Leak. In this case the timed state (Leak[0,1]) may be redundant and if eliminated
would not alter the behavior. Also the unfortunate use names in this example makes
it difficult to follow.

The TSSC solution uses two timed states and one untimed state. State Gason
is a super state of timed state Leaktest. Leaktest cycles performing a leak test every
minute. If a leak is detected event Leak causes a state change to state Gassoff and
canses action shutdown to occur. When state Gassoff times out the transition to
state Gason occurs and action Fireup is started.

One advantage of the timed state statecharts is that the time bound ambi-
guities are handled explicitly. An example of this is shown in figure 4.2. In figure
4.2a. the timed transition statechart is shown. In this example if state S1 is active
and event e occurs between time x and time y, then state S2 will become active. As
discussed earlier the weak /strong time semantic ambiguity exists in both the upper
and lower time bounds. In figure 4.2b, the timed state statechart is shown in the
case where event ¢ mmst occur at or before the upper time bound. In part ¢ we
show the case where the transition is disabled if the upper time bound is past before
event e occurs. In this example, we only consider the more common lower bound
where the transition is not enabled until the lower time bound has past. A similar

expansion can be done to incorporate the other lower time bound ambiguity. As we

74

Leak[0,1]

Shutdown Leak
[0,1] [30,]
d.

-
b

Leak/Shutdown Time-out/Fireup

Gassoff[30]

Figure 4.1: Gas Burner example, a) Statecharts+ and b) TSSC

can see, these ambiguities are explicitly defined when using timed state statecharts.

The ability of timed state statecharts to explicitly resolve ambiguities does
not diminish their ability to model any desired behavior. As shown in figure 4.3, we
see how to model a set. of states where there is a combination of timed and untimed
transitions. In this case figure 4.3 a shows an example where when state S2 is
active, a timed transition would make state S1 active and an untimed transition
would make state S3 active. Thus if event e happens between times x and y then
state S1 becomes active. If event el happens at any time then state S3 becomes
active. Fignre 4.3 b shows how TSSC would preform the same tasks. State S2 is
shown as using nested states. The default state is TS1. If event el occurs at any
time state S3 (not shown in figure 4.3) would become active. If state TSI is active
for x time, a time out occurs that makes state TS2 active. Now if event e occurs
state S1 (not shown in figire 4.3) would become active. If state TS2 is active
for time y, then a timeout makes state TS3 active, disabling event e but not event
el. Thus by using the hierarchical power of statecharts and the simplicity of timed
states. 1t 1s always clear what behavior is desired.

There are several advantages to timed state statecharts. They are a closer
representation to the real-time systems that we are trying to model. Real-time
systems are often concerned with tasks completing inside a time interval. Timed
states Is a cluser model of this requirement.

Timed state statecharts also do not have any ambiguity in their notation.

76

elx,y]

[1)—(]81 Time-Out
Time-Out
b.
E']33 Time-Out Time-Out | TS
X

Figure 4.2: Ambiguity resolution with timed state statecharts.

7

Time-Out |TS2 Time-Out | 153

[yl

¢e1 "

Figure 4.3: Example of timed and untimed transitions in TSSC

78

This sometimes results in a few more states in the statechart. However, these extra
states will more often than not be swept up by the hierarchy of the statecharts.
Therefore, these extra states are not a problem.

Timed state statecharts will expose poor designs quicker than timed transi-
tion statecharts. One reason for this is that it is easy to examine the timer of the
onter most timed state and then see that the cumulative time of all strings of timer
inside this state add up to less than the outer most timer. We can easily examine
all the timed states inside a timed state and ensure that they are reachable before
the state expires. Further more this can be repeated from the lowest to the highest
level in the statechart hierarchy.

While TSSC have several real advantages, almost all of the important real-
time object-oriented methodologies use timed transitions to model the timing in
their behavioral models. In order to make the next chapters understandable to
the main stream object-oriented researchers, timed transition models will be used

almost exclusively.

4.4 Chapter Summary

In this chapter we examined the modeling power of statecharts with real-time
deadlines, where the deadlines are modeled by timed states. We defined how timed
state statecharts work and used them to model real-time deadlines. These timed

state statecharts were then compared to timed transition statecharts.

79

We firther identified the and discussed the strong time - weak time semantic
problem. We showed where the timed state statecharts eliminated this semantic
problem in the real-time environment.

Timed state statecharts have the advantage of better representing real-time
deadlines. Furthermore, they do not have ambignity in their notation. They can
result in more states being defined, but this is controllable with the statechart
hierarchy. Timed state statecharts also can expose design problems quicker than

timed transition statechart models can.

30

Chapter 5

OBJECT AND BEHAVIOR MODELS

5.1 Introduction

This chapter deals with the relationship between object and behavior models.
The effects of generalization inheritance, aggregation, and relationship associations
on the object models are well known. These associations are a key part of the
difference between object-oriented and other design methodologies. In some object
methodologies the behavior model is not considered until after all the object relations
have been settled.

Object. models have a well defined inheritance notation with clear meanings
associated with it. Behavior models are less defined with no clear notation and no
clear nnderstanding of how to reuse the behavior models. Most methodologies rely
on complete respecification of the statecharts [63].

First, we will examine how the behavior model changes during object model
inheritance. The term inheritance has two meanings in object-oriented terminology.

The first is called subtyping and the second is called redefining of methods. This

81

chapter concentrates on subtyping as it is the more desired form of inheritance as
well as the more restrictive.

There are eight ways that the behavior model can be changed after object
mocdiel inheritance, and still maintain subtyping. Each of these is examined in detail.
These all fall into three major categories, refinement of transitions, refinement of
states, or refinement of attributes. Examples are nsed to illustrate the methodology.

Next, we examine how the object model association of relationship affects the
behavior model. An object model relationship connection shows the communication
paths between objects. There is a corresponding behavior model connection that
defines the temporal nature of the communication path. This allows a clearer and
fuller description of the object relationships. We introduce a new model notation
for clearly showing this relationship.

Finally, we examine the object model aggregation and how this affects the
corresponding behavior model. Object model aggregation causes some form of con-
currency in the behavior model. Through the use of examples we show the resultant
concurrency.

We also show how to incorporate coordinating aggregation in the behavior
model. By introducing another new notation we show how a difficult concept can
be easily and clearly explained in the Lehavior model.

In this chapter, we look at how object models and behavior models are re-

lated in Section 5.2. Second, we lovk at object and behavioral inheritance, including

82

multiple inheritance, in Section 5.3. Next, we look at object and behavioral associ-
ation in Section 5.4, while we explore how these models are affected by aggregation

in Section 5.5. Lastly, we present some conclusions in Section 5.6.

5.2 Object Models and Behavior Models

Object. oriented methodology is the definition of a problem and the envi-
ronment of its solution it terms of objects. These objects have a name, a list of
attributes, and a list of actions (also called operations or methods) that they per-
form. Using the techniques of aggregation, generalization, and relationship these
objects can be combined to create software to control or simulate the system.

Each object has a behavioral model associated with it. In this paper, we
will use the graphics shown in Figure 5.1 to represent the object and behavioral
models. The behavioral model is usually represented as some variety of statechart
[29]. Exploring the relationship of the object and behavior models by considering the
effects of inheritance and aggregation is of prime importance to develop strategies to
make Detter use of object-oriented technology and these aspects have not yet been
explored much.

The statecharts nsed in this paper for the behavior models are Harel's stat-
echarts. Specifically, we use the basic statechart constricts of hierarchy, broadcast
communication, and concirrency. Hierarchy is used to simplify the models and re-

duce the number of transitions that must be shown. Broadcast communication is

83

1
Object Behavior

Model ™ IModel

Figure 5.1: Object and Behavioral Models
assumed tuo make the models easier to construct. For this work we do not need to
use any of the advanced features of Harel’s statecharts. such as the history entry

point or states that have multiple modes of concurrency.

5.3 Object and Behavioral Inheritance

The concept that objects are related by inheritance and generalization is im-
portant in object-oriented technology. A subclass inherits when it takes the proper-
ties of the superclass and specializes by incorporating features that make it unique.
Inheritance is valnable when a class is being rensed from a previous problem or from
a software library. In generalization, objects have their similarities factored out into
a superclass. This leaves each subelass object deseribing only what is different from
the common properties of the superclass.

Coleman point ont that there are two types of inheritance sublyping and

redefining of methods [16]. Subtyping requires that the child class can be substituted

84

for the parent class anywhere. Furthermore, any event trace that would have been
accepted by the parent class must also be accepted by the new class. The set of
event traces are also referred to as the set of value vectors [44]. For subtyping to
hold the set of traces of the parent should be a proper subset of the set of traces
of the child. Note that this set of event traces is not the same as the event trace
diagram that will be discussed later.

Redefining of methods can be seen in ROOMcharts [57]. In ROOMcharts
all generalization is considered redefining of methods for pragmatic reasons. Selic
believes that, even if overriding was disallowed, that it would not be possible to
ensure behavioral equivalence. Both Coleman etal. and Selic point out examples
where subtyping inheritance could not be achieved, even when following a rigid
criteria. The issue of subtyping vs redefining of methods remains an open issue

where finther research is warranted.

5.3.1 Inheritance Behavior
We have identified the following eight different ways that the behavior model
can be affected during inheritance [16, 17, 44]. They are also illustrated on the

following pages.

1. Addition of an extra transition.

2. Retargeting and Splitting of a transition.

85

3. Weakening of a precondition of a transition.

4. Strengthening of a postcondition of a transition.

5. Strengthening of an invariant relationship.

6. Refinement of a state into two or more states.

Addition of new attributes resulting in additional independent states.

=1

8. Modification of a state to change its interpretation but resulting in an un-

changed diagram.

5.3.1.1 Addition of an Extra Transition

The addition of a transition is fairly straightforward. When a transition is
added to the behavior model of the child class it still models the behavior of the
parent. class. but the extra transition adds new behaviors. An example of this type

of inheritance is shown in Figure 5.2.

5.3.1.2 Retargeting and Splitting of a Transition

Retargeting a transition changes the transition to a new internal substate of
the original state. This is often used in conjunction with the refinement of a state
into two or more states below. Here we modify the transition to point to a new

specific internal state of the original state.

86

Figure 5.2: Inheritance that adds a transition to the behavioral model.

87

At the same time, a transition can be split into two or more transitions. These

new transitions can be controlled by different conditions, but the combination of

conditions needs to logically OR’ed into the original conditions. There are two ways

splitting is used: to go to different internal states based on conditions, or to emanate
from different internal states, and generating different events when triggered. For
example, in Figure 5.3 event ¢/ is split depending on condition ¢ or d and retargeted
to state 4 and state 5. Similarly event e¢2 can trigger different events depending on

the substate of state 3 that was active when the event occurs.

5.3.1.3 Weakening of a Precondition of a Transition

A child class can also weaken a precondition of a transition. In this case, the
child class allows the transition to occur more often. For example, in Figure 5.4a,
in the parent class the event el triggers a transition from state s2 to state s3 when
condition cl is true. In part b of the figure the precondition has been weakened so
that event el causes the transition from state s2 to state s3 whenever conditions
cl or c2 are true. Care must be taken here however, as Coleman [16] pointed out,
because it 1s pussibie to create cases where changing a precondition that affects

internal class choices can result in inheritance that is not subtyping.

5.3.1.4 Strengthening of a Postcondition of a Transition
Strengthening a postcondition is similar to weakening a precondition. In

this case, Coleman means setting fewer conditions when the transition is taken in

88

s

@)
e’

N i
a.
51
A Y
el[c] ~ .ﬂ
e2
el
el[d] h /
.
b.

Figure 5.3: Inheritance where a transition is split and retargetted.

89

s1 el[clv c2]

Figure 5.4: Inheritance weakening a precondition.

90

the subclass than the parent class sets. This also has the problem with internal
class choices pointed out in [16]. Coleman clearly use weakening a precondition to
mean the union of additional terms in the condition statement. Likewise they use
strengthening a postcondition to mean the intersecting of additional terms in the
posteondition. It is not clear that this is universal as Lecoeuche and Sourrouille [39]

appear to allow behavior that contradicts this. Both may be correct.

5.3.1.5 Strengthening of an Invariant Relationship

An invariant relationship is an assertion that is always true for a class. This
could be sumething as straightforward as the fact that the attribute ‘miles’ in a class
Truck can never decrease. Again, care must be taken when using specialization that
uses invariant strengthening in order to maintain strict subtyping. The invariants
are usually handled in the functional model. Since this paper will not deal with the

functional model, this relationship will be explored in a future work.

5.3.1.6 Refinement of a State into Two or More States

A state can be refined into two states. An example of this is shown in Figure
5.5. In this case, the behavior will be the same as that of the parent except for
some specific conditions where it will have a finer definition. This may be the most

common form of inheritance.

91

s1 ™
N %

s

Figure 5.5: Inheritance where a state decomposes into two or more states.

92

s

-' @

Figure 5.6: Inheritance where an additional set of attributes is included in the

subclass.
5.3.1.7 Addition of New Attributes
Additional attributes also conld be included in the subclass, as shown in Fig-
ure 5.6, which conld result in a subcelass having additional states that are concurrent

with the original states. This is also a very common form of inheritance.

93

5.3.1.8 Modification of a State
A state can be modified (nsnally by overriding) for better performance. In
this case, the behavioral model does not change. Since the behavior model does not

change, subtyping will be maintained.

5.3.2 A Student System Example

To better illustrate how these inheritance cases apply to a real model consider
Fignre 5.7, an object model for a Student system. Here we see that the class Student
has three subclasses that inherit its properties, the classes Foreign_Student, Under-
grad, and Grad Student. Foreign Student is specialization of the class Student
with the additional attribute of Visa Status. In this model the class Grad Student
is further specialized into two classes, Thesis_ Student and MS Nonthesis. Thesis-
Student. is further specialized into PhD _Student and MS_Student.

The class Student has the behavioral model shown in Figure 5.8, where the
operation admil creates a student in the Admitted state. If the student’s GPA falls
below some limit, the student is placed on academic probation and enters state On-
Probation. When the student’s GPA rises above the threshold, he is placed back
into the admitted state. When the condition program-completed becomes true, the
event get-degree ocenrs and the final state is entered. At any time the student may
withdraw. This is the basic behavior of all objects of the class Student.

Next, let’s look at the class of Foreign Student. In Figure 5.9 we see that

94

Student

Name
Number
GPA

Enroll
Withdraw
Compute_GPA

~A

I

Foreign_Student

Undergrad

Grad_Student

Visa_Status

Limit=2.0

Limit=3.0

A

|

}Thesis_Studem

/

/

A

|

PhD_Student

MS_Student

|

/MS_Nonthesis

/

[

/
/
/

Figure 5.7: Object Model for a Student system.

95

[program_completed]/get_degree
Student e

Name
Number -
GPA

Enroll
Withdraw
Compute_GPA |

On_
[GPAsLimif) Probation) [Withdraw

e

Figure 5.8: Behavior model for the class student.

the object model for the class Foreign Student is specialized by the addition of
some new attributes. The behavior model gets the addition of the concurrent state
containing the substates of Visa-OK and Residence-Problem. This is an example of
inheritance that causes model concurrency.

For subclass Undergrad the behavior model is almost the same as for Student.
As we can see in Figure 5.10 the only change is that the Limit has been strengthened
by replacing the variable Limit with a specific value. This indicates that a GPA of
2.0 is necessary to keep the student off probation.

In Figiwre 5.11 we see the behavior model for the class Grad Student. Here
the changes inclnde the change of the GPA limit and the state Admitted has been
decompuosed into two states, that reflect the additional need for a graduate student
to apply for candidacy. Note that this example, because of the transition out of

Candidate state. slightly violates subtyping. We can accept this when the semantics

96

A

Foreign_Student

Visa_Status

[program_completed]/get_degree

GPA<Limit]

[GPA>Limit] Withdraw

Figure 5.9: Behavior Model for class Foreign Student.

97

A

Undergrad

Limit=2.0

admit

[progra.m_completed]/get_degree

[GPA>2.0] Withdraw

Figure 5.10: Behavior Model for the class Undergrad.

93

of the specification clearly requires it.

In Figiure 5.12 we have the behavior model for the class Thesis_Student. In
this case, the state Candidate has been decomposed into two states Candl and
Preparing_Thesis. Likewise in Figure 5.13, for PhD_Student the state Admitl has
been decomposed into two states. These examples demonstrate the most common

ways of inheritance specialization for the behavior model.

5.3.3 Program Specifications

All the models are related through the program specification. It is the pro-
gram specification that prescribes how the objects are related including their be-
havioral differences. As an illustration of this point, we refer to our student system
example from above. The program specification will include a definition of a stu-
dent. The behavior of the student also will be described as the actions that can
be performed on the object student. For example, the specification might include
statements like, “The student can withdraw at any time.”. or “If the students GPA
falls below the limit, the student will be placed on probation.”, or even “The stu-
dent can not complete the program and get a degree if the student is on probation.”
From these and other statements, the behavior model of the student in Figure 5.8
was created.

The specification also will describe each specialization of the student object.,

siich as the Grad Student object. Here the specification describes the graduate

99

A

Grad_Student

Limit=3.0

1

|

| \j
admit

[program_completed]/get_degree

rd

Admitted

Apply_for_candidacy

Withdraw

/ [GPA>3.0]
M

Figure 5.11: Behavior Model for the state Grad Student.

100

A

Thesis_Student

AN

GPA<3.0
// Admitted LN /u\]
Apply_for_candidacy

On Withdraw
probation

Candidate

[GPA>3.0]
Start_Thesis

/

\ [program_completed]/get_degree

Figure 5.12: Behavior Model for class Thesis_Student.

101

A

PhD_Student

/ Admitted A K] \
*a

Admit1 On bkl
probation
[GPA>3.0]

Apply_for_candidacy

—

Candidate
Start_Thesis

Figure 5.13: Behavior Model for the class PhD Student.

/

\ [program_completed]/get_degree

102

student’s additional behavior of having to apply for candidacy before being allowed
to complete the program and get the degree. It is from these descriptions in the
specifications that the specialized object and behavior models are obtained. Of
course, in many cases, the program specification is ambiguous or incomplete, which

may make the decision about substates more complex.

5.3.4 Multiple Inheritance

One area that is not dealt with much is that of multiple inheritance [44]. One
reason for this is that multiple inheritance can become complicated. While multiple
inheritance can be avoided most of the time, there are occasions where its use can
simplify the design greatly.

When multiple inheritance is used, the object model is relatively straight-
forward. The program specification will show what parts of the each object will
be inherited in the new object. However, the behavioral model is not so clear. To
demonstrate this we use another example in our student system. Shown in Fig-
ure 5.14, our specification states that we can combine the Foreign_Student and the
Grad Student to create a new class of Foreign Grad Student.

In multiple inheritance, the behavior model will inherit the parts of the par-
ent model that contain the most specialized aspects. For example, Foreign Student
and Grad Student are both subclasses with differing semantic aspects, and, we

should inherit the most specialized aspects of each branch. In the case of the

103

Foreign Grad Student, the details that make the Foreign Student different from
Student are inherited. Likewise, the details that made Grad_ Student different from
Student are inherited. Thus, the new model has both the concurrent residency status

states and the states that represent the requirement for applying for candidacy.

5.4 Relationships And State Diagrams

Perhaps the most common object model association is that of relationship.
With relationship objects are associated to one another with links that describe how
they cooperate together in a meaningful way. For example, the object person can
be linked to the ubject company by the association “works for”. The multiplicity
of an association specifies how many instances of one class are related to a single
instance of another.

In general, a relationship implies a coordinated action between two classes
and is a path for object communication. While the object model shows the static as-
pects of a relationship, the behavior model shows the dvnamic and temporal aspects
of the relationship. Usnally two objects in different classes can only communicate
when they are in specific states. This is best exposed in the behavior model.

Coouk and Daniels [18] showed some aspects of the connection between the
object model associations and the behavior model. Thev observed that associations
in the object model may result in conditions on the behavior model transitions. Fur-

thermore they showed how these associations could be given precise mathematical

104

admit

admit
[program_completedj/get degree

[pcog;m;oomple(edwaWW GPA<3.0]

Admitted

Withdraw

Withdraw / [GPA>3.0]

g A

#

Foreign_Student Grad_Student

Visa_Status Limit=3.0

|

Foreign_Grad_Student

admit !
' [program_completed/get degree

GPA<3.0)

Withdraw

e o —

./ [GPA23 o])

Figure 5.14: Example of Multiple Inheritance

105

expressions that resulted in accurate behavior models.

Owr approach to expressing the temporal aspects of relationship is to intro-
duce a graphical connection in the statechart. (In our statecharts we show these
temporal relationships with dashed lines.) These do not represent allowable state
changes, just allowable communication paths. This method of showing the relation-
ships can easily augment, and can be augmented by, the mathematical expressions
used by Cook and Daniels.

For example. in the object model in Figure 5.15 we see that the class Fac-
ulty is related to the class Thesis Student by the relationship Advises. Further-
more, each Thesis Student is advised by only one Faculty, but a Faculty can ad-
vise several Thesis Students. However, this is only half of the relationship, be-
canse there is still a temporal aspect of this relationship not apparent in the object
model. In the behavior model in Fignre 5.15, we see that the Thesis Student can
only engage in the communication with the Faculty when Thesis Student is in the
state of Preparing Thesis. Likewise, the Faculty can only communicate with the
Thesis Student class when the Faculty is in the Research Activity state. At other

times this communication path is not valid and no communication can take place.

5.5 Object and Behavioral Aggregation

Another important concept in the object-oriented methodology is that of

aggregation. Aggregation is a form of association where a class is composed of

106

A

esis Student Faculty

Advises

admit v
=
7

Admitted N

@' pply_for candidacy

Candidate

Withdraw

Advises

research

-actvities teaching

-activites

\[ptogramicompleted]/ge(, degree

Figure 5.15: Example of relationship in the object model and its temporal nature
in the behavior model.

distinct objects in a part of relationship. We think of the subclass as being one
of several dissimilar parts of the superclass. We think of the superclass as being
an entire assembly composed of the subclass components. When the object model
uses aggregation, the corresponding behavioral model is represented by concurrent,
states. Concirrency can also happen within a given state diagram (intraobject
concirrency). This kind of conciurency is not related to aggregation.

A simple example of this can be found in the traffic light controller from

Drusinsky [23]. The specification for Drusinsky’s traffic light controller is as follows:

e There are two directions, Main and Secondary, with alternating lights.

Lights alternate based on a Timneoul signal read from the Timeout variable.

The initial state (All-y) is for all lights to flash vellow. Resel occurring in

All-y state starts On-going. [lesel in On-going retwuns to All-y.

A counter connts the cars waiting in the main direction. The counter can

sense the difference between cars and trucks.

If main is red and four or more cars or one or more cars followed by a truck

are waiting in the main direction, a hidden camera shoots the intersection.

Part of the object model for this traffic light controller is shown in Figure
5.16 and the behavior model is shown in Figure 5.17. In these figures, we see that

the aggregation canses the behavior model to have a more complex nature. Still the

108

Main Controller

reset
activate
deactivate
Camera ounter Light
color
timeout
shoot count turn-green
turn-on reset tturrrrlm-)rlgclzllow
u -
v flash-yellow

Figure 5.16: Object model for traffic light controller
behavior model exhibits concurrent behavior in the camera and counter components,
althongh in this case their states only make sense as nested states within specific
states of the aggregate (camera and counter only work when the main light is red).
Many times, operations in aggregations must be coordinated. The example
in Figire 5.18 shows a document that is composed of sections and each section is
composed of subsections. For legal reasons the document is created in the original

state. However, if any modification is made to the docuument, this must be considered

109

reset reset
On-going \
/ Red-main
Camera [shoo]
@G([timeout]

[timeout]

[new-truck]

[new-car]
/count

[new-car

/

Figure 5.17: Behavior model for traffic light controller

110

as modified.

There are two interesting effects that we wish to explore for this example.
The first is that of modifying a section or subsection. If a section or subsection is
modified, its state must change from original to modified. If it was a subsection that
was modified then the corresponding section must also change state. Likewise, when
any section changes state the entire document must change into modified state. This
reflects the requirement that any change to any section or subsection will result in
the document being marked as changed.

The second effect is where the action of deleting a document or section re-
sults in the deleting of all the lower level parts. Deleting a section causes all the
subsections to be deleted. It would not make sense for a document to be deleted but
for the sections to remain intact. This effect is related to propagation of operations
in aggregations [51].

The modeling of this feature is shown in Figure 5.18 as dotted arrows con-
necting the state transitions. This is similar to the way we connected states for
the temporal part of associations earlier. In this case, the models could show this
relation by setting conditions and using the statechart communication mechanism
to perform the changes at the other levels. However, it is clear that these activities

are needed when the new connections are added to the behavioral model.

111

Document

create
modify
delete

Section

create_s
modify s
delete s

Subsection

create_ss
modify_ss
delete_ss

Figure 5.18: Coordinating Aggregation

112

create

.

create_ss

v

delete s

v

delete ss,

5.6 Chapter Summary

As the demands for complex software increases, so will the need for tools and
methodologies to support this software. The object-oriented methodology is one of
the most promising for increasing the ability to create, maintain, and understand
complex software. However, the relationship of the object model and the behavior
model in object oriented methodologies must be examined.

Having an object model implies that there is a corresponding behavior model.
When the object model is related to other objects by the use of association, aggre-
gation. and generalization there are corresponding relationships with the behavioral
model. The simplest object association is that of relationship. The resulting behav-
ioral relationship is implemented by the use of conditions on the state transitions.
Association implies a communication path between objects. The behavioral model
further strengthens this concept by exposing any temporal relationships in this com-
munication path. Thus, we can clearly show when objects must be in specific states
to communicate.

The aggregation relationship is a more complex form of association. The sim-
plest behavioral model associated with object model aggregation is that of concur-
rency. In this case, object model aggregation results in behavior model concurrency.
However, behavior model conciurency is not always the result of object model ag-
gregation. In other cases, the behavioral model is more complex. but concurrency

is always involved. Also, at times the need for coordinated behavior is necessary.

113

Object model generalization results in the most complicated behavior model.
When the object model of a superclass is inherited, the behavior model of a subclass
can be one where a new state or a new transition is added. Also, it could result
in a model where a state is decomposed into two or more new states or the model
could have a transition changed where a precondition is weakened, or where a post-
condition or invariant is strengthened. Finally, a state can be modified for better

performance.

114

Chapter 6

THE EFFECT OF DEADLINES ON OBJECT AND

BEHAVIOR MODELS

6.1 Introduction

This chapter closely mirrors the previous chapter. In it we will reexamine
all the issues discussed previously, except that now we will consider how real-time
deadlines would be reflected in the object and behavior models.

First, we will consider how deadlines are introduced into the models. The
deadlines are represented as attributes or invariants in the object model and as time
constraints on the transitions or states in the behavioral model. Since the behavioral
model describes the temporal nature of the system and deadlines are concerned with
the temporal aspects of the system. it is apparent that the behavioral model needs
to be examined closely in a real-time system.

We then examine how the behavior model with deadlines can be changed
during object model inheritance. We will again look a subtyping inheritance since it
is the more desired form of inheritance. But this time our concern is how deadlines
affect oir models.

115

In the previous chapter we saw that there are eight ways that the behavior
model can be changed after object model inheritance. and still maintain subtyping.
Each of these is examined in detail. These all fall into three major categories, refine-
ment of transitions, refinement of states, or refinement of attributes. We concentrate
on the differences necessary for incorporating deadlines.

After that, we examine how deadlines are incorporated into the object model
association of relationship and how this affects the behavior model. Deadlines can
affect the periods when the communication paths between objects are valid. This
can be easily shown in the behavior model connection that defines the temporal
nature of the communication path.

Finally, we examine how deadlines affect the object model aggregation and
the corresponding behavior models. Deadlines can be incorporated into any part
of an aggregation. Since the resultant behavior model is concurrent by nature,
overlapping periods may result.

