You are here

DESIGN & DEVELOPMENT OF A SECURE SELF-LEVELING WIRELESS RECHARGING PLATFORM FOR AN AERIAL DRONE ON AN UNMANNED SURFACE VESSEL

Download pdf | Full Screen View

Date Issued:
2021
Abstract/Description:
The Design and Development of an automated recharging station for an aerial drone, onboard a small, unmanned surface vessel, is described. Drones require a landing surface that is level within five degrees of the surrounding terrain for repeated reliable landing and takeoff. System constraints and at-sea application necessitate a compact, lightweight, and secure solution. A passive self-leveling platform and an accompanying automated parallel-pusher drone restraint mechanism have been designed and fabricated to aid in achieving a level landing surface and holding the drone in place while it charges. The self-leveling mechanism has been analyzed and subjected to initial laboratory tests. The testing of the drone restraint mechanism to verify its weight capacity and closing time, and the integration of the platform with a custom conductive contact wireless charging pad are identified as future work. The resulting cohesive unit will be tested for performance optimization and implementation onboard the unmanned surface vehicle.
Title: DESIGN & DEVELOPMENT OF A SECURE SELF-LEVELING WIRELESS RECHARGING PLATFORM FOR AN AERIAL DRONE ON AN UNMANNED SURFACE VESSEL.
156 views
65 downloads
Name(s): McKinney, Adriana , author
Dhanak, Manhar, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Ocean and Mechanical Engineering
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2021
Date Issued: 2021
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 86 p.
Language(s): English
Abstract/Description: The Design and Development of an automated recharging station for an aerial drone, onboard a small, unmanned surface vessel, is described. Drones require a landing surface that is level within five degrees of the surrounding terrain for repeated reliable landing and takeoff. System constraints and at-sea application necessitate a compact, lightweight, and secure solution. A passive self-leveling platform and an accompanying automated parallel-pusher drone restraint mechanism have been designed and fabricated to aid in achieving a level landing surface and holding the drone in place while it charges. The self-leveling mechanism has been analyzed and subjected to initial laboratory tests. The testing of the drone restraint mechanism to verify its weight capacity and closing time, and the integration of the platform with a custom conductive contact wireless charging pad are identified as future work. The resulting cohesive unit will be tested for performance optimization and implementation onboard the unmanned surface vehicle.
Identifier: FA00013869 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2021.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Drone aircraft
Drone aircraft--Control systems--Design and construction
Drone aircraft--Automatic control
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013869
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.