You are here

Reliability modeling of fault-tolerant software

Download pdf | Full Screen View

Date Issued:
1990
Summary:
We have developed reliability models for a variety of fault-tolerant software constructs including those based on two well-known methodologies: recovery block and N-version programming, and their variations. We also developed models for the conversation scheme which provides fault tolerance for concurrent software and a newly proposed system architecture, the recovery metaprogram, which attempts to unify most of the existing fault-tolerant strategies. Each model is evaluated using either GSPN, a software package based on Generalized Stochastic Petri Nets, or Sharpe, an evaluation tool for Markov models. The numerical results are then analyzed and compared. Major results derived from this process include the identification of critical parameters for each model, the comparisons of relative performance among different software constructs, the justification of a preliminary approach to the modeling of complex conversations, and the justification of recovery metaprogram regarding improvement of reliability.
Title: Reliability modeling of fault-tolerant software.
67 views
28 downloads
Name(s): Leu, Shao-Wei.
Florida Atlantic University, Degree grantor
Fernandez, Eduardo B., Thesis advisor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1990
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 121 p.
Language(s): English
Summary: We have developed reliability models for a variety of fault-tolerant software constructs including those based on two well-known methodologies: recovery block and N-version programming, and their variations. We also developed models for the conversation scheme which provides fault tolerance for concurrent software and a newly proposed system architecture, the recovery metaprogram, which attempts to unify most of the existing fault-tolerant strategies. Each model is evaluated using either GSPN, a software package based on Generalized Stochastic Petri Nets, or Sharpe, an evaluation tool for Markov models. The numerical results are then analyzed and compared. Major results derived from this process include the identification of critical parameters for each model, the comparisons of relative performance among different software constructs, the justification of a preliminary approach to the modeling of complex conversations, and the justification of recovery metaprogram regarding improvement of reliability.
Identifier: 12256 (digitool), FADT12256 (IID), fau:9161 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (Ph.D.)--Florida Atlantic University, 1990.
Subject(s): Fault-tolerant computing
Computer software--Reliability
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/12256
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.