Because even simple real-time systems with soft deadlines are highly com-
plex when compared to non-real-time software, the object-oriented techniques are
appealing for these systems. However, many problems need to be addressed before
object-oriented methodologies are routinely used for real-time systems. There is
little agreement on how the deadlines shonld be introduced into the object-oriented
models.

In this chapter, we look at real-time deadlines in Section 6.2. Second, we look

116

at object and behavior models with deadlines in Section 6.3. Then, we look at object
and behavioral inheritance. including multiple inheritance, with deadlines in Section
6.4. Then, we examine object and behavioral association with deadlines in Section
6.5, followed Ly an exploration of how these models are affected by aggregation in

Section 6.6. Finally, we present. some conclusions in Section 6.7.

6.2 Deadlines

To use the object-oriented methodology in real-time environments, we must
introduce the concept of deadlines into the methodology. Deadlines are time fac-
tors that constrain the system during the performance of certain functions and are
classified as hard, soft, or firm. Hard deadlines are deadlines which, if not met, will
result in catastrophic failure of the system. Hard deadlines are often used in life
critical systems where a catastrophic failure results in loss of life. Hard deadlines
must be met.

Soft deadlines are deadlines where not meeting the deadline simply means
that the results are invalid and the procedure will need to be repeated before going
on. This conld be as simple as a timeout in a GUI waiting for user Input.

Firm deadlines are similar to hard deadlines except failure to meet a firm
deadline is only serious, not catastrophic. In this charter, we will not make a dis-
tinction between hard and soft deadlines as the distinction is not germane to the

problems we will bhe discussing. Our examples only show generic deadlines to keep

117

them simple.

Deadlines can manifest, themselves in two ways. Iirst, they can put con-
straints on a complete path through a use case. Second. they can put constraints on
the execution time of an operation. We will consider only the later in this chapter.
The first case will be examined later.

Deadlines can also be represented as conditions on transitions. When viewed
this way they are considered as controls that determine when an event must occur
for a transition to be taken. Equivalently deadlines can be represented as a timer

on a state. When it is more convenient to illustrate a point we will use timed states.

6.3 Deadlines in Object Models and Behavior Models

In the object-oriented methodology, the object model contains the concep-
tual description of an object while the behavioral model contains the dynamic and
temporal description of an object. This distinction between the two models allows
s to create complete descriptions of encapsulated objects.

The behavior models used in this chapter are statecharts [29]. Specifically,
we use the basic statechart constructs of hierarchy, broadcast communication, and
concurrency. Hierarchy is used to simplify the models and reduce the number of
transitions that must be shown. Broadeast communication is assumed to make
the models easier to construct. Coneurrency allows the construction of real world

models where multiple things happen at the same time. For this work, we do not

118

need to use any of the advanced features of Harel’s statecharts, such as the history
entry point or states that have multiple modes of concurrency. Most of the time
deadlines will be shown as conditions on the state transitions, where the conditions
appear as a minimum and maximum time in the style of [16] and [65]. Occasionally,
we will use the equivalent style of a timed state, where the deadline will appear as
a single timeont value for the state, similar to [11]. In all cases, we will omit the

units (year, day, hour, minute, etc.) to keep our examples generic.

6.4 Deadline Inheritance

The concept. that objects are related by inheritance and generalization is im-
portant in object-oriented technology. A subclass inherits when it takes the prop-
erties, inclnding the deadlines, of the superclass and specializes by incorporating
features that make it nnique. Inheritance is valuable when a class is being reused
from a previous problem or from a software library. In generalization, objects have
their similarities, which may include deadlines, factored ot into a superclass. This
leaves each subelass object, describing only what is different from the common prop-
erties of the superclass.

In the previous chapter, inheritance was viewed as sublyping or redefining of
methods. Now a more detailed evalnation of the relationship of classes and subclasses
is called for. The most brevalent type of inheritance is that of subtyping. Rumbangh

defines subtyping with the ‘s ¢’ relationship [54, 52]. More precisely, B is a subclass

119

of Alif Bisan A, and B could be used anywhere an A is expected. Here the behavior
model of a snbelass will always be a subtype if it is only extended with new attributes
or methods. Furthermore, he argues that creating a subtype by restriction (adding
a set of restrictions to the base class to limit the subclass) is difficult to implement.
The ‘is a’ relationship is fairly easy to follow, and as Rumbangh points out, if
followed carefully will keep you ont of trouble. Coleman et al. also uses the ‘is a’
definition of subtyping [16]. They present some rules that would allow subtyping by
restriction, but shows examples where after following the rules the behavior model
breaks down and violates subtyping.

Selic argues differently, that behavioral equivalence can not be guaranteed
between parent classes and subclasses [57]. This appears to be a claim for imple-
mentation inherilance, which Coleman treats lightly and Rumbaugh warns sternly
against using. We will not consider this type of inheritance again in this chapter.

Sourronille argnes that subtyping is neither necessary nor sufficient to en-
sire that the Lehavior of a subclass can be substituted for a parent class [61]. He
defines behavior substitutability and shows that if an object’s behavior is behavior
substitutable, then any sequence of events requested accepted by an object will be

accepted by the substitute object.

120

6.4.1 Inheritance Behavior

We consider the effects of deadlines on the behavior model (timed transitions
and timed states) for maintaining the subtyping and the behavior substitutability
relationships. We consider the same eight different ways that the behavior model

can be affected during inheritance shown in the previous chapter.

6.4.1.1 Addition of an extra transition

The addition of a transition is fairly straightforward. It is easy to see that
when a transition is added to the behavior model of the child class, that it still models
the behavior of the parent class, the extra transition Just adds new behaviors. An
example of this type of inheritance is shown in Figure 6.1. This change maintains
both the properties of subtyping and of behavior substitutability. Furthermore, it
would not matter which transitions in the diagram were timed or untimed, or if
the added transitions are timed or untimed. In either case, both the subtyping and
behavior substitutability properties would still hold.

There is one exception, if lambda transitions are allowed. An added transition
fired Ly a timed lambda condition could violate subtyping. This type of firing

condition wonld have to be added carefully during inheritance.

6.4.1.2 Retargeting and splitting of a transition.
Retargeting a transition changes the transition to a new internal substate of

the original state. This is often 1sed In conjunction with the refinement of a state

121

b. Child Object

Figure 6.1: Inheritance adding a transition to the behavior model.

122

into two or more states below. Here we modify the transition to point to a new

specific internal state of the original state.

At the same time, a transition can be split into two or more transitions.

Lhese ners tansitions can be contuolled by different conditions, Wit the combination

of conditions needs to logically OR’ed into the original conditions. There are two
ways splitting is used: 1) to go to different internal states based on conditions, or
2) to emanate from different internal states, and generating different events when
triggered. For example, in Figure 6.2 event e7 is split depending on conditions ¢
or d and retargeted to state 4 and state 5. Similarly event e2 can trigger different
actions depending on the substate of state 3 that was active when the event occurs.

In this case, deadlines can be added as conditions on the transitions. It is
easy to see that an untimed transition can be inherited and split so that if the event
occwrs in the first 5 seconds one path is taken, but after the 5 seconds another path
1s taken. In onr example this would mean that ¢ is the time interval [0,5] and d
is the interval [5.00]. For splitting to work with timing an further requirement is
necessary. The new requirement is that the new conditions not only logically OR into
the original condition, but must also logically AND into the nothing. Overlapping
conditions are not allowed.

Therefore, even with deadlines, subtyping will be maintained by the inherited
behavior. Behavior substitutability will also be maintained as any sequence of timed

event fraces accepted in Fignre 6.2a, will be accepted in Figure 6.20.

123

5
el[c] (83 .a
e’2
)
el[d] " y,
b.

Figure 6.2: Inheritance where a transition is split and retargeted.

124

6.4.1.3 Weakening of a precondition of a transition

Preconditions are the conditions that the caller agrees to satisfy before in-
voking a method. To maintain the subtyping requirement, a child class can only
weaken a precondition of a transition. In this case, the child class allows the tran-
sition to ocenr more often (Figure 6.3). Since timing can be considered a condition
on the transition, then weakening the precondition would mean to change the tim-
ing to allow the transition to fire over a larger time range. This can be done by
either decreasing the lower time bound, increasing the upper time bound, or both.
Subtyping then holds because if a transition time bound of, for example, [4,6] is
weakened to [3,7] then an event trace (5, GetValue) would still result in the same
state transition being taken. Weakening a precondition that contains timing will not
violate subtyping. Behavior substitutability will also not be violated by weakening

a precondition.

6.4.1.4 Strengthening of a postcondition of a transition

Posteonditions are the conditions that the transition activity agrees to satisfy
before completing. A deadline used as a posteondition, would be the time limits that
the activity is completed by. For example, a postcondition of [3,7] means that the
activity will complete in between three and seven seconds. This can be strengthened
to [4.6] in the inherited bLehavior model and subtyping will be preserved. Behav-

1or substitutability will also be preserved when deadlines are strengthened in the

125

Figure 6.3: Inheritance with weakening of a timed precondition.

126

postcondition.

6.4.1.5 Strengthening of an invariant relationship

An invariant relationship can be strengthened and the subtyping require-
ments will still hold. An invariant relationship is an assertion that is always true for
a class. This conld be something as straightforward as the fact that the attribute
malage-driven in a class Truck can never decrease. Invariants do not seem to have

any interpretation as deadlines.

6.4.1.6 Addition of new attributes

Additional attributes can be included in the subclass which could result in
a snbclass having additional states that are concurrent with the original states,
as shown in Fignre 6.4. Here timing can be included <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>