You are here

Workspace evaluation and kinematic calibration of Stewart platform

Download pdf | Full Screen View

Date Issued:
1992
Summary:
Parallel manipulators have their special characteristics in contrast to the traditional serial type of robots. Stewart platform is a typical six degree of freedom fully parallel robot manipulator. The goal of this research is to enhance the accuracy and the restricted workspace of the Stewart platform. The first part of the dissertation discusses the effect of three kinematic constraints: link length limitation, joint angle limitation and link interference, and kinematic parameters on the workspace of the platform. An algorithm considering the above constraints for the determination of the volume and the envelop of Stewart platform workspace is developed. The workspace volume is used as a criterion to evaluate the effects of the platform dimensions and kinematic constraints on the workspace and the dexterity of the Stewart platform. The analysis and algorithm can be used as a design tool to select dimensions, actuators and joints in order to maximize the workspace. The remaining parts of the dissertation focus on the accuracy enhancement. Manufacturing tolerances, installation errors and link offsets cause deviations with respect to the nominal parameters of the platform. As a result, if nominal parameters are being used, the resulting platform pose will be inaccurate. An accurate kinematic model of Stewart platform which accommodates all manufacturing and installation errors is developed. In order to evaluate the effects of the above factors on the accuracy, algorithms for the forward and inverse kinematics solutions of the accurate model are developed. The effects of different manufacturing tolerances and installation errors on the platform accuracy are investigated based on this model. Simulation results provide insight into the expected accuracy and indicate the major factors contributing to the inaccuracies. In order to enhance the accuracy, there is a need to calibrate the platform, or to determine the actual values of the kinematic parameters (Parameter Identification) and to incorporate these into the inverse kinematic solution (Accuracy Compensation). An error-model based algorithm for the parameter identification is developed. Procedures for the formulation of the identification Jacobian and for accuracy compensation are presented. The algorithms are tested using simulated measurements in which the realistic measurement noise is included. As a result, pose error of the platform are significantly reduced.
Title: Workspace evaluation and kinematic calibration of Stewart platform.
262 views
50 downloads
Name(s): Wang, Jian.
Florida Atlantic University, Degree grantor
Masory, Oren, Thesis advisor
Roth, Zvi S., Thesis advisor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1992
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 118 p.
Language(s): English
Summary: Parallel manipulators have their special characteristics in contrast to the traditional serial type of robots. Stewart platform is a typical six degree of freedom fully parallel robot manipulator. The goal of this research is to enhance the accuracy and the restricted workspace of the Stewart platform. The first part of the dissertation discusses the effect of three kinematic constraints: link length limitation, joint angle limitation and link interference, and kinematic parameters on the workspace of the platform. An algorithm considering the above constraints for the determination of the volume and the envelop of Stewart platform workspace is developed. The workspace volume is used as a criterion to evaluate the effects of the platform dimensions and kinematic constraints on the workspace and the dexterity of the Stewart platform. The analysis and algorithm can be used as a design tool to select dimensions, actuators and joints in order to maximize the workspace. The remaining parts of the dissertation focus on the accuracy enhancement. Manufacturing tolerances, installation errors and link offsets cause deviations with respect to the nominal parameters of the platform. As a result, if nominal parameters are being used, the resulting platform pose will be inaccurate. An accurate kinematic model of Stewart platform which accommodates all manufacturing and installation errors is developed. In order to evaluate the effects of the above factors on the accuracy, algorithms for the forward and inverse kinematics solutions of the accurate model are developed. The effects of different manufacturing tolerances and installation errors on the platform accuracy are investigated based on this model. Simulation results provide insight into the expected accuracy and indicate the major factors contributing to the inaccuracies. In order to enhance the accuracy, there is a need to calibrate the platform, or to determine the actual values of the kinematic parameters (Parameter Identification) and to incorporate these into the inverse kinematic solution (Accuracy Compensation). An error-model based algorithm for the parameter identification is developed. Procedures for the formulation of the identification Jacobian and for accuracy compensation are presented. The algorithms are tested using simulated measurements in which the realistic measurement noise is included. As a result, pose error of the platform are significantly reduced.
Identifier: 12316 (digitool), FADT12316 (IID), fau:9218 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (Ph.D.)--Florida Atlantic University, 1992.
Subject(s): Robots--Control systems
Manipulators (Mechanism)
Robotics--Calibration
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/12316
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.