You are here
Modeling and measurement of the response of small antennas near multilayered two or three-dimensional dielectric bodies
- Date Issued:
- 1992
- Summary:
- A theory of the circular loop antenna constructed from finite conductivity wire is developed via a Fourier series expansion of the currents in the loop. Models for a family of small loop antennas are also presented. A new high sensitivity and selectivity heterodyne fiber optic based electromagnetic field detector is developed compatible with open antenna range measurements made at low signal levels and in the presence of strong interfering signals. A new analytical solution pertaining to the response of a disk loaded dipole antenna representing a dipole configured on a lossy dielectric medium is developed using a field compensation theorem and a geometrical theory of diffraction. The multipole expansions for the scattered fields of a multilayered infinite cylinder illuminated by oblique incidence plane wave are formulated and programmed for numerical analysis. The response of cylinders with constitutive parameters reflecting those used in human phantoms are calculated. The response of a small antenna proximal to a multilayered cylinder is analyzed. The scattered fields from multilayered bodies are coupled to a small wire antenna using a combined methods induced electromagnetic force (EMF) technique. New results concerning the response of a loop antenna near a multilayered body obtained via a zero and first phase current model are presented. The new technique is applied in the analysis of human phantoms tested in an open field antenna range. Validation of the theory of multilayered human phantoms with measurements using the new detector is demonstrated.
Title: | Modeling and measurement of the response of small antennas near multilayered two or three-dimensional dielectric bodies. |
![]() ![]() |
---|---|---|
Name(s): |
Ponce de Leon, Lorenzo Angel. Florida Atlantic University, Degree grantor Helmken, Henry, Thesis advisor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1992 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 278 p. | |
Language(s): | English | |
Summary: | A theory of the circular loop antenna constructed from finite conductivity wire is developed via a Fourier series expansion of the currents in the loop. Models for a family of small loop antennas are also presented. A new high sensitivity and selectivity heterodyne fiber optic based electromagnetic field detector is developed compatible with open antenna range measurements made at low signal levels and in the presence of strong interfering signals. A new analytical solution pertaining to the response of a disk loaded dipole antenna representing a dipole configured on a lossy dielectric medium is developed using a field compensation theorem and a geometrical theory of diffraction. The multipole expansions for the scattered fields of a multilayered infinite cylinder illuminated by oblique incidence plane wave are formulated and programmed for numerical analysis. The response of cylinders with constitutive parameters reflecting those used in human phantoms are calculated. The response of a small antenna proximal to a multilayered cylinder is analyzed. The scattered fields from multilayered bodies are coupled to a small wire antenna using a combined methods induced electromagnetic force (EMF) technique. New results concerning the response of a loop antenna near a multilayered body obtained via a zero and first phase current model are presented. The new technique is applied in the analysis of human phantoms tested in an open field antenna range. Validation of the theory of multilayered human phantoms with measurements using the new detector is demonstrated. | |
Identifier: | 12294 (digitool), FADT12294 (IID), fau:9197 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (Ph.D.)--Florida Atlantic University, 1992. |
|
Subject(s): | Antennas (Electronics) | |
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/12294 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |