You are here

Buckling of composite cylindrical shells with geometric, thickness and material imperfections

Download pdf | Full Screen View

Date Issued:
1996
Summary:
This dissertation deals with the determination of buckling loads of composite cylindrical shell structures which involve uncertainty either in geometry, namely thickness variation, or in material properties. Systematic research has been carried out, which evolves from the simple isotropic cases to anisotropic cases. Since the initial geometric imperfection has a dominant role in the reduction of those imperfection-sensitive structures such as cylindrical shells, the combined effect of thickness variation and initial imperfection is also investigated in depth. Both analytic and numerical methods are used to derive the solutions to the problems and asymptotic formulas relating the buckling load to the geometric (thickness variation and/or initial imperfection) parameter are established. It is shown that the axisymmetric thickness variation has the most detrimental effect on the buckling load when the modal number of thickness variation is twice as much as that of the classical buckling mode. For the composite shells with uncertainty in material properties, the convex modelling is employed to evaluate the variability of buckling load. Based on the experimental data for the elastic moduli of the composite laminates, the upper and lower bounds of the buckling load are derived, which are numerically substantiated by the results from nonlinear programming. These bounds will be useful in practice and can provide engineers with a better view of the real load-carrying capacity of the composite structure. Finally, the elastic modulus is modeled as a function of coordinates to complete the study on variability of material property so that the result can be obtained to account for the situation where the elastic modulus is different from one place to another in the structure.
Title: Buckling of composite cylindrical shells with geometric, thickness and material imperfections.
148 views
63 downloads
Name(s): Li, Yiwei.
Florida Atlantic University, Degree grantor
Elishakoff, Isaac, Thesis advisor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1996
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 175 p.
Language(s): English
Summary: This dissertation deals with the determination of buckling loads of composite cylindrical shell structures which involve uncertainty either in geometry, namely thickness variation, or in material properties. Systematic research has been carried out, which evolves from the simple isotropic cases to anisotropic cases. Since the initial geometric imperfection has a dominant role in the reduction of those imperfection-sensitive structures such as cylindrical shells, the combined effect of thickness variation and initial imperfection is also investigated in depth. Both analytic and numerical methods are used to derive the solutions to the problems and asymptotic formulas relating the buckling load to the geometric (thickness variation and/or initial imperfection) parameter are established. It is shown that the axisymmetric thickness variation has the most detrimental effect on the buckling load when the modal number of thickness variation is twice as much as that of the classical buckling mode. For the composite shells with uncertainty in material properties, the convex modelling is employed to evaluate the variability of buckling load. Based on the experimental data for the elastic moduli of the composite laminates, the upper and lower bounds of the buckling load are derived, which are numerically substantiated by the results from nonlinear programming. These bounds will be useful in practice and can provide engineers with a better view of the real load-carrying capacity of the composite structure. Finally, the elastic modulus is modeled as a function of coordinates to complete the study on variability of material property so that the result can be obtained to account for the situation where the elastic modulus is different from one place to another in the structure.
Identifier: 12444 (digitool), FADT12444 (IID), fau:9339 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (Ph.D.)--Florida Atlantic University, 1996.
Subject(s): Composite materials
Buckling (Mechanics)
Shells (Engineering)
Structural dynamics
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/12444
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.