You are here

PASSIVE PERMEATE-SIDE-HEATED SOLAR MEMBRANE DISTILLATION: TUBULAR AND MULTISTAGE PLANAR SYSTEMS WITH HYDROPHOBIC AND HYDROPHILIC MEMBRANES

Download pdf | Full Screen View

Date Issued:
2021
Abstract/Description:
In this research, a multistage (i.e., three stages) planar, and a tubular passive permeateside-heated interfacial solar membrane distillation (ISMD) has been developed. The three-stage system had an system energy efficiency of 62% in producing distilled water at an average daytime irradiance of 422 W/m2 with average distillate flux of 5 kg/(m2·day), which is higher than that of the single-stage planar systems. Production rate of distilled water in each stage of the three-stage planar system per unit area of footprint was 3.3 kg/(m2·day), while the production rate per unit area of footprint of single-stage system was 1.6 kg/(m2·day). Also, a hydrophilic nanoporous (PES NF) membrane was used in our study, which has not been found in the research of conventional MD systems. No penetration of hydrophilic nanoporous membrane was found during the operation of single-stage planar systems under simulated sunlight. The membrane was able to produce distilled water for 114 days under simulated sunlight using municipal wastewater as feed water. On the other hand, hydrophobic (0.20 and 0.45 μm) PVDF membranes were penetrated by feed water (i.e., wastewater) after approximately 50 days.
Title: PASSIVE PERMEATE-SIDE-HEATED SOLAR MEMBRANE DISTILLATION: TUBULAR AND MULTISTAGE PLANAR SYSTEMS WITH HYDROPHOBIC AND HYDROPHILIC MEMBRANES.
40 views
21 downloads
Name(s): Ahmed, Shahin Sujon, author
Yi, Peng , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Civil, Environmental and Geomatics Engineering
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2021
Date Issued: 2021
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 87 p.
Language(s): English
Abstract/Description: In this research, a multistage (i.e., three stages) planar, and a tubular passive permeateside-heated interfacial solar membrane distillation (ISMD) has been developed. The three-stage system had an system energy efficiency of 62% in producing distilled water at an average daytime irradiance of 422 W/m2 with average distillate flux of 5 kg/(m2·day), which is higher than that of the single-stage planar systems. Production rate of distilled water in each stage of the three-stage planar system per unit area of footprint was 3.3 kg/(m2·day), while the production rate per unit area of footprint of single-stage system was 1.6 kg/(m2·day). Also, a hydrophilic nanoporous (PES NF) membrane was used in our study, which has not been found in the research of conventional MD systems. No penetration of hydrophilic nanoporous membrane was found during the operation of single-stage planar systems under simulated sunlight. The membrane was able to produce distilled water for 114 days under simulated sunlight using municipal wastewater as feed water. On the other hand, hydrophobic (0.20 and 0.45 μm) PVDF membranes were penetrated by feed water (i.e., wastewater) after approximately 50 days.
Identifier: FA00013860 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2021.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Membrane distillation
Solar distillation
Wastewater
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013860
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.