You are here

Effects of cement alkalinity, exposure conditions and steel-concrete interface on the time-to-corrosion and chloride threshold for reinforcing steel in concrete

Download pdf | Full Screen View

Date Issued:
2004
Summary:
Effects of (1) cement alkalinity (low, normal and high), (2) exposure conditions (RH and temperature), (3) rebar surface condition (as-received versus cleaned) and (4) density and distribution of air voids at the steel-concrete interface on the chloride threshold and time-to-corrosion for reinforcing steel in concrete have been studied. Also, experiments were performed to evaluate effects of RH and temperature on the diffusion of chloride in concrete and develop a method for ex-situ pH measurement of concrete pore water. Once specimens were fabricated and exposed to a corrosive chloride solution, various experimental techniques were employed to determine time-to-corrosion, chloride threshold, diffusion coefficient and void density along the rebar trace as well as pore water pH. Based upon the resultant data, several findings related to the above parameters have been obtained as summarized below. First, time for the corrosion initiation was longest for G109 concrete specimens with high alkalinity cement (HA). Also, chloride threshold increased with increasing time-to-corrosion and cement alkalinity. Consequently, the HA specimens exhibited the highest chloride threshold compared to low and normal alkalinity ones. Second, high temperature and temperature variations reduced time-to-corrosion of reinforcing steel in concrete since chloride diffusion was accelerated at higher temperature and possibly by temperature variations. The lowest chloride threshold values were found for outdoor exposed specimens suggesting that variation of RH or temperature (or both) facilitated rapid chloride diffusion. Third, an elevated time-to-corrosion and chloride threshold values were found for the wire brushed steel specimens compared to as-received ones. The higher ratio of [OH-]/[Fe n+] on the wire brushed steel surface compared to that of as-received case can be the possible cause because the higher ratio of this parameter enables the formation of a more protective passive film on the rebar. Fourth, voids at the steel-concrete interface facilitated passive film breakdown and onset of localized corrosion. This tendency for corrosion initiation increased in proportion to void size irrespective of specimen type. Also, [Cl -]th decreased with increasing void diameter. In addition, new ex-situ leaching method for determining concrete pore water alkalinity was developed.
Title: Effects of cement alkalinity, exposure conditions and steel-concrete interface on the time-to-corrosion and chloride threshold for reinforcing steel in concrete.
39 views
8 downloads
Name(s): Nam, Jingak.
Florida Atlantic University, Degree grantor
Hartt, William H., Thesis advisor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 2004
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 145 p.
Language(s): English
Summary: Effects of (1) cement alkalinity (low, normal and high), (2) exposure conditions (RH and temperature), (3) rebar surface condition (as-received versus cleaned) and (4) density and distribution of air voids at the steel-concrete interface on the chloride threshold and time-to-corrosion for reinforcing steel in concrete have been studied. Also, experiments were performed to evaluate effects of RH and temperature on the diffusion of chloride in concrete and develop a method for ex-situ pH measurement of concrete pore water. Once specimens were fabricated and exposed to a corrosive chloride solution, various experimental techniques were employed to determine time-to-corrosion, chloride threshold, diffusion coefficient and void density along the rebar trace as well as pore water pH. Based upon the resultant data, several findings related to the above parameters have been obtained as summarized below. First, time for the corrosion initiation was longest for G109 concrete specimens with high alkalinity cement (HA). Also, chloride threshold increased with increasing time-to-corrosion and cement alkalinity. Consequently, the HA specimens exhibited the highest chloride threshold compared to low and normal alkalinity ones. Second, high temperature and temperature variations reduced time-to-corrosion of reinforcing steel in concrete since chloride diffusion was accelerated at higher temperature and possibly by temperature variations. The lowest chloride threshold values were found for outdoor exposed specimens suggesting that variation of RH or temperature (or both) facilitated rapid chloride diffusion. Third, an elevated time-to-corrosion and chloride threshold values were found for the wire brushed steel specimens compared to as-received ones. The higher ratio of [OH-]/[Fe n+] on the wire brushed steel surface compared to that of as-received case can be the possible cause because the higher ratio of this parameter enables the formation of a more protective passive film on the rebar. Fourth, voids at the steel-concrete interface facilitated passive film breakdown and onset of localized corrosion. This tendency for corrosion initiation increased in proportion to void size irrespective of specimen type. Also, [Cl -]th decreased with increasing void diameter. In addition, new ex-situ leaching method for determining concrete pore water alkalinity was developed.
Identifier: 9780496842681 (isbn), 12096 (digitool), FADT12096 (IID), fau:9006 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (Ph.D.)--Florida Atlantic University, 2004.
Subject(s): Reinforced concrete construction
Chlorides
Steel--Corrosion
Composite reinforced concrete
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/12096
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.