You are here

A REVIEW AND ANALYSIS OF BOT-IOT SECURITY DATA FOR MACHINE LEARNING

Download pdf | Full Screen View

Date Issued:
2021
Abstract/Description:
Machine learning is having an increased impact on the Cyber Security landscape. The ability for predictive models to accurately identify attack patterns in security data is set to overtake more traditional detection methods. Industry demand has led to an uptick in research in the application of machine learning for Cyber Security. To facilitate this research many datasets have been created and made public. This thesis provides an in-depth analysis of one of the newest datasets, Bot-IoT. The full dataset contains about 73 million instances (big data), 3 dependent features, and 43 independent features. The purpose of this thesis is to provide researchers with a foundational understanding of Bot-IoT, its development, its features, its composition, and its pitfalls. It will also summarize many of the published works that utilize Bot-IoT and will propose new areas of research based on the issues identified in the current research and in the dataset.
Title: A REVIEW AND ANALYSIS OF BOT-IOT SECURITY DATA FOR MACHINE LEARNING.
315 views
261 downloads
Name(s): Peterson, Jared M., author
Khoshgoftaar, Taghi M., Thesis advisor
Florida Atlantic University, Degree grantor
Department of Computer and Electrical Engineering and Computer Science
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2021
Date Issued: 2021
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 119 p.
Language(s): English
Abstract/Description: Machine learning is having an increased impact on the Cyber Security landscape. The ability for predictive models to accurately identify attack patterns in security data is set to overtake more traditional detection methods. Industry demand has led to an uptick in research in the application of machine learning for Cyber Security. To facilitate this research many datasets have been created and made public. This thesis provides an in-depth analysis of one of the newest datasets, Bot-IoT. The full dataset contains about 73 million instances (big data), 3 dependent features, and 43 independent features. The purpose of this thesis is to provide researchers with a foundational understanding of Bot-IoT, its development, its features, its composition, and its pitfalls. It will also summarize many of the published works that utilize Bot-IoT and will propose new areas of research based on the issues identified in the current research and in the dataset.
Identifier: FA00013838 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2021.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Machine learning
Cyber security
Big data
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013838
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.