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A measure of the potential of a receiver for detection is detectability. Detectability is a 

function of the signal and noise, and given any one of them the detectability is fixed. In 

addition, complete transforms of the signal and noise cannot change detectability. 

Throughout this work we show that "Subspace methods" as defined here can improve 

detectability in specific subspaces, resulting in improved Receiver Operating Curves 

(ROC) and thus better detection in arbitrary noise environments. Our method is tested 

and verified on various signals and noises, both simulated and real. The optimum 

detection of signals in noise requires the computation of noise eigenvalues and vectors 

(EVD). This process neither is a trivial one nor is it computationally cheap, especially for 

non-stationary noise and can result in numerical instabilities when the covariance matrix 

is large. This work addresses this problem and provides solutions that take advantage of 

the subspace structure through plane rotations to improve on existing algorithms for EVD 

by improving their convergence rate and reducing their computational expense for given 

thresholds . 
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CHAPTER 1 

INTRODUCTION 

1.1 An Overview of Subspace Detection 

There are many possible representations that can be employed to represent a signal 

m terms that will enable one to manipulate any given prior information about it. 

Representations range from trivial time-sample representations through Fourier coefficients 

and Karhunen-Loeve (KL) coefficients to various time-frequency representations like 

Gabor coefficients (Short Time Fourier Transform (STFT) with translated time windows) 

and wavelet coefficient representations . A great deal of research has been done in the last 

ten years on the utilization of sub-band decomposition and wavelet analysis as well as other 

time-frequency transforms in an attempt to improve the existing detection schemes under 

different scenarios of noise and signal. Transforms like the wavelet decomposition have the 

advantage over transforms like Fourier or KL, of being localized in both time and scale 

(frequency) and this fact makes them a convenient approach to certain detection problems. 

Gabor transform was proposed for the detection of signals with unknown arrival time even 

if partially overlapped [BFBP89] . Wavelet transform was also proposed and successfully 

implemented for a known transient signal detection of unknown scaling and arrival time in 

additive white Gaussian noise (AWGN) [MFHM94], as well as for unknown transient 

signals by exploiting prior information of the signal ' s relative bandwidth and its time-



bandwidth product [MFHM92], [SKGVOO]. Wavelet transform is also used in the 

detection/characterization of non-stationarities [HKKD92], [WLHW99], an application that 

results from the property of the wavelet transform to introduce stationarity in its 

coefficients [SMAL89], [PFLA92]. Other implementations of the wavelet structure for 

detection worth mentioning deal with specific noise scenarios. These methods use the 

wavelet structure as a sub-optimum receiver replacing the whitening filter (need for 

sufficient statistics), but only work for a limited range of noise like impulsive noise 

[GFLI97] and 1/f noise [GWA092], [GWOR90], [GWRL90] , [WLHW99], and 

[TLAFOO]. 

A measure of the potential of a receiver for detection is detectability. Delectability 

is a function of the signal and noise, and given any one of them the detectability is fixed. In 

addition, complete transforms of the signal and noise cannot change detectability. 

Throughout this work we show that "Subspace methods" as defined in this work can 

improve detectability in certain subspaces resulting in improved Receiver Operating 

Curves (ROC) and thus better detection in arbitrary noise environments: Our method is 

tested and verified on various signals and noises, both simulated and real. Furthermore 

there is a need to describe the process of detection of the signal in a multirate environment, 

in a more analytical way that would allow a measure of the detection goodness at any part 

of the process. For this task we used the Karhunen-Loeve transform (KLT) as a tool to 

assess and analyze the results, particularly when wavelet decomposition is used, although 

the results should be easily applied to any transform detection schemes. 
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The optimum detection of signals in Gaussian noise requires the computation of 

noise eigenvalues and vectors. This process is known as eigenvalue decomposition (EVD). 

The complete set of eigenvectors form the Karhunen-Loeve basis of the noise process. This 

process is neither a trivial one nor is it computationally cheap, especially for non-stationary 

noise. It can result in numerical instabilities when the covariance matrix is large. This work 

addresses this problem and provides solutions that take advantage of the subspace structure, 

through plane rotations, to improve on existing algorithms by improving their convergence 

rate and reducing their computational expense for given thresholds. 

In the next section we give some background information on wavelets, 

multiresolution analysis and filterbanks. 

1.2 Wavelets and The Wavelet Transform 

The basic (dyadic) wavelet analysis represents a windowing technique with variable 

sized regions both in frequency (scale) and time. It allows the use of long time intervals, 

where we want more precise low frequency information, and shorter regions, where we 

want high frequency information. Figure 1.1 shows an illustration of how the wavelet 

transform compares with time-based, frequency-based and STFT views of a signal. 

Wavelet transform, just like Fourier transform, uses a series of expansion signals (basis) to 

represent a signal. The expansion signals are called wavelets ('small waves') that have zero 

mean value and, unlike Fourier basis (sinusoids), they can be concentrated in time with 

finite energy as shown in Figure 1.2. This allows for accurate analysis of transient, 

nonstationary, or time-varying phenomena. Also whereas sinusoids are predictable and 

smooth, the wavelets can be irregular and non symmetric. They still have the oscillating 
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wavelike characteristic but also the ability to allow simultaneous time and frequency 

analysis with a flexible mathematical foundation. 

E 
<t: 

>-

Time Domain (Shannon) 

Time 

STFT (Gabor) 

~ r---+----r---+----r-~ 
Q) 
::::J 
rr 
~ ~--+---~---+----~~ 
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>-
~ r-------------------~ 
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~ r-------------------~ 
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Wa\€let Analysis 
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Time 

Figure 1.1: Comparison of signal views in different transforms. 

-- --

v v 

a) b) 

Figure 1.2: a) Sine Wave, b) Wavelet (db8) 
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Looking at Figure 1.2 one can see intuitively that signals with sharp edges might be 

analyzed with an irregular wavelet than a smooth sinusoid. It also makes sense that local 

features can be described better with wavelets that have finite support. 

An important difference between the wavelet transform and other major transforms 

(like Fourier, Gabor etc.) is that the basis functions in the wavelet transform, or wavelets, 

are not unique i.e. for different applications the wavelets can be chosen differently. 

Although this aspect of the wavelet transform makes it difficult to develop general 

properties for the transform, it gives flexibility to the user to employ the appropriate set of 

basis functions for a specific application. In fact it is this flexibility that makes the wavelet 

transform an attractive tool for its users . 

A wavelet system is a set of building blocks to construct or represent a signal or a 

function. It is a two-dimensional expansion set (usually a basis) for some class of one- (or 

higher) dimensional signals. In other words, if the wavelet is a given set of \j/j.k(t) for 

indices of j,k = .. -2,-1,0,1,2, ... , a linear expansion of signal f(t) would be: 

f ( t) = I, I, a j .k \Jf j ,k ( t) (1.1) 
k j 

for some set of coefficients <Xj,k [BSRG98] . All so-called first-generation wavelet systems 

are generated by simple scaling and translation. The two dimensional parameterization is 

achieved from the function (sometimes called generating wavelet or mother wavelet) \jf(t) 

by: 

j, kE Z (1.2) 

5 



where Z is the set of all integers and the factor 2Y2 maintains a constant norm, independent 

of scale j . This parameterization of the time or space location by k and the frequency or 

scale (logarithm of scale) by j turns out to be extraordinary effective. Figure 1.3 is a 

pictorial representation of the translation and scaling of a single wavelet (db4). 

~v ~v ~v 

/\ A /\ A 

k 

2 3 4 5 6 7 8 

Figure 1.3: Translation (every fourth k) and Scaling of a Wavelet db4. 

Substituting equation (1.2) into equation (1.1) results in: 

f(t) = L,L,aj.k 2j12 \j/(2jt- k) (1.3) 
k j 

where the two dimensional set of coefficients <Xj ,k are called the discrete wavelet transform 

(DWT) of f(t). The coefficients <Xj ,k are calculated using the inner product as follows: 

6 



(1.4) 

if the \j/j,k(t) form an orthonormal basis for the space of signals of interest [IDAU92], If the 

signal itself is discrete (either samples of a continuous signal or a set of inner products), the 

expansion of the signal is called a discrete-time wavelet transform (DTWT). If the signal is 

a function of a continuous variable and a transform that is a function of two continuous 

variables is desired, the continuous wavelet transform (CWT) can be defined by 

(1.5) 

with an inverse transform of: 

(1.6) 

where IJI(t) is the basic wavelet and a, b E R are real continuous variables [IDAU92], 

[CHDW89]. 

In the next section we introduce the multiresolution formulation of the wavelet 

transform, which seems to be a convenient approach in explaining the effects of changing 

scale both in mathematical and practical interpretations of wavelets. 
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1.3 Multiresolution Analysis 

Multiresolution analysis, which is formulated by Mallat and Mayer [SMAL89], 

[YMA Y90] serves as a convenient framework for the understanding of orthonormal 

wavelet basis as well as for the construction of new ones. Let us start by defining the 

scaling functions <j)j,k(t) as: 

(1. 7) 

and subspace ofL2(R) spanned by these functions defined by: 

(1.8) 

for all integers kEZ. The over-bar denotes closure. This means that 

f(t)= Iak<p(2it+k) (1.9) 
k 

for any f(t)E '"Vj. Let us now formulate the basic requirements ofmultiresolution analysis by 

requiring a nesting of spanned subspaces as: 

(1.1 0) 

or 1j c '"VJ+ 1 for all jEZ, with Y CX) = L 2
. The space that contains the higher resolution 

signals will contain the lower ones also. Because of the definition of '"Vj, the spaces have to 

satisfy a natural scaling condition 
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f(t) E 1-j ¢::> f(2t) E 1-J+I (1.11) 

which ensures elements in a scale are simply scaled versions of the elements in the next 

space. The relationship ofthe spanned is illustrated in Figure 1.4. 

Figure 1.4: Nested Vector Spaces Spanned by the Scaling Functions. 

The nesting of spans of <p(2jt-k), denoted by 1-j and shown in equations ( 1.1 0) and 

(1.11) and graphically illustrated in Figure 1.4, is achieved by requiring that <p(t) E Y1, 

which means that if <p(t) is in Y0, it is also in Y1, the space spaned by <p(2t). This means 

<p(t) can be expressed in terms of a weighted sum of shifted <p(2t) as: 

<p(t) = L h(n).J2<p(2t- n), nEZ (1.12) 
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two. Coefficients h(n) are found by evaluating the inner product of q:>(t) and q:> 1,n(t). This 

recursive equation is the fundamental equation to the theory of the scaling functions and is 

called the dilation equation. As an example we show in Figure 1.5 the scaling function of 

Haar wavelet q:>(t) which is constructed with q:>(2t) as: 

q:>(t) = q:>(2t) + <p(2t -1) (1.13) 

which means equation (1.12) is satisfied for coefficients h(0)=1/ J2, h(l)=ll J2. 

<p(t) = <p(2t) + <p(2t -1) 

Figure 1.5: Haar Scaling Functions. 

The next step in defining multiresolution subspaces is to define a set of functions 

\j/j ,k(t) (the wavelets defined in the previous section) such that 

( <p j ,k (t), \jf j ,l (t)) = f <p j ,k (t)\j/ j .l (t)dt = 0 (1.14) 

This means that if \j/j ,k(t) spans subspace Wj, all members of Vj are orthogonal to members of 

Wj. Also Wj can be defined as the orthogonal complement of Vj in Vj+I· In other words, it 

10 



This means that if \j/j,k(t) spans subspace 1-tj, all members of \tj are orthogonal to members 

of 1-tj. Also 1tj can be defined as the orthogonal complement of \tj in \tj+I· In other words, 

it represents the difference between the spaces spanned by the various scales of the scaling 

function. As such the wavelet subspace 'Wo can be defined as: 

(1.15) 

or in general, 

(1.16) 

Figure 1.6 pictorially shows the nesting of the scaling functions \tj for different scales j and 

how the wavelet spaces are the disjoint differences or the orthogonal complements. 

Figure 1.6: Scaling Function and Wavelet Vector Spaces. 
II 



Since the wavelets reside in the space spanned by the next narrower scaling 

function, W0 c Y,, they can be represented by a weighted sum of shifted scaling function 

<p(2t) defined in equation (1.12) by 

\jl(t) = Lg(n).J2<p(2t- n), nEZ ( 1.17) 
n 

for some set of coefficients g(n). Coefficients g(n) are found by evaluating the inner 

product of \jf(t) and <p 1,n(t). As an example, we show in Figure 1.7 the wavelet function of 

Haar wavelet \jf(t) which is constructed with <p(2t) as: 

\jf(t) = <p(2t)- <p(2t -1) (1.18) 

which means equation ( 1.17) is satisfied for coefficients g(O)= 11.J2 , g( 1 )=-1 I .J2 . 

~ 

n 
\jf(t) = <p(2t) - <p(2t -1) 

Figure 1.7: Haar Wavelets. 

Since the set of functions \Jfj ,k(t) and <pk(t) could span all of L 2(R), any function f(t) E L \R) 

could be written as 

12 



f(t) = :~:> io (k)2io 12 <p(2io 12 t- k )+ L f d j (k)2j/2 \jJ(2j /2 t- k) (1.19) 
k k j=j0 

where j0 is the initial subspace, and coefficients Cj(k) and dj(k) can be calculated as inner 

products of the signal f(t) and the scaling and the wavelet functions respectively as shown 

below 

(1.20) 

and 

( 1.21) 

For better clarity as to what these coefficients mean and their relationships to the subspaces 

an example of a doppler signal decomposition with db8 wavelet is shown. Figure 1.8 shows 

the resulting coefficients c0(k) and dj(k) with respect to the original signal. Figures 1.9, 1.10 

show the associated projections of the signal onto Yand VV spaces respectively. 
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Figure 1.8: Discrete Wavelet Transf01m of a Doppler, using db8. 
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Figure 1.9: Projection of the Doppler Signal onto YSpaces using db8. 
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Figure 1.10: Projection of the Doppler Signal onto VVSpaces using db8. 

To end this section of Chapter I we would like to give expressions for the wavelet 

and scaling functions as well as the signal decomposition in the frequency domain . We start 

from expressions ( 1.12) and ( 1.17) which in frequency domain translate to 
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(1.22) 

and 

(1.23) 

for any arbitrary N>O, where <l>(w), 'l'(w), H(w), and G(w) are the Fourier transform of 

<p(t), \jf(t), h(n), and g(n) respectively. Finally from equation (1.19) we can find the Fourier 

transform of f(t), F(w), with respect to the spectrum of <p(t), and \jf(t) as 

F(ffi) = C ;, (ffirl"iol l{ 2-i'"''• "iq,(r" ffi)u H(- r hlffi)+ 

+ 
1~-• z-l>e'"Y'iq,(z-i (!))a H(- z-i"il(l)}J(- z-l»i) (!))} 

(Eq.l.24) 

where Lis the total levels of decomposition (depth) we are willing to go and L' = L-(j-j0). 

In the next section we introduce the filter bank theory that allows an efficient 

calculation of the lower resolution coefficients from the higher resolution coefficients by a 

tree structure of filters. 

1.4 Filter Banks and Discrete Wavelet Transform 

In many applications, one never has to deal directly with the scaling functions or 

wavelets. The entire concept of decomposition can be described by coefficients h(n) and 

g(n) from equations (1.12) and (1.17), and c(k) and d(k) in expansions (1.19), (1.20) and 
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(1.21). In this section we are going to show how we can get these coefficients recursively 

using an old tool, the filter. This work is primary attributed to the work of Mallat and 

Daubechies [SMLL89], [SMAL89], [IDAU92]. 

1.4.1 Analysis- From Fine Scale to Coarse Scale 

In order to work with the wavelet transform coefficients, we will derive the 

relationship between the expansion coefficients at a lower scale in terms of those at a 

higher scale. We start first by substituting equation (1.7) into equation (1.20). This results 

to 

(1.25) 

Then from equation (1.12) by substituting t with 2jt-k we can write 

(1.26) 

and then we can define m = 2k + n resulting to 

(1 .27) 
m 

Equation (1.27) can be then substituted to equation (1.25) and interchanging the sum and 

the integral, leads to 
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c j (k) = J f (t)2j 12 I, h(m- 2k).J2<p(2j+t t- m ~t = 
m 

=I, h(m- 2k) J f (t)2 <j+tl12 <p(2 j+t t- m ~t (1.28) 

m 

and in a final form as 

(1.29) 
m 

The corresponding relationship for the wavelet coefficients can be found using simj]ar 

procedure as above that results to 

(1.30) 
m 

From first look equations (1.29), and (1.30) remind us of a convolution procedure that 

results from some filte1ing of Cj+ 1(k) with Finite Impulse Response (FIR) filters h(-2k) and 

g(-2k) respectively. More precisely these equations can be interpreted with the filter 

structure shown in Figure 1.11. The .l-2 block represents a down-sampler or a decimator by 

two. In general, if the input to the decimator is an arbitrary discrete signal x(n), its output is 

x(2n). 
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I ... 
2>c-m- k)cj+l (m) 

m 

Figure 1.11: Two-Band Analysis Bank. 

This procedure can be repeated on cj(k) to produce Cj-I(k), and dj-I(k) and so on (iterating 

the filter-bank), resulting to a tree-like structure as shown in Figure 1.12. 

Figure 1.12: Two Stage Two-Band Analysis Tree. 
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The filter implemented by h(-k) and g(-k) are found to have low-pass and high-pass 

properties respectively. This means that in every stage output the input signal spectrum is 

separated to a high-pass component and a low-pass component. This is illustrated in Figure 

1.13. 

0 n/4 n/2 

Figure 1.13: Frequency Bands for the Analysis Tree. 

Note that the number of points at the input to such a structure is equal to the total 

number of points to the output of it. This means that there is a possibility that no 

information is lost and it will be possible to completely recover the original input signal. 

Indeed with certain restrains on the filter structure this is proven to be possible. The 

aliasing occurring in the upper bank can be canceled by using the signal of the lower bank. 

This is the idea behind perfect reconstruction in filter theory, which will be presented, more 

analytically in upcoming chapters. 
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1.4.2 Synthesis - From Coarse Scale to Fine Scale 

A reconstruction of the original fine scale coefficients of the signal can be made 

from a combination of the scaling function and wavelet coefficients at a coarse resolution . 

This can be derived by considering a signal f(t) in the j+ 1 scaling function space f(t) E 

VJ+I· Thus the function can be written as 

f(t) = 2:Cj+l (k)2(j+l)l2 <p(2j+l t- k) ( 1.31) 
k 

or in terms of the next scale as 

f(t) = _Ici(k)2i12 <p(2it-k)+ _Idi(k)2i12 \lf(2it-k). (1.32) 
k k 

Similarly to equation (1.27) we can write 

(1.33) 
m 

and substitute both expressions in equation (1.32) and changing the summation order we 

get 

f(t)= _I2(i+i)l2 <p(2i+l -m{ _Ici(k)h(m-2k)+ _Id/k)g(m-2k)). (1.34) 
m ~ k k 

Finally comparing equation (1.34) to (1.31) we get 

( 1.35) 
n 
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Similarly to the analysis case, these equations can be realized using filters. More 

precisely equation (1.35) can be interpreted with the filter structure shown in Figure 1.14. 

The 12 block represents an up-sampler or stretching by two. In general the up-sampler by 

two simply inserts zeros to the input sequence every other sample. 

Figure 1.14: Two-Band Synthesis Bank. 

This procedure can be repeated at any level by combining the appropriate wavelet 

coefficients. Figure 1.15 illustrates a two-stage two-band synthesis tree, which can be used 

to reconstruct Figure 1.12 analysis tree. 

Figure 1.15: Two-Stage Two-Band Synthesis Tree. 
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1.5 Dissertation Contributions in Upcoming Chapters 

In this Chapter we have given a brief overview of the theory of wavelets. In 

Chapter 2 the detection over multi-resolution analysis subspaces will be examined. 

Chapter 3 will deal with description of the simulations and the associated results . Chapter 

4 will present the eigenvalue-eigenvector problem solution through plane rotation 

algorithms, and show an efficient way for these algorithms to be implemented in 

subspace to save computational expense. Finally Chapter 5 will consist of the conclusions 

of the study as well as recommendations for future studies. The discrete subspace 

analysis of Chapter 2 and the related simulation results presented in Chapter 3, we 

believe to be original work. Furthermore, the work done on EVD methods in subspaces 

using plane rotations, as described in Chapter 4, is also believed to be original work. 

More specifically the dissertation contributions are: 

• Improve signal detection in any noise environment by utilizing a subspace 

detector. 

o Optimal detection in subspaces. 

o Evaluate detectability-Verify results using ROC curves. 

o Provide theoretical backbone for discrete signal subspace detection. 

• Examine subspace EVD. 

o Derive relationships for the EVD evolution along scales. 

o Provide methods for improving existing EVD algorithms by usmg 

subspace signal structure. 

o Evaluate and quantify the advantages-disadvantages of various algorithms 

for different subspace signal structures. 

24 



CHAPTER2 

DETECTION OVER MULTIRESOLUTION ANALYSIS SUBSPACES 

2.1 Subspace Detection using KL Basis 

Detection of signals in nOise has been studied independently of wavelets for 

nearly half a century. Its success has resulted in significant advances in the broad areas 

of digital communications, radar/sonar, and pattern recognition. It is also a general area 

that since the introduction of wavelets and multiresolution analysis (MRA) into signal 

processing, has attracted research attention for detection of short duration signals 

embedded in correlated noise, detection in non-stationary environments, and detection 

and estimation in environments with low signal-to-noise ratios. Optimum detection of a 

known signal in Gaussian noise requires the estimation of the KL basis functions or 

covariance estimates or other noise whitening strategies, which are in general difficult to 

implement since they are computationally complex. This led to the exploration of 

strategies for optimum detection in MRA subspaces. 

Optimum detection of signals in Gaussian noise requires the computation of 

noise eigenvalues and vectors, which form the Karhunen-Loeve (KL) basis. This is a 

computationally complex operation and is subject to numerical instabilities when the size 

of the covariance matrix is large. Fixed transforms such as the Discrete Cosine 
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Transform (DCT) and Discrete Wavelet Transform (DWT) [NESKOI] are acceptable 

approximations to the KL transform and work for specific random processes. Many 

natural or human generated noise environments are non-stationary. Some examples are 

the different types of ambient acoustic noise through whkh a cellular telephone 

[NERSOO] user communicates and underwater ambient noise [ANSHOI]. Under such 

circumstances, a fixed transform is not sufficient; and there are benefits to be gained 

from using the KL transform, which is based on noise statistics. 

The underlying reason for obtaining eigenvalues and eigenvectors of the noise is 

to whiten the noise, and follow it by matched filtering. If the information signal can be 

designed, then the probability of error in the detection process is reduced by choosing 

this signal to reside in the subspace spanned by the eigenvector corresponding to the 

smallest eigenvalue. In such cases, matched filtering is equivalent to finding the 

projection of the incoming signal on the signal subspace. 

In this chapter we explore optimum detection strategies of signal in noise in any 

subspace particularly in a multiresolution analysis (MRA) subspaces. We set the stage 

for detection on sets of nested subspaces: Multiresolution (MR) subspaces on the outside 

and KL subspaces on the inside. This process allows for optimum detection, uses small 

KL matrixes, and takes into consideration long and short-term autocorrelation lags. It is 

numerically stable and allows for flexibility in signal design that may be combined with 

coding and encryption. 

This chapter is organized as follows. We review the optimum detection problem 

m Section 2.2. Section 2.3 highlights the KL transform over MR subspaces for an 
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infinite and finite signal dimension case. In Section 2.5, we discuss the evolution of 

detectabi li ty over scales. 

2.2 Review of Optimum Detection [CWHE95], [HVRS68] 

For clarification purposes we will start with the notation to be used in this 

chapter. Bold lower case letters are used to represent a vector, bold upper case letters a 

matrix , and calligraphic letters represent spaces. 

A binary detection problem is described by two hypotheses: 

H 1: x(t) = s(t)+n(t), (2.l.a) 

H0 : x(t) = n(t) tETo (2.1.b) 

where s(t) is the message signal of known shape and energy, n(t) is zero-mean, second-

order Gaussian random noise with a continuous, square-integrable covariance function 

E[n(t)n(u)]=rn(t,u) , and To is the observation interval. It is assumed that the noise energy 

in the observation interval J rn (t, t)dt is finite. The fundamental components of 
To 

detection are decision-making and signal processing. 

