You are here
HOMOCLINIC DYNAMICS IN A SPATIAL RESTRICTED FOUR BODY PROBLEM
- Date Issued:
- 2021
- Abstract/Description:
- The set of transverse homoclinic intersections for a saddle-focus equilibrium in the planar equilateral restricted four body problem admits certain simple homoclinic orbits which form the skeleton of the complete homoclinic intersection, or homoclinic web. In this thesis, the planar restricted four body problem is viewed as an invariant subsystem of the spatial problem, and the influence of this planar homoclinic skeleton on the spatial dynamics is studied from a numerical point of view. Starting from the vertical Lyapunov families emanating from saddle focus equilibria, we compute the stable/unstable manifolds of these spatial periodic orbits and look for intersections between these manifolds near the fundamental planar homoclinics. In this way, we are able to continue all of the basic planar homoclinic motions into the spatial problem as homoclinics for appropriate vertical Lyapunov orbits which, by the Smale Tangle theorem, suggest the existence of chaotic motions in the spatial problem. While the saddle-focus equilibrium solutions in the planar problems occur only at a discrete set of energy levels, the cycle-to-cycle homoclinics in the spatial problem are robust with respect to small changes in energy. The method uses high order Fourier-Taylor and Chebyshev series approximations in conjunction with the parameterization method, a general functional analytic framework for invariant manifolds. Tools that admit a natural notion of a-posteriori error analysis. Finally, we develop and implement a validation algorithm which we later use to obtain Theorems confirming the existence of homoclinic dynamics. This approach, known as the Radii polynomial, is a contraction mapping argument which can be applied to both the parameterized manifold and the Chebyshev arcs. When the Theorem applies, it guarantees the existence of a true solution near the approximation and it provides an upper bound on the C0 norm of the truncation error.
Title: | HOMOCLINIC DYNAMICS IN A SPATIAL RESTRICTED FOUR BODY PROBLEM. |
76 views
44 downloads |
---|---|---|
Name(s): |
Murray, Maxime, author James, Jason Mireles, Thesis advisor Florida Atlantic University, Degree grantor Department of Mathematical Sciences Charles E. Schmidt College of Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2021 | |
Date Issued: | 2021 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 137 p. | |
Language(s): | English | |
Abstract/Description: | The set of transverse homoclinic intersections for a saddle-focus equilibrium in the planar equilateral restricted four body problem admits certain simple homoclinic orbits which form the skeleton of the complete homoclinic intersection, or homoclinic web. In this thesis, the planar restricted four body problem is viewed as an invariant subsystem of the spatial problem, and the influence of this planar homoclinic skeleton on the spatial dynamics is studied from a numerical point of view. Starting from the vertical Lyapunov families emanating from saddle focus equilibria, we compute the stable/unstable manifolds of these spatial periodic orbits and look for intersections between these manifolds near the fundamental planar homoclinics. In this way, we are able to continue all of the basic planar homoclinic motions into the spatial problem as homoclinics for appropriate vertical Lyapunov orbits which, by the Smale Tangle theorem, suggest the existence of chaotic motions in the spatial problem. While the saddle-focus equilibrium solutions in the planar problems occur only at a discrete set of energy levels, the cycle-to-cycle homoclinics in the spatial problem are robust with respect to small changes in energy. The method uses high order Fourier-Taylor and Chebyshev series approximations in conjunction with the parameterization method, a general functional analytic framework for invariant manifolds. Tools that admit a natural notion of a-posteriori error analysis. Finally, we develop and implement a validation algorithm which we later use to obtain Theorems confirming the existence of homoclinic dynamics. This approach, known as the Radii polynomial, is a contraction mapping argument which can be applied to both the parameterized manifold and the Chebyshev arcs. When the Theorem applies, it guarantees the existence of a true solution near the approximation and it provides an upper bound on the C0 norm of the truncation error. | |
Identifier: | FA00013758 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2021. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Boundary value problems Invariant manifolds Applied mathematics |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013758 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |