You are here

Non-Invasive Measurement Methods for Transient Flows in Wind Tunnels

Download pdf | Full Screen View

Date Issued:
2021
Abstract/Description:
A non-invasive transient state measurement method for wind tunnels would be very valuable as an experimental tool. Traditional measurement techniques for transient flows, e.g., hot wire anemometry, require sensors that are placed in the flow. Alternatively, particle image velocimetry (PIV) may be used to measure transient flows non intrusively, but applying PIV requires sensors that are expensive, and it may take months to process the data. The non-invasive measurement techniques considered in this thesis utilize sensors that are imbedded into the wall of a wind tunnel, or the response of a Kevlar walled wind tunnel to obtain the pressure time histories of a transient flow. These measurements are suitable and accurate for analyzing steady state flows but the feasibility of using them on time varying flows has yet to be explored. If this method proves possible, it would be very beneficial even if it is less accurate than current invasive methods because it would give results in real time. This thesis investigates a simple transient flow of the startup vortex of an airfoil caused by a step change in angle of attack. Based on thin airfoil theory, two models of an airfoil were created. It was determined that the response of a Kevlar wall can measure the unsteady lift of an airfoil.
Title: Non-Invasive Measurement Methods for Transient Flows in Wind Tunnels.
46 views
31 downloads
Name(s): Marcheggiani, Joseph P. , author
Glegg, Stewart, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Ocean and Mechanical Engineering
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2021
Date Issued: 2021
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 98 p.
Language(s): English
Abstract/Description: A non-invasive transient state measurement method for wind tunnels would be very valuable as an experimental tool. Traditional measurement techniques for transient flows, e.g., hot wire anemometry, require sensors that are placed in the flow. Alternatively, particle image velocimetry (PIV) may be used to measure transient flows non intrusively, but applying PIV requires sensors that are expensive, and it may take months to process the data. The non-invasive measurement techniques considered in this thesis utilize sensors that are imbedded into the wall of a wind tunnel, or the response of a Kevlar walled wind tunnel to obtain the pressure time histories of a transient flow. These measurements are suitable and accurate for analyzing steady state flows but the feasibility of using them on time varying flows has yet to be explored. If this method proves possible, it would be very beneficial even if it is less accurate than current invasive methods because it would give results in real time. This thesis investigates a simple transient flow of the startup vortex of an airfoil caused by a step change in angle of attack. Based on thin airfoil theory, two models of an airfoil were created. It was determined that the response of a Kevlar wall can measure the unsteady lift of an airfoil.
Identifier: FA00013837 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2021.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Wind tunnels
Transient flow (Aerodynamics)
Measurement
Sensors
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013837
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.