The two established principles of decision-making are the Bayes and the 

Neyman-Pearson (N-P) criteria. Both Bayes and N-P tests lead to the likelihood ratio 

(LR) test, which is derived to mjnimize the risk of making a wrong decision. In terms of 

transition probabilities, 
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LR(X) = P(X/H I ) 

P(X/H 0 ) 

(2 .2) 

where P(X/H0) represents the conditional probability that the signal x(t) is received given 

the hypothesis H0 is true. In an ideal system, LR== if x(t) contains the message signal , 

and LR=O if the received signal is just noise; and detection is possible with zero 

probability of error. In general, a decision is made by comparing the LR against a 

threshold. Naturally, if LR(X) clusters around two points that are separated by a 

sufficient distance, the threshold can be chosen with a higher degree of confidence. The 

purpose of an ideal receiver can thus be expressed as one that, in some sense, comes 

close to the ideal values for the LR. Expressions for LR are more useful in terms of 

sufficient statistics. 

A general expression for LR uses the eigenfunctions, Sk(t), and the eigenvalues, 

Ak, of the noise covariance function rn(t,u). These quantities satisfy the eigenvalue 

equation 

(2.3) 

Equivalently, the coefficients of n(t) in the series 

n(t)= I,nk8k(t) (2.4) 
k 

are uncorrelated, i.e. E[njnk]=A.k8jk, where Ojk is the Kronecker delta. Using Mercer's 

formu\a, its covariance can be written as 
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(2.5) 

The series of equation (2.5) is called the Karhunen-Loeve (KL) expansion of the 

noise signal. The input and the message signals also admit expansion in terms of the 

noise KL basis functions where the expansion coefficients are 

xk = JT x(t)8k (t)dt and sk = J1_ s(t)8k (t)dt 
0 0 

(2.6) 

The LR can be ex pressed as 

(2.7) 

Equivalently, we can write 

[~n _ s _ l~s 2 ] LR =exp L.J_k_k ±-LJ_k 
k A.k 2 k A.k 

(2.8) 

with + if H 1 is true and - if H0 is true and both LR expressions are valid only if the 

quantity 

(2.9) 

is finite. Perfect detection, i.e., detection with zero probability of error, is achieved if d2 

(also known as delectability) diverges and LR becomes = for H 1, and 0 for H0. Also 

called singular detection, this condition can be achieved in two ways: 
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1. If all the eigenvalues are nonzero, then the message signal coefficients, 

rate of decay of ck 2 is slow enough . Two examples are i) ck 2 =c2 for all k. The signal 

energy is proportional to L,A.k which is finite since it is the energy of the noise in the 

observation interval; ii) ck2 =c2/k causes d2= lim c 2 I,llk to diverge while keeping signal 
N--4= 

k 

energy L A-Jk < L,A.k finite. 
k k 

2. If the noise covariance has zero eigenvalues, then singular detection can 

be achieved if at least one signal component, Sj, corresponding to the zero eigenvalue, Aj, 

IS non-zero. 

In all cases of practical interest, detection is non-singular. If the noise is white, 

then d2=_!_ I,s ~ . This implies that detectability in white noise is proportional only to the 
A k 

signal-to-noise ratio (SNR) in x(t) where A=E[nk2
] is the variance or expected value of 

the energy of each coefficient, nk, in equation (2.4). For non-white noise, the 

detectability (d2
) defines a generalized concept of distance which is the inner product of 

two positive valued (possibly infinite length) vectors (sk2
} and { 1/Ak}. In all 

implementations, infinite series expansions are truncated. Detectability is given by a 

finite sum 

(2.10) 
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where K denotes the K element subset { k 1, k2, ... , kK} of the set of positive integers . For 

a given signal energy, ~s = :Ls ~ , maximum detectability may be found by minimizing 
kE K 

dK2 subject to the condition of total energy being l;s. Applying standard optimization 

theory results, we set the objective function 

O(s, Y)= d~ + i I;, - ~s ; J (2.11) 

and differentiate it with respect to the elements, Sk, of s=(sk 1, Skz ... SkK) and the Lagrange 

multiplier Y, dK2 is maximized if all the signal energy is concentrated in one coefficient 

corresponding to the minimum eigenvalue Akt, where it is assumed that the eigenvalues 

in equation (2.10) are distinct and ordered so that Akt < Akz < .. . < AkK· We have 

(2.12) 

and the Lagrange multiplier Y=l!Akt· The optimum value of detectability becomes 

d/=l;s/A.kt · Increasing detectability also increases the probability of detection m the 

Neyman-Pearson sense. 

Decision IS made by comparison of the sufficient statistic, L x ksJA.k , to a 
k 

threshold determined by the probability of false detection and d2
. 
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2.3 KL Transform on MRA Subspaces 

The dyadic wavelet transform [SGML89) analyzes the space of square integrable 

(finite energy) functions, L2
, into embedded subspaces that form a multiresolution 

analysis. Its filter banks structure leads to efficient implementations, thus making it a 

commonly utilized form of the wavelet transform. It has been shown [GWRL90], 

[GWA092), [PFLA92] , [ATMK92], that the orthogonal wavelet transform provides a 

natural setting in which to analyze and synthesize fractional Brownian motion (jBm) and 

other 1/f processes. They show the extent to which wavelets approximate the KL basis 

functions of 1/f process. The inverse question explores the structure of processes for 

which wavelets are eigenfunctions. The question is motivated by the wish to characterize 

such processes so that we may predict the behavior of already existing models, such as 

jBms, under the wavelet transform, develop new models and use them to synthesize 

innovations for signaling in communication systems and develop detection strategies. In 

this section, we show that we cannot find the KL basis of a random process by finding 

the KL bases of its projection onto the MRA subspaces, but we show how these different 

bases are related. This is done both in the infinite (Section 2.3.1) and finite discrete 

dimensional case (Section 2.3.2). 

When analyzing signals in multiresolution subspaces, it is useful to know how 

KL bases defined over subspaces ~' ~ and L\R) are related . The key question is if 

the decorrelation of coefficients on two disjoint subspaces such as ~ and ~ implies the 

same for coefficients on ~+ 1 = ~Ef>~. Another relevant example of disjoint subspaces 

are ~ and ~+ 1• It is not difficult to see that KL bases found for the constituent 
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subs paces do not comprise a KL basis for their sum. This means that if we are interested 

in finding a basis that decorrelates all the coefficients {djk}, for all k and 0 ~ j ~ J, then 

J 

we need to be working in U 1-tj. We will formulate these concepts for the sake of rigor 
j=O 

as well as to gain insight into the problem. We will start with the infinite dimensional 

case scenario and move on to the finite dimensional afterwards. 

2.3.1 Infinite Dimensional Case [NUER99] 

We will work in a general setting of subspaces .Jl=.J\iB.J\.o in e(R), where .J\.1 

and 5\.o are disjoint. For simplicity of notation, we will use such variables as f(t) , y(t) , 

z(t) exclusive of their previously defined meanings. We will assume f(t) = y(t) + z(t) E 

.J\. has orthogonal projections y(t) E 5\.o and z(t) E .J\.1. The corresponding covariance 

functions r.(t,u) are assumed to have the eigenvalues, Ak·, and orthonormal 

eigenfunctions ek·, where • means f, y or z. Defining (• )k=<• ,ek·>, we write the series 

expansions 

00 

f(t) =I fk e[ (t) (2 . 13) 
k=l 

00 00 

y(t)= LYk8~(t) andz(t)= Izk8~(t) (2.14) 
k=l k=l 

where y(t) and z(t) are the orthogonal projections of f(t) onto 5\.o and .Jl,, respectively. 

Mercer's formula gives 
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rf (t, u) = ~)<e~ (t)e~ (u), (2.15) 
k 

and similar expressions can be written for r.(t,u) for y and z. The expansion coefficients 

{e~ (t)}k form complete orthonormal bases, respectively, of Ao and .J\.1, and 

{e~(t),e~(t)L and {e~(t)L are two different orthonormal bases spanning .Jl. The 

covariance function above can be expressed in terms of these bases as 

rf (t, u) = L A.~e~ (t)e~ (u) + L A- ~ e ~ (t)e ~ (u) 
k k 

+ l:E[ykzJeUt)8 ~ (u)+8~(u)8 ~ (t)} 
(2.16) 

kl 

As long as the signals y(t) and z(t) in the subspaces are correlated, the set 

{e ~ (t), e ~ (t)L does not form a KL basis for f(t) on .Jl. Since 5\o, .Jl, c .Jl, then the 

following expansions are valid: 

(2.17) 
n 

(2.18) 

(2.19) 
11 

34 



(2.20) 
n 

(2.21) 

L (q fy (n, k)qfy (m, k) + qfz (n, k)qfz (m, k)) = 8nm , (2.22) 

L q fy (n, k)q fz (n, I)= 0. (2.23) 

Analogous KL expansions can be defined for the discrete coefficients {yk}k. 

{zk}k and {fdk in terms of eigenvectors of subspaces of /2(R), the space of square 

summable or finite energy sequences. We first note that the discretization that generates 

the coefficients is not linear, as the expansions are given in terms of different bases; 

hence fk is not the sum of Yk and Zk, even though f(t) is the sum of y(t) and z(t). Since y(t) 

and z(t) are orthogonal complements of f(t), then 

(2.24) 

The resolution of identity or Parseval 's rule dictates conservation of energy: 

(2.25) 

(2.26) 

Using equations (2.17) and (2.18) m equation (2.24), we have the decomposition 

relationships 
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(2.27) 

(2 .28) 

and the reconstruction relationship 

(2.29) 

Since the elements of each of the sequences Yk and zk are uncorrelated, using equations 

(2 .27) and (2.28) in E[yky1] and E[zkz1], we have 

(2.30) 
n 

(2.31) 

The correlation between Yk and z1 can be expressed by 

(2.32) 

Using equation (2.29) in E[fkf1], we also obtain 

n n 

+ I,E[y nzm ][qfy (k, n)qrz (1, m) + qfy (1, n)qfz (k, m)} 
(2.33) 

nm 
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These results can be expressed using infinite dimensional matrices. We define vector 

u=[YIY2·. ·Yn·· .. Z1Z2 ... Zn, ... ]T and f=[f1f2 ... fn . .. ]T. The respective correlation matrices are 

AFE[ffT] =diag(A.~A. ~ ... A.~) and Au=E[uuT] 

(2.34) 

where Ay=diag(A. iA.~ ... A~), Az=diag(A. ~A.~ ... A ~ ), and [R]mn=E[YmZn] for m ,n E {1,2, ... }. 

From equations (2.30), (2.31), (2.32), we have Ru=QArQT where 

qfy (1,1) qfy (1,2) qr/1, n) 

q ry (n,l) qr/n,2) qry (n, n) 

Q= 
qfz (1,1) qfz (1,2) qfz (1, n) 

(2.35) 

qfz (n,1) qfz(n,2) qrz (n, n) 

By equation (2,22), Q -1 = QT, i.e. Q represents a unitary operation thus we also have Af= 

QTRuQ. Clearly, "A/ are the eigenvalues and the columns of Q are the eigenvectors of Ru. 

The transformation f = QTu is the KL transform of u. Analogous results are obtained in 

the finite dimensional case. 

2.3.2 Finite Discrete Dimensional Case 
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For the finite dimensional case with a discrete input sequence projected in the 

subspaces, we will concentrate on the wavelet subspaces and derive relationships for the 

eigenvalues and eigenvectors between each space. These results can be easily applied to 

any set of subspaces. In real life this is the case that can be implemented or simulated 

and experimental results can be produced. This is the scenario we used for our 

simulations as described in Chapter 3. 

The work will be done on the basic analysis-synthesis filter structure of the 

wavelet transform as shown in Figures 1.11 and 1.14, but can be easily extrapolated for 

any decomposition depth. We will define all quantities and operations in matrix and 

vector form, starting with structures in Figures 1.11 and 1.14 that can be represented as 

in Figure 2.1. Notice that the notations on this Figure represent discrete signals and 

decomposition in a matrix-vector form. There are other ways of representing wavelet 

'---------y 
A' 

Analysis 

v 
A 

Synthesis 

Figure 2.1: Analysis/Synthesis for a Two-Band Filter Bank. 

Sa' 

transformations. Use of this format allows us to compute the covariance matrices of 

projections and coefficients, which are needed for further analysis. It also shows that it 
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is sufficient to limit the analysis to a two-stage transform that will be repeated as we go 

along the scales. With the help of Figure 2.1 let us define an input vector s=[s 1 s2 ... SN]T 

and coefficients Sa=[sa1 Saz .. SaM]T, and Sb=[sbi Sbz .. . sbM]T. N = 2n is the total input signal 

samples for any integer n (which is chosen depending on the decomposition levels we 

are required to go), and M=N/2 (due to the down-sampler). Matrices A, B, A', B' are 

derived from the analysis and synthesis filter coefficients that result from the wavelet 

and scaling functions. Operations A', B' represent the discrete convolution of the signal 

with filter coefficients h(-n) and g(-n) at their input followed by down-sampling by two. 

Thus their size is MxN. Operations A, B represent the up-sampling by two followed by 

discrete convolution of the signal with filter coefficients h(n) and g(n) at their input and 

the down sampling. Thus their size is NxM. Because of the h(-n), h(n), g(n), g(-n) 

coefficient relationships (not true for all wavelets i.e. biorthogonal wavelets ) one can 

easily show that A'= AT and B'=BT. As an example the filter coefficients for the db3 

wavelet have a constant length of six and they are 

h(-n) = [0.0352 -0.0854 -0.1350 0.4599 0.8069 0.3327] (2.36a) 

g(-n) = [-0.3327 0.8069 -0.4599 -0.1350 0.0854 0.0352]. (2.36b) 

For a length N=8, this results to matrices A, and B as 
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0.4599 0.3327 0 -0.0854 

-0.1350 0.8069 0 0.0352 

-0.0854 0.4599 0.3327 0 

0.0352 -0.1350 0.8069 0 
A= (2.37a) 

0 -0.0854 0.4599 0.3327 

0 0.0352 -0.1350 0.8069 

0.3327 0 -0.0854 0.4599 

0.8069 0 0.0352 -0.1350 

-0.1350 0.0352 0 0.8069 

-0.4599 0.0854 0 -0.3327 

0.8069 -0.1350 0.0352 0 

-0.3327 -0.4599 0.0854 0 
B= (2.37b) 

0 0.8069 -0.1350 0.0352 

0 -0.3327 -0.4599 0.0854 

0.0352 0 0.8069 -0.1350 

0.0854 0 -0.3327 -0.4599 

The function for generating these matrices for any wavelet and any signal length N was 

created using Matlab. 

The signals sa' and sb' are of size Nxl and if added they should produces (perfect 

reconstruction). We will now write the relationships between the signals and derive some 

filter properties that we are going to use later on . First we start with expressing the 

analysis signals as 

(2.38a) 

(2.38b) 

and the synthesis signals as 
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Sa' = As a= AA T S (2.39a) 

(2 .39b) 

Also using equation (2 .39) we require that 

(2.40) 

which means that 

(2.41) 

for perfect signal reconstruction . We can also write from equation (2.38) 

(2.42a) 

(2.42b) 

Using these relationships we can write another three properties of the A, B matrices as 

(2.43a) 

(2.43b) 

(2.43c) 

Let Rs = E[ssT] be the NxN covariance matrix of s. We can define similarly Ra= E[sasaTl 

Rb= E[sbsbT], R a'= E[sa'sa'T], Rb'= E[sb'sb'T] , Rab= E[sasbT], and Rba= E[sbsaT]. A natural 

assumption for the covariance matrices Rs, Ra, Rb, Ra' , and Rb', is that they are 

symmetric positive semi-definite matrices . The requirements for a matrix to be positive 
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semi-definite and their corresponding properties are listed in Appendix ill. Substituting 

the signals from equations (2.38), and (2.39) to these relationships, we can write the 

coefficients and projection covariance matrices with respect to the covariance matrix of 

the input signal as follows 

(2.44a) 

(2.44b) 

(2.44c) 

(2.44e) 

(2.44f) 

More importantly though (as we will demonstrate in Chapter 4) would be to find an 

inverse relationship. In other words knowing the covariance matrices of the coefficients 

(at the next decomposition level) find the covariance matrix of the input signal. With the 

use of Equations (2.39) and (2.40) we can write 

(2.45) 

This Equation can be written in a matrix form as follows 
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(2.46) 

where Q. and A. are the associate eigenvectors and eigenvalues respectively. Then Rs 

can be written as 

(2.47) 

or 

(2.48) 

- T . 
where Rab = Qa Rab Qb . Smce 

or otherwise called similarity transforms, the eigenvalues of R 1 are the same as the ones 

evaluated as 

(2.50) 
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In Chapter 4 we are going to show ways of taking advantage of expressions (2.46), 

(2.48) and (2.50) for calculating the eigenvalues and eigenvectors of Rs for optimum 

detection. 

Now will try to relate the eigenvalues of Ra' and R3 • The eigenvalues of the 

covariance matrix Ra' are the roots of the polynomial 

I AI - Ra' I = I AI - ARa 'AT I (2 .5la) 

which are the same as the roots of 

(2.51b) 

Applying to this, the identity 

(2.52) 

with D = Ra-1
, E =AI, C =A, and F =AT, yields 

where use has been made of AT A= I. 

This proves that the eigenvalues of Ra' are identical to the eigenvalues of R3 , and 

the remaining N-M eigenvalues are zero. Similar results are true for matrix Rb' are 

identical to the eigenvalues of Rb. This means that matrices Rb', and Ra' although of size 

NxN they are of rank M. 

44 



2.4 Detectability Over Scales 

For our discussion we will consider the discrete finite signal case under wavelet 

subspaces. A binary detection problem [HVRS68] of a known signal 

s= [s[l] s[2] ... s[NJF, in noise, n, is described by two hypotheses: H 1 : x = s+n and 

H 0 : x = n where n is a zero-mean Gaussian random noise. The noise autocorrelation 

matrix R has the EVD decomposition R=Q A Q T' where A is the diagonal matrix of 

eigenvalues, Ak . The likelihood ratio (LR) test is derived from probabilistic 

considerations to minimize the risk of making a wrong decision. Expressions for LR are 

useful and efficient when stated in terms of noise statistics. The difference between LR 

under the two hypotheses is used as a measure of detectability, given by 

(2.54) 

where sk are the elements of QTs. The sufficient statistic required for making a decision 

is the first term of the exponent of LR as in equation 

(2.55) 

Decision is made by comparing g to a threshold determined by the probability of false 

detection and d 2
. Given by Equation (2.54), detectability is a metric of distance between 

the vector sk and y = [1 I A1 ,1/A- 2 , • • • ,1/AN] where skis the KL transform (with respect to 

the noise EVD) of the signal s. If noise is white, then d2 is the signal-to-noise ratio, 
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otherwise it is a quantity between 0 and infinity and has to do with the relative 

distribution of the signal and eigenvalues. The relationship between delectability at 

scales j and j+l is based on the p1inciple of energy conservation. For simplicity, we will 

consider the one step scale decomposition of Figure 2.1. Let the KL-transform of the 

signal coefficients s, sb and sa with respect to the noise EVD be given as sk, Sbk and Sak 

respectively. Also, let the vectors of noise eigenvalues be given as A , A a, A b 

respectively. We have 

(2.56) 
k=l k=l k=l 

N M 
~ 2 ~ 2 2 
L..Js k = L..J[s ak + sbk], and (2.57) 
k=l k=l 

N 2 M 2 

d2 ~ sk d 2 ~ s;k f · b = L..J-, ; = L..J-;- , or I=a, . 
k=l A.k k=l A. k 

(2.58) 

If noise is white, the delectability in parent-children subspaces are related by 

2 2 

d2=~d 2+ ~d 2 
2 a 2 b 

cr cr 
(2.59) 

where cr 2 = cr ~ + cr~ are the respective nOise vanances. Clearly, delectability in any 

subspace is highly affected by the noise eigenvalues. A redistribution causing one of 

them to be close to zero may result in near perfect detection in the subspace. This is a 

very encouraging reason to do detection over multiresolution subspaces. 
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The detectability can also be expressed as a function of the noise autocorrelation 

matrix. Equation (2 .54) can be written in matrix form as 

d2 TJ\-1 = Sk Sk. (2.60) 

Substituting Skin this equation we get 

(2.61) 

Similarly we can write expressiOns for the detectability for the coefficients and the 

projections. Also we can substitute equations (2.38) , (2.39), and (2.44) and the result is 

(2 .59a) 

(2.59b) 

In the next Chapter we will go in depth through the different scenarios that were 

assumed for our simulations. Also we will present amongst other results, detectability 

figures for a multi level subspace detection scheme and ROC graphs to verify them. 
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CHAPTER3 

DETECTION OVER MULTIRESOLUTION SUBSPACES-SIMULATIONS AND 

RESULTS 

3.1 Subspace Detection Scheme 

An example of the multiresolution system to be used in our simulations is the full 

binary tree, shown in Figure 3.1 for two levels of decomposition. This system was 

proposed by Ronald Coifman. It allows decomposition at high as well as low frequencies, 

for a complete, evenly spaced frequency coverage, unlike the traditional, constant-Q 

wavelet filter bank structure arising from a half-tree decomposition which was shown in 

Figure 1.12. Note that the synthesis part shown in this figure is not unique. ~i and 1-tii 

are the various projections on the subspaces and can be visualized as shown in Figure 3.2. 

We note that the subscript i denotes the level of decomposition (depth in the tree) starting 

with the Oth level at the tree input, and the subscript j denotes the branch and takes values 

from 0 to 2i-l. The j = 0 and the j=t-1 branch represent the lowest and highest frequency 

bands, respectively. This notation of the nodes in the tree is the method we use to refer to 

any signal-point at the tree in the rest of the Chapter. 
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Figure 3.1: The Full Binary Tree for the Two-scale Wavelet Packet Transform. 



Figure 3.2: Vector Space Decomposition for the Binary Full Wavelet Packet System. 

Using this decomposition scheme gives us flexibility as to what subsets we want 

to choose as basis, depending on the signal and noise statistics, according to some 

optimization criterion (e.g. entropy which results in the 'best wavelet packet basis 

algorithm ' [BSRG98], [MMYM96]) . Any pruning of this full tree could generate a valid 

packet basis system and would allow very flexible tiling of the time-scale plane, which is 

very useful especially in the analysis of non-stationary signals. In our case the best basis 

would be the basis with maximum detectability, and best basis set will be the one that 

leads to the best basis. The filters used have low-pass (g(n)) and high-pass (h(n)) 

characteristics and are derived in accordance with Mallat's algorithm for filter design 

using wavelet basis functions. As discussed in Chapter 1.4, for perfect reconstruction to 

occur with orthogonal wavelets, these filter relationships must be true: h * (n) = h( -n) and 

g*(n) = g(-n), where h(n), g(n) are filter coefficients associated with blocks marked H*, 
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G*. In an attempt to visualize the projections in the frequency domain, Figure 3.3 shows 

an arbitrary frequency response of the two-band wavelet packet filter bank of Figure 3.1. 

0 n/4 n/2 3n/4 7t 

Figure 3.3: Frequency Responses for the Two-band Wavelet Packet 
Fi Iter Bank. 

Using this subspace decomposition structure, the final stage of the proposed 

detector will be a whitening filter, a correlator and the threshold stage for deci sion 

Whitener 

Figure 3.4: Final Stage of Wavelet Detector. 
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The vector rij is the signal plus noise vector, Sij + Dij, at the (i, j) node of the wavelet 

decomposition tree (i.e. ith level /h branch). The branch used for detection is the one that 

yields maximum detectability. The star (*) represents a whitened signal based on the 

noise statistics as 

(3.1) 

where A.ij,and Qij are the associated eigenvalue and eigenvector matrices of the 

strategy is the optimum one for any noise and it can be shown that the detectability does 

not change before and after whitening. This proof, as well as how the signal to noise ratio 

is affected from the whitening stage, are given in Appendix I. The resulting scalar, Zij , at 

The complexity of the eigenvalue decomposition process is proportional to the 

s1ze of Rij or the length of vector Dij· Thus by going down in scale or performing 

optimum detection at deeper levels into the wavelet decomposition tree, the covariance 

matrix size becomes smaller and smaller (elements reduced by a factor of four at each 

consecutive scale). This results in a significant advantage, in computational complexity, 

in the estimation of the eigenvalues and the eigenvectors for optimum detection. Using 

the subspace structure this advantage can be amplified, as will be demonstrated in 

Chapter 4. Also the EVD of large matrices that can result in unstable results is avoided. 

Another advantage, in real time applications , of using the wavelet structure or any 

multirate system for that matter, is that performing any sort of processing in lower levels 
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(lower rates) reqmres less processmg speed (at each consecutive level , the processor 

speed can be reduced by a factor of two) [PPVA93]. 

Obviously the estimation of the covariance matrix R ij is crucial for optimum 

detection. The problem becomes even more complicated if no previous knowledge of the 

noise statistics are accessible or if the noise is non-stationary or time varying. In our 

simulations thi s is the assumed case. In thi s scenario the covariance matrix should be 

updated as every new vector ni/ k) arrives at the whiteners input (adaptively estimated), 

where k is a discrete time counter starting at zero. A thorough and comprehensive 

treatment of the different techniques for updating EVD and Singular Value 

Decompositions (SVD) can be found in [TMWH99] . Update techniques surveyed share a 

common objective: To determine the 'best' way to find the new covariance matrix given 

the current covariance matrix and new data. Does the rank of the update go up, down or 

stay the same? Increasing the rank, computing the eigenvalues and then reducing the rank 

as determined by the dominant eigenvalues is theoretically risk free, but computationally 

very expensive. In practice, increase in size of the covariance matrix subjects the EVD to 

numerical instabilities. On the other hand, confining the rank to be a small number, even 

when it is coupled by dominant subspace tracking, does not take into consideration the 

long-term correlations of the data. In our simulations we have assumed the initial value of 

Rij(O) = ni/ 0)ni/O)T and the method for updating the covariance matrix to be as 

R .. Ck+l) _ bR .Ck) + (l-b) .. Ck+l ) . .Ck+I)T 
'J - ,1 n,1 n,1 (3 .2) 

where O<b<l and it is called the forgetting factor [SIHA96]. The slower the noise statistics 

vary with time the closer b is to one. We also confined the matrix rank to the length of the 
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where O<b<1 and it is called the forgetting factor [SIHA96]. The slower the noise statistics 

vary with time the closer b is to one. We also confined the matrix rank to the length of the 

noise vector at each node. For every adaptation or update of the covariance matrix, the new 

eigenvectors and eigenvalues must be calculated. A typical example of how the eigenvalues 

vary with time is illustrated in Figure 3.5. This is a sample computation of the eigenvalues 

at node (1,0) for ocean noise. We note that the dominant eigenvalue fluctuates significantly 

in time at that node, and this observation stresses the need for tracking these eigenvalues 

over time, for this noise, to achieve optimum detection. This simulation was done with a 

forgetting factor b equal to 0.95. The noise vectors were of length 32 at that node, but for 

illustration purposes we show only the four dominant eigenvalues. 
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Figure 3.5: Time Evolution of Eigenvalues in Node (1,0) for ocean noise. 

54 



3.2 Signal and Noise 

Our simulations were performed under different scenarios of signal shape and 

length, noise, and wavelet waveform. The signals used are square pulse trains, chirp 

signals, wavelet and scaling function bases, windowed sinusoids and exponentially 

decaying sinusoids. The simulations that we are going to show in this dissertation are of 

an exponentially decaying sinusoid as a signal. This signal is very commonly used for 

signaling purposes in communication and radar systems. It has the advantage of having 

parameters that control its energy concentration in time as well as in the frequency 

domain. In general the signal vector we used can be expressed as 

s(n) = .JE: ( )e - bnT, f - T d - 0 N 
N - l cos annT, , or T5---, an n- ,1, .. . -1 
I, (cos(annT, )e - bnT, Y N - 1 

(3.3) 

n; Q 

where N is the signal vector length, Es is the desired signal energy, T is the signal time 

interval, and a, b are positive valued parameters. The parameter a is the frequency shifting 

parameter or modulating factor. In other words the bigger a is the higher is the center 

frequency (always below the Nyquist frequency) of the signal spectrum. Parameter b is the 

spreading factor. The smaller b is, the more localized (narrow bandwidth) is the signal 

spectrum and the larger is its time duration. Figure 3.6 and 3.7 illustrate this point. In these 

figures , the signal energy Es = 0.2 and N = 32. The parameter a changed from 4 to 8 and 

parameter b changed from 3 to 7. The discrete Fourier transform performed has four times 

the points of the signal (4N). In our simulations the signal length N was taken to be 64 

points. 
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The noise used for our simulations varied from simulated noise like pink noise, 

for which the simulation technique is based on an autoregressive model, to noise acquired 

from experimental data. The first experimental noise is ambient ocean noise acquired 

with the help of a hydrophone, by the ocean engineering department in FAU. It 

approximates 1/f noise (pink noise) characteristics with additive shot noise. For more 

information on the characteristics and modeling of this noise refer to [ANSHOl]. The 

second experimental noise was noise recorded in a moving vehicle through a cellular 

phone. The third and last experimental noise we used is called babble noise and it was 

recorded in a room of many people talking at the same time. The energy of these noises 

used in the simulations was normalized to 1 for comparison purposes. 

The wavelet basis we used for decomposition were chosen from a variety of 

Daubechie wavelets, as well as some Coiflets, and biorthogonal wavelets, but our 

research focused mainly on Daubechie 3 (db3) wavelet. Since different wavelet basis 

exhibit different characteristics, exploration in more detail of the best wavelet choice for 

a given signal and noise is left for future research. 

3.3 Simulations and Results 

Our simulations produced two categories of results. The first was estimation of 

the delectability and measurement of the SNR at each analysis and synthesis branch, and 

the second was ROC curves to verify the results. For the delectability and SNR, a special 

code was written for displaying the results in a tree-like structure, which will enable the 

viewer to get the feel of how these quantities are evolved in the wavelet tree. The ROC 

curves were done using Monte Carlo Simulation (employing important sampling), 
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producing the probability of false alarm (Pra) and detection cPct), by sending repeatedly 

hypothesis H0 and H 1 (as they are described in Chapter 2.4) respectively and checking if 

decision for signal presence is made. The results we are going to present involve lower 

than 1 SNR conditions for our experimental noise scenario. The simulated pink noise 

behaves very similarly to the ocean noise and thus we show only ocean noise results. The 

detectability figures show results down to the fourth depth level, but the ROC curves are 

shown for only the first two levels for visual clarity. 

3.3.1 Vehicle Noise 

The signal used for this noise as shown in Figure 3.8 was the one in equation (3 .3) 

with parameters a=16 , b=20, T=4, andEs= 0.2 (i.e. SNR = 0.2). Its corresponding ROC 

curves before and after whitening are shown in Figure 3.9. Figures 3.10, 3.11, 3.12, show 

the detectability, normalized SNR (see Appendix I) before, and after whitening 

respectively, as they are evolved along the analysis scales. Notice that the SNR after 

whitening is very close to the detectability, and that is an indication of how good our 

whitener is . Figures 3.13, 3.14 show the ROC curves before and after whitening for the 

first two levels of decomposition in comparison with the ROC of the original signal. In 

Figures 3.10, 3.11 , 3.12, and 3.15 the red branch line is the best tree path (maximum 

detectability) . The corresponding nodes for each level are (0,0), (1,1), (2,2) , (3,4), and 

(4,8), with maximum detectability found at node (3 ,4). This value is approximately 12.7 

times better than the detectability at the input of our detector. Notice that the detectability 

does not necessarily increase as we go down the tree, but there is a point in the tree that 

reaches maximum value. For a more detail results on the eigenvalues (i\ij) and signal 
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projections onto the noise covariance matrix eigenvectors (equation (2.54)), for the first 

level of decomposition, refer to Appendix II. 

The increase in the delectability is verified by the ROC curves for the first two 

decomposition levels (i.e. the more the delectability the better the probability of detection 

for a given probability of false alarm). For example for a probability of false alarm Pra = 

.05, the probability of detection using an optimum detector at the input is approximately 

0.528 whereas it becomes 0.993 at node (2,2) which is a significant improvement. 

Similar results for the detectability and the associated ROC curves, in the 

synthesis branches, are shown in Figures 3.15, 3.16, and 3.17 respectively. We can 

observe in this case that the results are even more impressive. The maximum delectability 

occurs at node (3,4), which is approximately 76 times better than the detectability at the 

tree input. 
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Figure 3.17: ROC Along Scales Before Whitening for Vehicle Noise, Synthesis. 

66 



3.3.2 Babble Noise 

The signal used for this noise as shown in Figure 3.18, was the one in equation 

(3.3) with parameters a=14, b=lO, T=4, and Es= 0.2 (i.e SNR = 0.2). Its corresponding 

ROC curves before and after whitening are shown in Figure 3.19. Figures 3.20, 3.21, 

3.22, show the detectability, SNR before, and SNR after whitening respectively, as they 

are evolved along the analysis scales. Figures 3.23, 3.24 show the ROC curves before and 

after whitening for the first two levels of decomposition in comparison with the ROC of 

the original signal. We can observe that the results are similar to the vehicles noise case 

(regarding the path of maximum detectability). The corresponding nodes for each level 

that detectability is maximum are (0,0), (1,1), (2,2), (3,4), and (4,8), with maximum 

detectability found at node (2,2) unlike the case with the vehicle noise. This detectability 

is approximately 11.4 times better than the detectability at the input of our detector. The 

improvement is also transparent in the ROC curves where for a probability of false alarm 

Pfa = .05, the probability of detection using an optimum detector at the input is 

approximately 0.517 whereas it becomes 0.9991 at node (2,2). 

Analogous results for the detectability and the associated ROC curves, in the 

synthesis branches, are shown in Figures 3.25, 3.26, and 3.27 respectively. The maximum 

detectability occurs at node (4,8), which is approximately 60 times better than the 

detectability at the tree input. 
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Figure 3.18: Input Signal in Time and Frequency Domain. 
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Figure 3.23: ROC Along Scales Before Whitening for Babble Noise, Analysis. 
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Figure 3.24: ROC Along Scales After Whitening for Babble Noise, Analysis. 
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Figure 3.27: ROC Along Scales After Whitening for Babble Noise, Synthesis. 

74 



3.3.3 Ocean Noise 

The signal used for this noise as shown in Figure 3.28, was the one in equation 

(3 .3) with parameters a=l, b=l8, T=4, andEs= 0.05 (i.e SNR = 0.05). Its corresponding 

ROC curves before and after whitening are shown in Figure 3.29. Figures 3.30, 3.31, 

3.32, show the detectability, SNR before, and SNR after whitening respectively, as they 

are evolved along the analysis scales. Figure 3.33 , 3.34 shows the ROC curves before and 

after whitening for the first two levels of decomposition in comparison with the ROC of 

the original signal. The corresponding nodes for each level that detectability is maximum 

are (0,0) , (1,0), (2 ,0), (3 ,0), and (4,0), with maximum detectability found at node (1 ,0) 

unlike the case with the vehicle noise. This detectability is approximately 3.1 times better 

than the detectability at the input of our detector. The improvement is also transparent in 

the ROC curves where for a probability of false alarm Pra = .05 , the probability of 

detection using an optimum detector at the input is approximately 0.367 whereas it 

becomes 0.733 at node (1 ,0). 

Similar results for the detectability and the associated ROC curves, in the 

synthesis branches, are shown in Figures 3.35 , 3.36, and 3.37 respectively. The maximum 

detectability occurs at node (4,0) , which is approximately 3.5 times better than the 

detectability at the tree input. 
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Figure 3.28: Input Signal in Time and Frequency Domain. 
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Figure 3.29: ROC of Input Signal Before and After Whitening for Ocean Noise. 
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Figure 3.32: SNR After Whitening Along Scales for Ocean Noise, Analysis. 
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Figure 3.33: ROC Along Scales Before Whitening for Ocean Noise, Analysis. 
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Figure 3.34: ROC Along Scales After Whitening for Ocean Noise, Analysis. 
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Figure 3.35: Detectability Along Scales for Ocean Noise, Synthesis. 
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Figure 3.36: ROC Along Scales Before Whitening for Ocean Noise, Synthesis. 
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Figure 3.37: ROC Along Scales After Whitening for Ocean Noise, Synthesis. 
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The importance of the estimation of the noise statistics (KL transform) is essential 

for achieving optimum whitening and thus optimum detection. In the next Chapter we 

will show how we can compute them efficiently taking advantage of the wavelet 

structure. 
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CHAPTER4 

EIGENVALUE DECOMPOSITION METHODS ANALYSIS-SIMULATIONS 

AND RESULTS 

4.1 Plane Rotations for Finding EVD 

Optimum detection requires optimum whitening. This is achieved by an estimation 

of the statistics of the noise. More specifically the eigenvalues and eigenvectors of the 

covariance function of the noise have to be accurately calculated for optimum whitening as 

shown in Chapter 3. For the discrete and finite signal case the problem to be solved is really 

the diagonalization of a finite dimension symmetric matrix with no particular structure 

(such as Toeplitz) to be taken advantage of. This process is very computationally expensive 

and sometimes unstable, especially as the size of the covariance matrix increases. 

Let R be an NxN square matrix. The problem to be solve is to find a number A and 

anN dimensional vector q such that Rq = Aq, where A is called an eigenvalue and vector q 

is its corresponding eigenvector. This equation can be rewritten as (R-AI)q=O, where I is an 

n dimensional unity matrix . This is equivalent to asking for those values of A that allow the 

resultant system of N homogeneous equations in the N unknown coordinates of q to be 

solved. Such solution exists if and only if the determinant IR-AII = 0. This results to an Nth 

degree polynomial to be solved and thus there are N eigenvalues to be found. Then for each 
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eigenvalue we can find the appropriate eigenvector to satisfy (R-AJ)qi=O for i=l,2 ... N. 

This problem can also be stated as RQ=AQ, where A is a diagonal matrix containing Ai, 

and Q=[q 1 q2 ... QN] is an orthogonal matrix with the corresponding eigenvectors. In real life 

this method of solving the eigenvalue problem is not practical. This is because the search 

for the eigenvalues (roots of the polynomial) is not a trivial task especially in large matrices 

that have no particular structure (assuming one found the polynomial coefficients first). 

In practical situations recursive (adaptive) methods are used for finding the 

eigenvalues and eigenvectors of a matrix. Since we will be concentrating on the matrices R 

that are symmetric and real (although for Hermitian matrices the methods are very similar), 

methods based on plane rotations are best suited for this scenario [SIHA96] since they have 

been widely studied and are very commonly employed in such cases. These methods are 

very popular because they are easily coded with relatively low computational cost and one 

can control the error of the final result [PAWH58]. They employ a sequence of 2x2 plane 

rotations known as Jacobi or Givens rotations for the diagonalization of a data matrix, in a 

step-by-step fashion within some prescribed numerical precision. Moreover, these methods 

using plane rotations result to both eigenvectors and eigenvalues with no need for separate 

calculation. Also a lot of theoretical work has been done to verify convergence and 

estimate convergence speed of such methods [PHEN58], [PHGF60], [ERHA63], and 

[PJEB62], and even methods for parallel processing based on plane rotations have been 

devised [FLHP89]. The reader can get more information about alternative methods as well 

as methods for the non-symmetric cases from [PA WH58]. 
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We are going to start describing these methods by explaining how plane rotations 

can be used to manipulate elements from a matrix and how this concept can be used for 

matrix diagonalization. 

4.1.1 Plane Rotations Applied on a Matrix [PA WH58] 

Any plane rotation can be described by the 2x2 orthogonal matrix gtven by 

equation (4.1) as 

8 = [ c sl 
-s c 

(4.1) 

where c and s are real parameters defined by 

c = cos(8) (4.2a) 

s = sin(8) (4.2b) 

with the trigonometric constrain 

(4.3) 

We refer to the transformation 8 as a plane rotation because multiplication of a 2xl data 

vector by 8 amounts to a plane rotation of that vector. This is true whether the data vector 

is pre or post multiplied by 8. This rotation is also referred to as Jacobi rotation in honor of 

Jacobi who proposed the method in 1846 for a symmetric matrix diagonalization. It is also 

refer to as Givens rotation. To illustrate the nature of a plane rotation we will consider the 

case of a real 2xl vector a= [xa Ya]T. Then the premultiplication of vector a with 8 gives 
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[ c S l[x a l [ ex a + sy a j [X b] 
b = ea = - s c J y a = - sx a + cy a = y b 0 

(4.4) 

Notice that using equation (4.3) the Euclidean length of vector xis the same as the one of y 

which is consistent with a vector rotation i.e. 

Moreover, for an angle 8 to be positive, then vector a is rotated in the clockwise direction 

as illustrated in Figure 4.1. 

y 

X 

b 

Figure 4.1: Plane Rotation of a Real 2xl Vector. 
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4.1.2 Plane Rotations for Diagonalization 

We are now gomg to show the procedure and conditions of a simple 

diagonalization of a real symmetric 2x2 matrix X using plane rotations by post and pre 

multiplying by the rotation matrix as: 

(4.6) 

The question we want to answer is what are the values of s, and c that equation (4.6) is true. 

Expanding equation (4.6) and equating with right hand side we get 

2 2 
d1 = c Xi!- 2scx12+ s X22 (4.7a) 

2 2 
d1 = s x 11 + 2scx 12 + c X22 (4.7b) 

2 ( 2 ( 2 2) 0 = C X12 + SC X1J+X22)- S X12 = C -S X12 + SC(XJ!- X22). (4.7c) 

Essentially d1, and d2 are the eigenvalues of X, eT is the set of orthogonal eigenvectors of 

X corresponding to the d eigenvalues, and equation (4.7c) gives the condition for this to 

happen. We can rewrite equation (4.7c) as 

s 
and let - = t we get 

c 

(4.8) 
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(4.9a) 

(x - x ) 
Then letting 22 11 = 2b, equation (4.9a) becomes 

X 12 

(4.9b) 

with solution 

l 
sign (b) f . . ( ) 

_ 2b + .J 4b 2 4 r:--:-::; or mner rotatiOn + 
t= - + =-b±JI;b2= lbl+-v1+b

2 
(4.10) 

2 
- sign(b)~bl + JI;b2) for outer rotation ( -) 

with sign(b) = 1 forb;::: 0, and sign(b) = -1 forb< 0. Then from equation (4.3) substituting 

s = ~ in the definition oft = ~ we get 
c 

1 
c = ~and thuss = tc. 

-v1+t 2 
(4.11) 

Thus the algorithm steps are a) find b, b) computet from (4.10) c) use equation (4.11) to 

computes and c, and d) eT will give you the eigenvectors and d 1, d2 are the eigenvalues. 

In general this procedure done once can zero out any set of two symmetric off 

diagonal points for any dimension matrix X of size NxN. Lets define a rotation matrix ei,j 

of size NxN, as the rotation matrix that zeros elements Xi,j (element of X at i1h row, and fh 

column or X(i,j)), and Xj,i for N;::: j > i as 
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1 0 0 0 

0 c s .. . 0 ~rowi 

0 . = 
l.j 

0 -s ... c 0 ~row j (4.12) 

0 0 0 1 

I I 
col.i col.j 

Let matrix Y = ei} xei,j· When the rotations are enforced on X the resulting 

elements of Y can be categorized into the affected elements and the unaffected elements. 

The unaffected elements are those elements of Y that are unchanged through the rotation 

process or they are the same as the elements of X at that same position . From the structure 

of matrix ei,j one can observe that the affected elements are the elements that belong to the 

i1h and t column and the ones that belong to the i1
h and j1

h row of Y. Caring out a few set of 

rotations one can see a pattern emerging, and categorize the new elements (of Y) as we did 

and show below: 

Y(m,n) = X(m,n), form -:t i, j, n -:t i, j (4.13a) 

Y(m,n) = cX(i,n)- sXU,n), form= i, n -:t i, j (4.13b) 

Y(m,n) = cX(m,i)- sX(m,j), for n = i, m -:t i, j (4.13c) 

Y(m,n) = cXU,n) + sX(i ,n), form= j , n -:t i, j (4.13d) 

Y(m,n) = cX(m,j) + sX(m,i), for n = j , m -:t i, j (4.13e) 
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Y(i,j) = YU,i) = 0 (4.13f) 

Y(i,i) = c[cX(i,i)- sXU,i)]- s[cX(i,j)- sXU,j)] = 

(4.13g) 

YU,j) = s[sX(i,i) + cXU,i)] + c[sX(i,j) + cXU,j)] = 

(4.13h) 

Notice that equations (4.13b) to (4.13f) give the affected off-diagonal elements, equations 

(4.13g) and (4.13h) give the affected diagonal elements, and equation (4.13a) the 

unaffected elements of the rotation process. Also one can point out that since X is 

symmetric then the elements of Y given by equation (4.13b) are the same as those of 

(4.13c). Similarly the elements of Y given by equation (4.13d) are the same as those of 

(4.13e), which suggests that the resulting matrix Y after the plane rotations is symmetric 

since X is symmetric. For more clarity on the changes that X undergoes, we will 

demonstrate a series of two rotations on an arbitrary matrix X of size 4X4. The code to do 

this was written in Matlab. Let X be a unity energy matrix given as: 

0.4079 0.1632 0.1224 0.0816 

0.1632 0.3671 0.2040 0.1632 
X= (4.14) 

0.1224 0.2040 0.4895 0.2447 

0.0816 0.1632 0.2447 0.3263 

The off-diagonal energy (sum of the square of all the off-diagonal components) of X can be 

calculated to be 0.3527. For the first rotation lets zero points X(1,2) and X(2,1). Then 8 1,2 

can be calculated to be: 
91 



0.7497 -0.6618 0 0 

0.6618 0.7497 0 0 
(4.15) 0 = 1,2 0 0 1.0000 0 

0 0 0 1.0000 

The resulting Y 1 is then given by 

0.5519 0 0.2267 0.1691 

0 0.2231 0.0719 0.0683 
y- (4.16) ,-

0.2267 0.0719 0.4895 0.2447 

0.1691 0.0683 0.2447 0.3263 

Notice that the changed elements are the ones that belong to rows and columns 1 and 2. 

The off-diagonal energy of Y 1 can be calculated to be 0.2995 which is the off-diagonal of 

X (i.e. 0.3527) minus 2x(0.1632)2
, which is the energy of the zeroed elements. Also notice 

that this reduction in the off-diagonal energy was deposited on diagonal components at 

positions (1,1) and (2,2). Thus in this sense the new matrix Y 1 is closer to a diagonal form 

than X. For the second rotation operating on the resulting Y 1 matrix , lets zero points 

Y1(2,4), and Y1(4,2). Then 8 2,4 can be calculated to be: 

1.0000 0 0 0 

0 0.8952 0 0.4456 
0 = (4.17) 2, 4 

0 0 1.0000 0 

0 -0.4456 0 0.8952 

with resulting Y 2 to be 
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0.5519 -0.0754 0.2267 0.1514 

-0.0754 0.1891 -0.0447 0 
y2 = 

0.2267 -0.0447 0.4895 0.2511 
(4.18) 

0.1514 0 0.2511 0.3603 

with off-diagonal energy of 0.2902. Theoretical explanations and proofs for these 

observations will follow. 

