You are here
Lithium intercalation into PAN-based carbon fiber materials
- Date Issued:
- 1996
- Summary:
- High energy density PAN-based carbon fiber anode materials for lithium-ion type batteries were developed. Commercially available organic precursors were thermally converted to carbons. The effects of precursor material, carbonization temperature, heating ramp rate, soak time and gaseous atmosphere during the thermal treatment on the electrochemical performance of the carbon fibers were studied. In order to evaluate the electrochemical performance of the carbon fibers, test cells were assemble using the carbon materials prepared in the laboratory and intercalation/deintercalation experiments were performed. The results indicated that the highest reversible capacity and lowest irreversible capacity loss was obtained for carbon fibers carbonized at 1100C at fast ramp rate of 26C/min. X-ray diffraction experiments revealed a relation between the capacity and the irreversible capacity loss on first cycle, and the size of the crystallites Lc. A phenomenological explanation for this behavior was developed. Using electrochemical impedance spectroscopy the diffusion coefficient of Li in the tested carbon fibers was calculated. In addition, the influence of electrolyte composition (solvent and salt) on the reversible and irreversible capacities as well as on the intercalation/deintercalation potential profile was investigated. An electrolyte containing 1M LiPF6 in EC:DEC:DMC (40:30:30 v/o) proved to be most suitable for these carbon fiber materials improving significantly their electrochemical performance. Finally, coin cells were assembled containing the carbon fiber material prepared in the laboratory. They were tested for reversible and irreversible capacity. The coin cells proved that the synthesized carbon anode materials possess high energy density and could be used in commercial applications.
Title: | Lithium intercalation into PAN-based carbon fiber materials. |
129 views
53 downloads |
---|---|---|
Name(s): |
Nechev, Kamen S. Florida Atlantic University, Degree grantor Lipka, Stephen M., Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1996 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 197 p. | |
Language(s): | English | |
Summary: | High energy density PAN-based carbon fiber anode materials for lithium-ion type batteries were developed. Commercially available organic precursors were thermally converted to carbons. The effects of precursor material, carbonization temperature, heating ramp rate, soak time and gaseous atmosphere during the thermal treatment on the electrochemical performance of the carbon fibers were studied. In order to evaluate the electrochemical performance of the carbon fibers, test cells were assemble using the carbon materials prepared in the laboratory and intercalation/deintercalation experiments were performed. The results indicated that the highest reversible capacity and lowest irreversible capacity loss was obtained for carbon fibers carbonized at 1100C at fast ramp rate of 26C/min. X-ray diffraction experiments revealed a relation between the capacity and the irreversible capacity loss on first cycle, and the size of the crystallites Lc. A phenomenological explanation for this behavior was developed. Using electrochemical impedance spectroscopy the diffusion coefficient of Li in the tested carbon fibers was calculated. In addition, the influence of electrolyte composition (solvent and salt) on the reversible and irreversible capacities as well as on the intercalation/deintercalation potential profile was investigated. An electrolyte containing 1M LiPF6 in EC:DEC:DMC (40:30:30 v/o) proved to be most suitable for these carbon fiber materials improving significantly their electrochemical performance. Finally, coin cells were assembled containing the carbon fiber material prepared in the laboratory. They were tested for reversible and irreversible capacity. The coin cells proved that the synthesized carbon anode materials possess high energy density and could be used in commercial applications. | |
Identifier: | 9780591052893 (isbn), 12471 (digitool), FADT12471 (IID), fau:9365 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (Ph.D.)--Florida Atlantic University, 1996. |
|
Subject(s): |
Lithium cells Carbon fibers Electric batteries |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/12471 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |