You are here

Convex identification and nonlinear random vibration analysis of elastic and viscoelastic structures

Download pdf | Full Screen View

Date Issued:
1996
Summary:
This dissertation deals with the identification of boundary conditions of elastic structures, and nonlinear random vibration analysis of elastic and viscoelastic structures through a new energy-based equivalent linearization technique. In the part of convex identification, convex models are utilized to represent the degree of uncertainty in the boundary condition modification. This means that the identification is actually the identification of the convex model to which the actual boundary stiffness profile belongs. Two examples are presented to illustrate the application of the method. For the beam example the finite element analysis is performed to evaluate the frequencies of a beam with any specific boundary conditions. For the plate example, the Bolotin's dynamic edge effect method, generalized by Elishakoff, is employed to determine the approximate natural frequencies and normal modes of elastically supported isotropic, uniform rectangular plates. In the part of nonlinear random analysis, first a systematic finite element analysis procedure, based on the element's energy formulation, through conventional stochastic linearization technique, is proposed. The procedure is applicable to a wide range of nonlinear random vibration problem as long as element's energy formulations are presented. Secondly, the new energy-based stochastic linearization method in finite element analysis setting is developed to improve the conventional stochastic linearization technique. The entire formulation is produced in detail for the first time. The theory is applied to beam problem subjected to space-wise and time-wise white noise excitations. Finally, the new energy-based stochastic linearization technique is applied to treat nonlinear vibration problems of viscoelastic beams.
Title: Convex identification and nonlinear random vibration analysis of elastic and viscoelastic structures.
95 views
45 downloads
Name(s): Fang, Jianjie
Florida Atlantic University, Degree grantor
Elishakoff, Isaac, Thesis advisor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1996
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 182 p.
Language(s): English
Summary: This dissertation deals with the identification of boundary conditions of elastic structures, and nonlinear random vibration analysis of elastic and viscoelastic structures through a new energy-based equivalent linearization technique. In the part of convex identification, convex models are utilized to represent the degree of uncertainty in the boundary condition modification. This means that the identification is actually the identification of the convex model to which the actual boundary stiffness profile belongs. Two examples are presented to illustrate the application of the method. For the beam example the finite element analysis is performed to evaluate the frequencies of a beam with any specific boundary conditions. For the plate example, the Bolotin's dynamic edge effect method, generalized by Elishakoff, is employed to determine the approximate natural frequencies and normal modes of elastically supported isotropic, uniform rectangular plates. In the part of nonlinear random analysis, first a systematic finite element analysis procedure, based on the element's energy formulation, through conventional stochastic linearization technique, is proposed. The procedure is applicable to a wide range of nonlinear random vibration problem as long as element's energy formulations are presented. Secondly, the new energy-based stochastic linearization method in finite element analysis setting is developed to improve the conventional stochastic linearization technique. The entire formulation is produced in detail for the first time. The theory is applied to beam problem subjected to space-wise and time-wise white noise excitations. Finally, the new energy-based stochastic linearization technique is applied to treat nonlinear vibration problems of viscoelastic beams.
Identifier: 9780591052855 (isbn), 12467 (digitool), FADT12467 (IID), fau:9361 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (Ph.D.)--Florida Atlantic University, 1996.
Subject(s): Elasticity
Viscoelasticity
Structural dynamics--Mathematical models
Vibration--Mathematical models
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/12467
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.