We will now show the impact of these plane rotations to the off-diagonal energy of 

the resulting matrix Y. Since the plane rotations are orthogonal or form a 'similarity' 

transform (i.e ei,j T ei,j = 1), then the eigenvalues of y (AYk for k = 1, ... , N) are the same as 

the eigenvalues of X (Axk for k = 1, ... , N). Also from matrix theory we know that for any 

square matrix A NxN, the following is true: 

N 

Trace( A 
0

) = ~)< . (4.19) 
k=l 

Also it can be shown that if A is symmetric then 

N N 

Trace(A 
2

) = L La ~ .m (4.20) 
k=l m=l 

or in other words the trace of A 2 is the total energy of the matrix. This being said we then 

can write for matrices X andY the following: 

NN N N N NN 

Trace(X
2

) = LLX ~ ,m = LA~k = LA~k =LA~ =LLY~,m =Trace(Y
2
). (4.21) 

k=l m=l k=l k=l k=l k=l m=l 
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Let us now consider the energy of the affected off-diagonal elements of Y as given by 

equations (4.13b-e). The energy contained in equations (4.13b) and (4.13d) can be written 

as: 

Y(m, n) 2 + Y(m, n) 2 = (cX(i , n)- sXU , n) )2 + (cXU , n) + sX(i , n) )2 = 
m=j.n ;t i ,j 

=c 2 X(i , n) 2 +s 2 XU , n) 2 +c 2 XU ,n) 2 +s 2 X(i,n) 2 = 

= (c 2 +s 2 )X(i , nY" + (c 2 + s 2 )xu, n) 2 

Substituting equation (4.3) into (4.22) we then get: 

Similarly the energy of elements of equations (4.13c) and (4.13e) can be found as 

Y(m,i) 2 + Y(m,j) 2 = X(m,i) 2 + X(m,j) 2
, form t= i,j. 

(4.22) 

(4.23) 

(4.24) 

The results of equations (4.23), and (4.24) indicate that the elements of equations (4.13b-e), 

change values but their energy sum stays the same through the rotations. This means that 

the only off-diagonal energy change came from the two elements of equation (4.13f), 

which are the elements that were zeroed by the rotations. Since the energy before and after 

the rotations is the same (equation (4.21)) then the energy change was added to the two 

diagonal elements of equations (4.13g) and (4.13h) or one can write: 

(4.25) 
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This means that with every set of rotations the off-diagonal energy decreases by the amount 

of energy that the zeroed elements had as described by equation (4.26) as 

OFF(Y) = OFF(X)-X(i,j)2
- X(j,i)2 = OFF(X)-2X(i ,j)2

, (4.26) 

where 

(4.27) 
i j 

If the elements to be eliminated are appropriately chosen and with enough repetitions of 

the plane rotations, then the resulting Y k (at step k) matrix will be diagonalized within a 

certain error that we can tolerate. In other words the elements of the diagonal of the 

resulting matrix Y are going to approximate the eigenvalues of X. Thus the multiplication 

of all the ekT (for k = 1, .. . K, where K is the total rotation repetitions) used in repeated 

rotations will result to the eigenvectors of X as shown in equation (4.28). 

(4.28a) 

(4.28b) 

(4.28c) 

This is the basis of the diagonalization procedures that we used end evaluated. 
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4.1.3 Plane Rotation Methods for Diagonalization 

The first method we used is called the Jacobi method. This method before every set 

of rotations it searches for the maximum off-diagonal component and zeros it out. It has 

extremely fast convergence rate, the fastest of all the methods used, but the down side to it 

is that the search for the maximum component takes is a computationally expensive 

process. By convergence speed we mean the number of rotations required to converge to 

the desired minimum error. 

The second method used is called the Serial or Cyclic Jacobi method. It is a 

variation of the Jacobi method that consists of annihilating systematically all of the off­

diagonal components row-by-row or column-by-column, avoiding the searching process 

for a maximum element. Once the matrix is scanned once, the process is repeated until the 

minimum error is reached. This method is the one most widely used because of the relative 

easy programming that is required, and the low computational cost. The disadvantage of 

this method is that it is not as fast converging to the minimum acceptable error as the 

Jacobi method. Proofs for convergence of this method has been presented in [PHGF60]. 

The third method used is a method we thought intuitively and it can be described as 

a hybrid of the Jacobi and Cyclic Jacobi methods. It consists of annihilating systematically 

all of the off-diagonal components row-by-row or column-by-column, but skipping 

components that have energy below a certain threshold. In general there are many methods 

that use this threshold idea [PHGF60] in different forms but result to higher potential 

minimum error with little if any improvement in convergence speed. In our case we chose 

the threshold to change or adapt with every set of rotations. Adaptation usually means 
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significantly additional computational expense but not in our case, sine we take advantage 

of the plane rotation properties. More specifically adaptation is achieved by choosing the 

threshold to be a constant percentage y of the total off-diagonal energy at that instance 

before the rotation. The off-diagonal energy of a matrix is evaluated only once before the 

first rotation, and adapted every time by simply subtracting the energy of the annihilated 

element as shown in equation (4.26) . This saves the time of computing the off-diagonal 

energy at every rotation. This method although having a computational cost (execution 

time) that is close to the serial Jacobi, it performs very close to the Jacobi method 

convergence speed wise (required plane rotations). The downside is that the choice of 

threshold y must be chosen carefully for the minimum error requirements. 

In the next section we will examine how these methods perform in the subspaces, 

and demonstrate how we can take advantage of the subspace structure to improve even 

more the convergence speed for the eigenvalue-eigenvector calculation. 

4.2 EVD in Subspaces 

The covariance matrix Rs (of size NxN) at any given scale can be evaluated with 

respect to the covariance matrices in the next scale, and can be written in two forms 

(structures) as derived in Chapter 2. These expressions are (2.46) and (2.48). The matrices 

of interest are R1 and R2 given by: 

Rab] 
R ' 

b 

(4.29a) 
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(4.29b) 

where all variables are as defined as in Chapter 2. We showed (section 2.3.2) that the 

eigenvalues of R1 and R2 are the same as the ones of R5 • Also we established relationships 

between the eigenvectors of R5 , R1, and R2 (equation (2.50)). This fact makes the matrices 

R1 and R2 alternative structures to apply the EVD instead of R 5, which present significant 

advantages, as we will demonstrate in this section. 

The first advantage we immediately see is that inherently Rab (and thus Rab) have 

in general very little energy compared to Ra, and Rb. In fact there are noise covariance 

matrices Rs and filter matrices A, B that result to Rab to be equal to 0. If this is the case then 

(4.30) 

which means that 

[
A a 

A = 
s 0 (4.3la) 

(4.3lb) 

This gives us a great advantage since instead of evaluating the EVD of an NxN matrix (R5), 

we only require to do it for two (R3 , and Rb) MxM matrices (and that's only considering 

one stage decomposition). This can save significant time in our processing. 
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The most obvious case where this happens, is the trivial case of white noise with 

variance cr2 i.e. Rs = cr21, which makes equation (2.44c) as Rab = A TB = 0. Another case 

that comes inherently from the filter properties is when Rs is a matrix with all its elements 

equal to cr2
. To show this we will start with rewriting equation (2.44c) as 

= 

N N 

LLa;,r;ib i, 
j = l i=l 

N N 

LLa;Mriibi, 
j = l i=l 

N N 

LLa;,r;ib iM 
j = l i=l 

N N 

LLa;MriibiM 
j = l i=l 

(4.32) 

From the properties of wavelet filters we can write these relationships for Daubechies 

wavelets, but are true with different constant for all orthogonal and biorthogonaJ wavelets. 

N 

Lain = .J2,for any n, 
i=l 

M 1 I ani = r;;, for any n, 
i=l "'2 

1 
M .J2 , for n odd 

Lbni = 
1 - .J2 , for n even 

N 

L bin = 0, for any n. 
i=l 
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Thus 

N N N N N N 

L~>ikrijbjn = C LLaikbjn = C Laik L bjn = 0. 
j; J j; J j ; J j; J j; J j ; J 

'--y--' 
0 

(4.44) 

Also a combination of these two cases leads to a Rab = 0, 1.e. if Rs has diagonal 

components equal to one constant and the off diagonal equal to another. This IS the 

covariance matrix of a uniformly distributed noise. 

In many applications even though Rab is not identically zero, but has negligible 

energy compared to the energy of Ra and Rb. Then the eigenvalues and vectors for 

whitening can be approximated by expressions (4.31), with satisfactory results. This 

approximation results are shown for the experimental noises as well as for the simulated 

pink noise we used in Figures 4.2-4.5. The noise vectors were chosen to be of length 32. In 

our simulations we used db3 (Daubechies 3) wavelet decomposition. We see that the 

approximated eigenvalues for the most part are very close to the real ones, especially when 

they have small values, which would give the maximum error in the whitening process. 

The best result (least approximation error) we get in the simulated pink noise scenario and 

the worse in the experimental see noise. Another important factor for Rab matrix to have 

zero or close to zero elements, is the choice of the wavelet family (the set of A, B matrices). 

This fact can be illustrated in Figure 4.6, which is the case of the experimental see noise 

with the discrete Meyer wavelet. We immediately see much improvement in the estimated 

eigenvalues as far as better approximating the real ones. We leave the examination of 

finding the optimum wavelet for a given noise for future research . 
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Figure 4.5: Eigenvalue Results for Sea Noise, db3 . 
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Figure 4.6: Eigenvalue Results for Sea Noise, Discrete Meyer. 

4.3 Effect of Plane Rotation Methods on Subspace EVD 

In many applications an approximation of the eigenvalues of a process is not 

acceptable. In cases like this (given that Rab :t 0) one has to perform EVD on any of the 

three NxN size matrices R8, or R1, or R2. In this section we will demonstrate the clear 

advantages of performjng EVD through plane rotations, not directly on Rs but on matrices 

R1 or R2. We will show through simulations that not only the convergence speed increases, 

but also the initial off-diagonal energy reduces from using Rs to R1 and even more by using 

R2, at least for the noise scenarios we dealt with. These simulations are done using all three 

plane rotation methods and thus we will get an opportunity to examjne how the Hybrid 

Jacobi method performs compared to the other methods (Jacobi, and Cyclic Jacobi). The 

noise vectors had length 16 or each matrix had 256 elements and the wavelet used was db3 . 
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For comparison purposes all noises are normalized to result in a covariance matrix Rs 

energy equal to one. The simulations are ended when the off diagonal energy is less than 

10"14. The simulations results are shown in Figures 4.7-4.10 for babble, vehicle, pink, and 

ocean noise respectively. For clarity of results and comparison purposes, Tables 4.1-4.4 

were added to present results of the off-diagonal energy at the 60th plane rotation. 

Givens Plane Rotations 

Figure 4.7: Off-Diagonal Energy for Babble Noise. 

Matrix I Method Cyclic Jacobi Hybrid Jacobi Jacobi 

Rs 1.2xl04 l.lxlo·' 2.5xto·' 

Rt 2.5xl04 3.3xto·'.l 2.8xl0"10 

R2 2.lxto·9 4.lxl0·12 1.9xl0·13 

Table 4.1: Off-Diagonal Energy for Babble Noise for 60 Plane Rotations. 
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Givens Plane Rotations 

Figure 4.8: Off-Diagonal Energy for Vehicle Noise. 

Matrix I Method Cyclic Jacobi Hybrid Jacobi Jacobi 

Rs 5.2x10-4 1.02x10-o 2.6x10-o 

Rt 2x10"5 1.2x10"11 2.3xlo-~~ 

R2 lxl0"8 4.5x10"13 4.4x10"12 

Table 4.2: Off-Diagonal Energy for Vehicle Noise for 60 Plane Rotations. 
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Gi11ens Plane Rotations 

Cyclic Jacobi R 
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Cyclic Jacobi R1 
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Cyclic Jacobi R2 
Max scan R2 
Hybrid Jacobi R2 

100 120 

Figure 4.9: Off-Diagonal Energy for Pink Noise. 

Matrix I Method Cyclic Jacobi Hybrid Jacobi Jacobi 

Rs l.Olxl04 1.09xl0·7 2.8xl0·8 

Rt 3.lx10-o 9.7xl0-11 1.12x1o·IU 

R2 5.lxl0·11 6.2x10-15 6.lx10-15 

Table 4.3: Off-Diagonal Energy for Pink Noise for 60 Plane Rotations. 
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Givens Plane Rotations 

Figure 4.10: Off-Diagonal Energy for Ocean Noise. 

Matrix I Method Cyclic Jacobi Hybrid Jacobi Jacobi 

Rs 5x10-j 3.8x10-o 1.3x10-7 

Rt 1.5xl04 6xlo-" 2.4xlo-~~ 

R2 6x10- 10 2.lx10- 12 7.lxl0-13 

Table 4.4: Off-Diagonal Energy for Ocean Noise for 60 Plane Rotations. 
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Looking at the results one can deduce, regarding the choice of matrix structure, that 

we achieve significantly better results using matrix R1 and even more using matrix R2 over 

matrix R5 • To begin with, we can observe much faster convergence to the prescribed 

acceptable off-diagonal energy. This is true for all methods used and all the noises with the 

exception of the Cyclic Jacobi method in babble noise, which we did not see much 

improvement by using R1 over R5 • As an example we point to the ocean noise case for the 

Hybrid Jacobi method for the sixty plane rotations mark, where the off-diagonal energy of 

R1 and R2 is approximately a thousand and a million times smaller respectively, than the 

one in matrix R5 • Notice that the difference in the results, in all the cases, is amplified with 

the increase of the plane rotations . Another observation, even though we do not show the 

simulations, is that the improvement in the performance is even more noticeable as the 

covariance matrix increases in size. Furthermore, the initial off-diagonal energy is smaller 

in matrix R 1 over Rs and even smaller in matrix R2. All these observations lead us to 

believe that the matrices structures (R1, and R2) derived from subspaces are an attractive 

alternative to the input matrix (Rs) structure for the EVD problem. 

Regarding the EVD methods we can conclude that the in all the cases the Jacobi 

and Hybrid Jacobi outperform the Cyclic Jacobi method convergence wise (required plane 

rotations), with the Jacobi and Hybrid Jacobi having very similar results. Considering the 

fact though that the Hybrid Jacobi does not have to go through a sorting procedure before 

every plane rotation, which is very computationally expensive, then this method seems the 

best choice for a given noise. 
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CHAPTERS 

SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

5.1 Summary and Conclusions 

A measure of the potential of a receiver for detection is detectability. Detectability 

is a function of the signal and noise, and given any one of them the detectability is fixed. 

In addition, complete transforms of the signal and noise cannot change detectability. 

Throughout this work we demonstrated (Chapter 3) that "Subspace methods" as defined 

in Chapter 2 improve detectability in certain subspaces resulting in improved Receiver 

Operating Curves (ROC) and thus better detection in arbitrary noise environments in this 

subspaces. Our method is tested and verified on various signals and noises, both 

simulated and real. More specifically we used wavelet (db3) subspaces and evaluated 

signal detection potential in different scales and branches for vehicle, ocean, and babble 

noise. Indeed for a given signal and noise we verified that there can exist a subspace that 

the signal is concentrated where as the projection of the noise in that same subspace is of 

a very small energy. This results to detectability improvement in the order of four to sixty 

times depending on the noise and whether we evaluated the synthesis or analysis part of 

the wavelet decomposition. Consequently in these subspaces the probability of detection 

for a given probability of false alarm significantly improves compared to the ROC that 

result by performing optimum detection in on the original signal and noise. 
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The optimum detection of signals in noise reqUires the computation of noise 

eigenvalues and vectors (EVD). This process neither is a trivial one nor IS it 

computationally cheap, especially for non-stationary noise and can result in numerical 

instabilities when the covariance matrix is large. This work addressed this problem and 

provided solutions in Chapter 4 that take advantage of the subspace structure through 

plane rotations to improve on existing algorithms for EVD by improving their 

convergence rate and reducing their computational expense for given thresholds. More 

specifically, we proposed two covariance matrix structures that result from subspace 

decomposition that can be used to evaluate the noise statistics (KL basis) with a clear 

advantage regarding convergence speed and initial off diagonal energy using various 

plane rotation methods. Moreover we proposed an algorithm, the hybrid Jacobi , that is 

almost as computationally cheap as the Cyclic Jacobi algorithm but performs similarly to 

the computationally expensive Jacobi algorithm. The drawback of this method is that the 

parameter used had to be predetermined and is in general different for any arbitrary noise 

environment, but for any given communication system where the noise expected does not 

change characteristics it is an attractive alternative to the traditional methods. 

5.2 Future Research 

The detectability of the signal in a given arbitrary noise in subspaces is greatly 

affected by the choice of the subspace transform used. The choice of the subspace 

transform also affects the convergence speed of the EVD algorithms. When wavelets are 

used then there is a great variety of wave functions to chose from, depending on the noise 

and signal in hand. In our study we used db3 wavelet for subspace decomposition 
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acknowledging the fact that for our noise and signal environments a better transform may 

exist. The exploration of subspace transform alternatives for a given noise environment is 

left for future studies. More over the subspace detection is greatly affected by the signal 

choice. Throughout our work an attempt was made to choose a signal for a given noise, 

which places the signal in subspaces were the noise projections do not reside. Describing 

the exact process that leads to the optimum signal choice, given the subspace transform 

and the noise, can advance this work. Also the alternative of multiple signaling could be 

explored. Finally, the advantages and disadvantages of using all the subspaces for 

detection could be explored. 
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APPENDIX I 

Detectability and SNR After Whitening 

In this appendix we will derive the relationships of the SNR and the delectability 

before and after the whitening process. Let the vector r = [r1 r2 • •• rN]T = s + n where s is 

and n is the signal and noise column vectors respectively. The covariance matrix of the 

noise is defined as R = E[nn T] = QAQT, where Q is the eigenvector matrix of R, and A is 

a diagonal matrix containing the eigenvalues of R. Let the whitening process be based on 

the noise statistics as shown in Figure ALl below. 

* r 

Figure AI.l: Whitening Process Using Noise Statistics. 

The vector r * is the whitened r vector which is equal to: 

(ALl) 

Evidently the resulting noise n* is white i.e. 

(AL2) 
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The detectability (equation 2.58) and SNR before the whitening process are given as 

d 2 TR-1 
in = S S (AI.3a) 

(AI.3b) 

i= l i = l 

Similarly we can derive the detectability and SNR at the output of the whitening process 

as: 

(AI.4a) 

(AI.4b) 

From these equations we conclude that the detectability does not change through the 

whitening process but the SNR does. Actually, form equation (AI.4b) we conclude that if 

the signal is whitened then the SNR is directly proportional to the detectability. In 

Chapter 3 we gave simulations results of the normalized SNR, and all that means is that 

we multiply the SNR by the observation vector length N, so that the detectability and the 

SNR have the same value along scales. 
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APPENDIX II 

Eigenvalue and Detectability Evolution for Vehicle Noise 

In this appendix we will show a numerical example on how the eigenvalues of the 

vehicle noise evolve in the wavelet subspace structure described in Chapter 3 (db3). 

Furthermore, we will show the projections of the signal onto the eigenvectors of the noise 

covariance matrix, as well as the detectability, evolution along scales. The signal used is 

the one in equation (3.3) with parameters N=l6, a=l4, b=l7, T=2, and Es= 0.2. The 

results are shown in Tables AII. l - AII.3 for the input node (0,0), and the first level of 

subspace decomposition nodes (1,0) and (1,1) respectively. Moreover, Figure AII.l 

shows the eigenvalues for these nodes. All variables used are as defined in section 2.4. 
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Analysis at Level (0,0) 

No Eigenvalues (A) Signal Projections (sk) sk2/.A 

32 

L,i sk (n) 1
2= 0.199975 

1 0.0005 -0.0157 0.49298 
n= l 

32 
2 0.0045 0.0451 0.45200 

3 0.0214 -0.0796 0.29608 
L"-n = 31.9992 
n= l 

4 0.0313 -0.006 0.00115 

5 0.0483 0.0303 0.01901 

6 0.0515 -0.0497 0.04796 

7 0.0655 -0.1413 0.30482 

8 0.0815 0.1166 0.16682 

9 0.0893 -0.0416 0.01938 

10 0.1002 0.1326 0.17548 

11 0.1377 0.1005 0.07335 

12 0.157 0.0266 0.00451 

13 0.176 -0.0803 0.03664 

14 0.1814 0.057 0.01791 

15 0.1998 -0.0824 0.03398 

16 0.201 -0.0163 0.00132 

17 0.2107 -0.1235 0.07239 

18 0.2245 0.1446 0.09314 

19 0.2551 0.0631 0.01561 

20 0.2726 0.0385 0.00544 

21 0.3858 -0.0324 0.00272 

22 0.5088 -0.1562 0.04795 

23 1.0132 -0.0788 0.00613 

24 1.1911 -0.0754 0.00477 

25 1.5541 -0.1062 0.00726 

26 2.0219 -0.0822 0.00334 

27 2.2225 -0.0712 0.00228 

28 2.4168 -0.0092 0.00004 

29 3.1934 -0.0336 0.00035 

30 3.6347 0.0145 0.00006 

31 5.3573 -0.0236 0.00010 

32 5.9898 0.0587 0.00058 

32 I s . (n) 12 
Detectability = d 2 = L k 2.40554 

n= l An 

Table AII.l: Results for node (0,0). 
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Analysis at Level (l ,0) 

No Eigenvalues (A) Signal Projections (sk) sk
2/A 

16 

I, I sk (n) 1
2= 0.048339 

1 0.1935 -0.0006 0.00000 n=l 
16 

2 0.2092 -0.0169 0.00137 
3 0.2366 -0.031 0.00406 

L An = 30.1247 
n=l 

4 0.2446 -0.0429 0.00752 
5 0.3833 -0.0751 0.01471 

6 0.4619 0.0791 0.01355 
7 0.9267 0.075 0.00607 

8 1.1106 0.0407 0.00149 
9 1.5776 0.0791 0.00397 
10 1.8508 -0.0258 0.00036 
11 2.1913 0.0201 0.00018 

12 2.4426 -0.0787 0.00254 
13 3.0779 -0.0812 0.00214 
14 3.6201 -0.0003 0.00000 
15 5.3617 0.0183 0.00006 
16 6.2363 0.075 0.00090 

16 I s (n) 12 
Detectability = d 2 = L k 0.05893 

n=l An 
Table AII.2: Results for node (1,0). 

Analysis at Level (l, l) 

No Eigenvalues (A) Signal Projections (sk) sk
2/A 

16 

I, I sk (n) 1
2 = 0.151667 

l 0.0005 0.0236 1.11392 
n=l 
16 

2 0.0045 0.0657 0.95922 
3 0.0211 0.11 0.57346 

LAn = 1.8685 
n=l 

4 0.0365 0.0134 0.00492 
5 0.0547 0.098 0.17558 
6 0.0631 0.1421 0.32001 

7 0.0756 0.185 0.45271 
8 0.1196 0.1574 0.20715 
9 0.1379 0.1007 0.07354 
10 0.157 0.1521 0.14735 
11 0.1713 -0.0228 0.00303 
12 0.1805 -0.0862 0.04117 
13 0.1926 0.0358 0.00665 
14 0.2022 -0.0348 0.00599 
15 0.2219 -0.0443 0.00884 
16 0.2295 -0.0061 0.00016 

16 Is (n) 12 
Delectability= d 2 = L k 4.09370 

n=l An 
Table AII.3: Results for node (1,1). 
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Figure AII.l: Eigenvalues for Parent- Children Nodes. 
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APPENDIX III 

Positive Definite Matrices 

In this appendix we will describe the criterion for a matrix to be positive definite 

and their corresponding properties. A conjugate symmetric matrix R of size MxM is 

called positive definite if and only if the Hermitian form [DMVIOO] : 

M 

xHRx = ~>ii xi · xi > 0, for x t:- 0. 
i .j 

(AIII.1) 

This is not the only criterion though that establishes a positive definite property of a 

matrix . More precisely an MxM matrix R is positive definite if and only if it satisfies any 

one of the following criteria: 

1. xHRx > 0 for all nonzero vectors x. 

2. All eigenvalues of Rare positive. 

3. All principal submatrices Rm (comprised of the first m columns and rows of R), 1 

~ m ~ M, have positive determinants. 

4. There exists an LxM, M > L, matrix S with linearly independent columns such 

that R = sHs (i.e . sis of rank M). 
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5. There exists a non-singular MxM matrix W such that R = WHW (i.e. W could be 

an orthogonal matrix obtained from the eigenvectors of R, or a triangular matrix 

obtained from Cholesky's decomposition). 

6. There exists a non-singular MxM matrix P such that PHRP is positive definite. 

Using these criteria some properties of positive definite matrices are listed below: 

1. The diagonal elements of Rare positive. 

3. The element of R with the largest absolute value lies on the diagonal. 

4. The determinant of R > 0. Hence R is non-singular. 

5. The inverse matrix R 1 is positive definite. 

6. The matrix obtained by deleting a row and the corresponding column from R is 

positive definite. 
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