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The high prevalence of autism spectrum disorder (ASD) results in large costs to individuals,

families, and society. Among diagnosed individuals, restrictive and repetitive behaviors (RRBs)

correlate with functional impairments substantially impacting wellbeing but remain less studied than

social and communication deficits. Brain resting-state functional connectivity (fc) measures intrinsic,

potentially RRB-associated neural dynamics. Here, whole-brain (WB), and iterated seed-based

(SB)fc guided by the preceding WBfc and a priori hypotheses was performed. Combined results

were used to model a brain network beginning with qualitative assessment of its potential functional

association with RRBs. Once rigorously defined, the network was used to inform construction of a

dynamical systems model of brain activity hypothesized to correlate with RRB severity. Qualitative

model behavior tracked expectations of real cortical activity in RRB presentation. Model numerical

output was found to correlate with behavioral measures of RRBs to a significantly greater degree

than the underlying brain connectivity values themselves did. Some summary measures of model

output were also found to correlate significantly, though near threshold, with severity measures

in the other two ASD core deficit domains, and particularly, far more extensively than should be

expected given the underlying brain connectivity values themselves were apparently effectively wholly

uncorrelated with the measures. Significant findings are: (1) dynamical modeling of brain activity

can identify significant correlations with symptom manifestation that fc alone cannot; (2) dynamical

modeling of brain activity could potentially increase understanding of ASD’s extensive heterogeneity

across symptom domains; (3) extensive overlap between the constructed network and known RRB-

implicated brain divisions was identified, with cerebellum, increasingly implicated in distributed

neocortical functional differences in RRBs in humans and animal models, centrally connected to
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multiple such divisions; (4) further overlap is found via striatal circuitry, implicated in multiple

RRB-like behaviors previously, and forming at least 1/3 of the functional basis for the network’s

hypothetical relationship with RRBs; (5) ASD-associated angular gyrus, PFC, ACC overlap was

found. This successful tandem application of fc, dynamical modeling, and neurocognitive network

theory illustrates the need for broad theoretical approaches in illuminating ASD heterogeneity and

the neurocognitive underpinnings of specific ASD presentations.
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3.44 Subject-level näıve dynamic color maps . . . . . . . . . . . . . . . . . . . . . . . . . 164
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CHAPTER 1

BACKGROUND

1.1 OVERVIEW OF ASD

Autism spectrum disorder is a neurodevelopmental disorder characterized by core deficits in so-

cial, language and nonverbal communication, and repetitive behavior domains [1]. Estimates for

the prevalence of the disorder range from 0.6%, based on a review of studies from 14 countries, to

2.76%, by the National Center for Health Statistics [2], and the prevalence appears to be increasing

through time [3]. The disorder has a significant genetic basis, consistently identified in twin studies

[4], and has in fact been argued to be one of the most genetically influenced among those men-

tal disorders with complex etiologies [5]. ASD-associated impairments result in substantial costs;

including explicit and implicit costs to those with an ASD diagnosis, their family, social support

structure, and the wider community, including government subsidies and unsubsidized healthcare

costs, a per-capita lifetime total of well over two-million dollars has been estimated, with total costs

in the United States over the next decade reaching over ten-trillion dollars [2]. Furthering our un-

derstanding of the disorder, then, is of great importance to both those with the disorder and society

as a whole, especially because treatment options for the disorder remain relatively circumscribed:

Treatment at present is largely in the form of behavioral therapy, dietary restrictions [6, 7], and,

despite the implication of nearly every major neurotransmitter system with wide cerebral distribu-

tion, two antipsychotic medications, risperidone and aripiprazole, these to treat aggression, and no

other FDA-approved pharmacotherapeutic interventions [8]. Recently, however, consistent with the

implication of the nonapeptide oxytocin in some autism symptoms [9], a selective vasopressin V1a

receptor antagonist is in phase 2 clinical trials with apparent efficacy in treating social and language,

but not specifically repetitive behavior, deficits in ASD [10]. Vasopressin is a related nonapeptide

hormone that also functions as a neurotransmitter implicated in social interactions.

The disorder was first described be Leo Kanner in 1943 [11, 12], but its precise symptomatological

extent, along with how to approach research of the disorder with this issue in mind, continues to be

debated. While both clinical and basic research has repeatedly found that the symptoms in different

deficit categories in ASD are related to one another, and it presents as a coherent disorder, it is
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characterized by substantial heterogeneity in multiple domains; it, therefore, consists of “dissimilar

parts that are somehow connected [13, p. 123].” As a spectrum disorder, significant variability in

the overall level of impairment between diagnosed individuals is an inherent property. However,

significant differences in the severity of the individual symptoms, even between those within the

same core deficit category, occur at any given level of overall impairment. Nevertheless, it is noted,

“whereas there is striking behavioral heterogeneity among individuals with ASD, research continues

to reinforce the concept that, as a group, individuals with ASD are characterized by a particular

set of symptoms that differentiate them from other diagnostic groups [14, p. 5],” suggesting it is

reasonable to construe ASD as a discrete disorder as long as its great diversity is appreciated.

1.1.1 Symptom manifestation

Despite many identified biological correlates in the brain and other organ systems, ASD is behav-

iorally defined [15–17]. Hence, the significance to individuals diagnosed with the disorder and to

their family, friends, and caretakers lies in the distress caused by these behavioral symptoms. Symp-

toms within all three core deficit categories can result in significant difficulties with daily tasks, but

individuals diagnosed with ASD are most frequently noted to demonstrate diminished social skills,

including impairments in peer interactions. [18].

An extensive collection of examples of common difficulties faced by individuals with ASD can

be found in [19]. In addition to the distinguishing (i.e., diagnostic) deficits characteristic of ASD,

additional commonly observed symptoms are summarized: self-harm, abnormal aggressive behavior,

anxiety, problems with sleep, problems with eating, and uncooperative behavior. Further behaviors

commonly observed in individuals with ASD include “hand flapping, tip-toe walking, body rocking,

echolalia . . . , or spinning objects [19, p. 411].” Some of the many other symptoms or difficulties

sometimes observed include:

• Poor performance in school

• Attachment to odd objects, such as household tools instead of stuffed animals

• Fascination with specific objects

• Increased or decreased sensitivity to certain stimuli

• Seeking of specific sensory experiences (a behavior sometimes called “stimming”)

• Comorbidity with disorders such as ADHD, anxiety spectrum disorders, gastrointestinal dis-

turbances, and others
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• Unusual emotional responses to other people

• Curtness in contravention of social norms

• A preference for simpler types of humor

• Missing joking behavior/taking a joke literally

• Great variation in different measures of cognitive performance, e.g., between verbal and per-

formance IQ scores

• Being overwhelmed when performing complex tasks

• Sensory abnormalities, for example, hypersensitivity to auditory stimuli is observed in around

one-fifth of children with ASD [20]

Relevant to this thesis is that these examples are all presented in the context of a review of

evidence bearing on the plausibility of brain connectivity-based explanations for the symptoms

of ASD [19]. While differences in brain connectivity are proposed to result in the symptoms of

ASD, including those above, the differences in brain connectivity are not ultimately the cause of

ASD, that is, they are likely to arise from some more fundamental biological mechanism. However,

understanding the relationship between brain connectivity differences and ASD symptoms helps

characterize the pathophysiology of the disorder which, in turn, can better inform potential clinical

interventions. Even so, the high degree of variability in the presentation of the disorder complicates

such research, and because the current level of knowledge regarding its fundamental nature still

leaves us uncomfortably far from “knowing what we don’t know [21],” a full appreciation of its

complexity is a prerequisite for designing contextualizable research methodologies at this stage.

1.1.2 Diagnostic criteria

ASD in the DSM-5 [22, p. 50] is placed under the neurodevelopmental disorders. It comprises three

severity categories based on the level of impairment, from minor, to requiring substantial assistance

in daily tasks. The diagnostic criteria consist of four symptom categories, listed in figure 1.1.

Previously, in the DSM-IV-TR, and relevant to the discussion on heterogeneity (section 1.3), three

separate disorders were defined under the autism diagnostic umbrella: autistic disorder, Asperger’s

syndrome, and pervasive developmental disorder, not otherwise specified [23]. This scheme is discrete

too from the non-diagnostic, but common in the literature, distinction between “high-functioning

autism (HFA),” typified by average intelligence but with the pervasive symptoms of ASD, and

3



(A) Persistent, pervasive, and sustained impairment in reciprocal social communication and social

interaction

(B) Restricted and repetitive behavior, interests, or activities that are typically abnormal in in-

tensity or focus

(C) Symptoms are present from early childhood

(D) Symptoms limit or impair everyday functioning

Figure 1.1: Diagnostic criteria for ASD separated into categories as given in
the DSM-5 [22, pp. 53–54]

“low-functioning autism,” which also includes intellectual disability and more severe impairment in

daily activities. HFA-associated deficits include a lack of behavioral and cognitive flexibility, the

performance of behavioral rituals, a poor grasp of abstract use of language, poor executive function,

and dysregulation of temper, all of which can contribute to difficulties in daily life, school, and work

[24], but without significant intellectual impairment, and with a relatively preserved ability to care

for oneself.

While the DSM-5 definition, notably its collapse of the social and language core deficit categories

into a single communication/social interaction category, is the one used in clinical practice in the

United States at the time of this writing, the ABIDE II dataset used in this study utilized DSM-

IV-TR criteria for inclusion of subjects (see section 2.1). Because this thesis considers the three

core deficit categories as recognizably distinct in terms of behavioral measures, and not as groupings

fundamental to the nature or definition of the disorder itself, “core deficits” will be used to denote

social, language, and repetitive behavior domains.

Causes of the disorder

A vast swathe of research literature on risk factors and etiology, beyond genetic and broad envi-

ronmental factors, exists, but with very little apparent cohesion between the mechanisms across

the many proposals [12]. Some proposed risk factors and causes include exposure to heavy metals

and other pollutants, vaccines (thoroughly debunked although of apparently intransigent popular

interest [25]), other medications, and dietary factors, including the popular gluten/casein theory,

likewise lacking high-quality evidentiary support in the literature [26].

One risk factor, however, has in fact been identified as significant and consistent: male gender.
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This too, however, comes with a substantial caveat. Anatomical differences in the brain are more

pronounced in females with ASD diagnoses than in males [27], suggesting that the disorder may,

contrary to being more common in males, be underdiagnosed in females. Borderline personality

disorder, which has been asserted to share fundamental cognitive mechanisms with ASD, may like-

wise be overdiagnosed in females while the true gender ratio may be closer to unity [28] (see also

section 1.3). Conversely, however, the greatly increased risk for comorbid ASD in fragile x syndrome,

an x-linked disorder, does provide one causative mechanism in which male karyotype does in fact

increase the predicted incidence of ASD. That is, assuming fragile x syndrome increases the ASD

risk in male and female karyotypes equally, its x-linked genetic mechanism would be expected to

result in twice as many boys as girls receiving an ASD diagnosis comorbid to fragile x syndrome if

survival rates for fragile x syndrome are equivalent for male and female karyotypes.

1.2 ASD RESEARCH—SUMMARY AND NEUROCOGNITIVE APPROACH

1.2.1 Brief history

Our understanding of ASD has evolved substantially since it was first recognized as a discrete

disorder. The earliest propositions regarding its origins include that poor/distant parenting causes

ASD, whereas it is now known to be a disorder of neural development substantially correlated with

genetic factors [29].

Clinical and behavioral observations, neuroimaging studies (section 1.4.1), and human and animal

[30] genetic studies have revealed several promising avenues for further research, if no final and

coherent conclusion as yet. As research has proliferated, so too have efforts to account for the broad

range of observations in terms of cohesive theories, several of which will now be discussed.

1.2.2 Contemporary theories

Attempts at theoretical syntheses of the extant ASD research literature may be termed “theories of

autism.” Such theories may consider only one, multiple, or ostensibly all of the relevant research

domains, e.g., psychological, genetic, neurological, neurocognitive, etc. In any case, they share the

common feature of an attempt to explain or “reduce” many apparently disparate findings to single

explanatory mechanisms, or a few closely related mechanisms. Such attempts serve to generate

new hypotheses as well as summarize results relevant to their proposed mechanism. Given that the

precise clinical boundaries circumscribing ASD are not universally agreed upon [4], at least in terms

sufficient to account for the substantially affirmed heterogeneity in the presentation of the disorder,

5



a single theory that unites all features of ASD is not now tenable, but theoretical syntheses are still

important in that they render comprehensible what might at first seem an ever-expanding body

of incongruous findings. An elaboration of several prominent such theories follows, and they are

summarized in tables 1.1, 1.2 and 1.3.

Amygdala theory of autism

The amygdala theory of autism was one of the first popular theories. It is both simple, given its

implication of a single anatomical area (the amygdala, or nucleus amygdalodeum), and powerful, in

that multiple aspects of ASD symptomatology can be accounted for by it. Nevertheless, as could

be expected, its simplicity also limits the extent to which it can account for all the features of a

disorder as heterogeneous as ASD.

A central role for the amygdala in the cognitive activity required for social intelligence is posited

under the theory to underly ASD social deficits [31]. Medical case studies and lesion studies, perhaps

the oldest form of evidence of the functional organization of nervous systems, support this scheme:

amygdala injuries cause impairments in emotion perception, the ability to discern between appro-

priate and inappropriate social actions via connections to orbitofrontal cortex, and, via connections

to superior temporal gyrus, the ability to perceive faces. This evidence, along with evidence of

pathology in cell density in the amygdala in ASD, motivated the early fMRI study of activation in

the “social brain” in [31] which found further evidence for the role of the amygdala in ASD deficits.

Connectivity between the amygdala and neocortex is a potential source of emotion-related deficits

in ASD [32, 33]. Differences between putatively typical and ASD innate versus conditioned fear

responses may be attributable to pathological connectivity of this nature [32]. The amygdala is

further implicated in deficits in empathy, of particular relevance given that psychopathy and ASD

present with opposite impairments in empathy (p. 15) [34]. The amygdala may be involved in the

increased prevalence of anxiety (p. 17) among those with ASD based on increased activation of right

amygdala and left middle temporal gyrus in subjects diagnosed with ASD correlating with increased

anxiety [35].

Recent directions include viewing the role of the amygdala in mammalian evolutionary history

as part of a “relevance detector” apparatus in light of its role in contributing to rapid arousal in

response to threats and in associating stimuli with rewards and adding emotional salience to mem-

ory. Abnormalities in the circuits required for the amygdala to serve this function causes aberrant

processing of self-relevant information, leading to the diminished emotional competencies of individ-

uals with ASD compared to controls [36]. Of particular relevance to the present study, analysis of
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Table 1.1: Theories of autism primarily associated with their neural substrate.

Theory Consistent observations Challenges

Amygdala Pervasive emotion-associated

deficits in ASD; many observed

differences in amygdala struc-

ture/function; frequent anxiety

comorbidity

Limited by narrow focus; cannot ac-

count for RRBs nor sensory abnor-

malities

Neural circuit Histological verification, mechanism

for observed widespread disruptions

in connectivity

Accounts for fundamental neu-

roanatomical aberrations, but ab-

struse without specifically identify-

ing cortex-wide patterns of changes;

hence, includes connectopathy at all

spatial scales, increasing power but

decreasing succinctness, but also

common etiopathogenetic mecha-

nism (disrupted synaptogenesis and

function)

Mirror neuron Consistent with deficits in social

reciprocity

Many; mirror neuron system theo-

retical in humans, few reproducible,

and many incompatible, results

Putative cerebellar One of the most consistently im-

plicated structures in ASD neu-

ropathology, multiplex functionality

suggests high likelihood of at least

some major involvement in at least

some ASD deficits

Extremely broad, given cerebellum

contains ∼50% of CNS neurons, but

therefore also extremely probable to

be significant, though not entire,

part of ASD pathophysiology; dis-

cretizing role is hence predominant

challenge; is also not etiologically

fundamental
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Table 1.2: Theories of autism primarily associated with their behavioral or
cognitive aspects.

Theory Consistent observations Challenges

Social motivation Direct cognitive explanation for

one/two of the core deficits

Fails to sufficiently account for

RRBs, reduced social motivation

does not account for all observed so-

cial deficits, e.g., even when desiring

social interactions, individuals with

ASD may be less successful

Metarepresentation Accounts for social deficits even

when social interaction is de-

sired—failure to reconstruct minds

of others makes social interactions

both more difficult and also there-

fore more frequently undesirable

and frustrating

Fails to account for RRBs, less

explanatory power for high-

functioning adult individuals with

ASD
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Table 1.3: Theories of autism primarily associated with their evolutionary or
evolutionary-psychology explanations.

Theory Consistent observations Challenges

Extreme male brain Succinct summary of a vast array of

symptoms/deficits, consistent with

higher male diagnosis rates

Belies gender and sexual heterogene-

ity, i.e., oversimplifies due to broad-

ness; does not straightforwardly ac-

count for sensory abnormalities or

profound language impairments

Assortative mating Provides an adaptive explanation

that accounts for most/all ASD

deficits in some form

Fails to account for severe forms of

the disorder which seem plainly mal-

adaptive and not necessarily associ-

ated with associated constructs like

“detail orientation”

data from ABIDE showed decreased functional connectivity between amygdala and thalamus (bi-

laterally) and right putamen [37]. Recently, despite the inherent circumscription of the amygdala

theory’s explanatory power when considered in isolation, functional connectivity between amygdala

and multiple targets across the brain was found to vary with ASD diagnosis and sex [38]. Thus,

while this theory suffers from important limitations, as expected given the constraints on technology,

methods, and the vastly lesser extent of the size of the research literature at the time of its formula-

tion, rather than being discarded, the role of amygdala in ASD deficits would best be incorporated

into whatever other neuroanatomical and functional theories of ASD are conceived or refined. For

example, differences in both amygdala, in the “limbic” system, and the putative “social brain,” in

neocortex, have been posited to explain ASD social deficits separately, but functional connectivity

differences between them have been found to correlate with ASD social deficits [39]. Hence, while the

amygdala theory cannot be conceived at this point as in contention as an exhaustive neuropatho-

physiological account of ASD, amygdala’s well-established correlation with certain ASD features

demonstrates the practical benefits attempts at theoretical synthesis can lend in guiding research

efforts.
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Neural circuit theories of autism

Neural circuit theories of autism propose that the formation of excitatory—inhibitory circuits is

disrupted early in development in ASD, later causing downstream disruptions in large cognitive

networks that integrate information and activity across multiple domains. That is, “noise” in neural

circuits due to atypical excitatory, inhibitory, and general synaptic function is integrated at the

larger scale of cognition, leading to the observed deficits in attention, learning, social cognition and

related domains, and frequent comorbidity with epilepsy. For example, such malformation of neural

circuits has been observed in the neural circuit for social attention perception in ASD [40]. Because

of the profound implications local disruption of neural circuits has on whole-brain connectivity

patterns, this theory unifies putative central mechanisms in ASD pathophysiology across temporal

and spatial dimensions of neurodevelopment. Beginning with alterations in the function of molecular

mechanisms at the outset of ontogenesis underlying the proliferation of connections between the

smallest wholly discrete functional units of the nervous system, neurons, and extending through

the lifespan given the centrality of synaptic plasticity in dynamic adaptations to experiences, and

throughout the nervous system given the dependence of transcortical brain networks, thought to

underlie cognition, on an appropriate course of synaptogenesis to establish their substrate, these

theories propose a single pathogenetic origin of ASD neural and behavioral features that itself

arises from some combination of genetic etiologies, and therefore encompasses the greatest extent of

explanatory levels while remaining consistent with the extant suite of observations. Because these

theories seem to offer the most plausible framework of all the ASD theories from a neurocognitive

perspective, and are especially relevant to functional connectivity analyses such as used in this thesis,

they will be discussed in particular detail.

Early theoretical justification of a network- and circuit-based explanation for ASD came in the

form of artificial neural network models. Cortical feature maps satisfactorily provide a mechanism

that would explain why disruptions in connectivity could lead to a neurological disease states such

as ASD, while likewise admitting of the potential for “multiple etiologies [41, p. 1139].” The discrete

phrase “neural circuit theory of autism” originated from the same paper [41], establishing a family

of theories all oriented towards aberrations at the columnar and minicolumnar levels; the predic-

tions made by this initial conjecture have been verified in subsequent research. Fundamentally, the

explanations have in common that they propose that integration of sensory and other information

is disrupted in cortex due to aberrant micro-scale connectivity of this type, causing ASD symptoms.

Cortical maps associated with stimulus features were implicated as directions of future research

interest.
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Multiple genetic mechanisms are known to be involved in synaptic development, perhaps most

prominently in ASD those involving fragile x mental retardation protein, a mutation in the gene

coding for which can cause fragile x syndrome, a disorder presenting with frequent comorbid ASD.

Fundamental to this and other genetic mechanisms, periods during which activity dependent plas-

ticity (ADP) has outsized influence over widespread areas of the nervous system associated with

ontogenetic timing of maximal plasticity to environmental factors are termed critical periods. As

much of nervous system ontogenesis is hierarchical in nature and critical periods coincide with

many important stages in typical development, an ASD etiology of anomalies within critical periods

would succeed in explaining neurodevelopmental aspects of the disorder that persist throughout life

[42]. More fundamentally, neural circuit theories implicate some combination of alterations in all of

synaptogenesis and concomitant minicolumnar malformation, hierarchical “amplification” of these

micro-scale aberrations throughout cortex, and thus, finally, an imbalance between various modes

of cortical activity, such as, for example, between excitatory and inhibitory modulation within and

between regions of cortex.

The implication of a simple ratio between excitation and inhibition by necessity must be com-

plicated in a homeostatic perspective; not only may different brain regions be differentially affected,

down to the level of the microcircuit and across cortical, subcortical, brain stem, and cerebellar struc-

tures, but even cellular compartments within microcircuits may experience differential excitatory and

inhibitory regimes, and in turn send accordingly modulated efferents to further targets. [43] follows

[42] in focusing on monogenic ASDs (e.g. fragile x syndrome) due to the greater potential for resolv-

ing fine variances in excitation and inhibition using translational models. Specifically, 10 monogenic

syndromes are included for review: ARX mutations, Dravet syndrome, tuberous sclerosis, fragile

x syndrome, Angelman syndrome, Rett syndrome, NRXN1 mutations, GPHN mutations, SHANK

mutation/Phelan McDermid syndrome, and CNTNAP2 mutations. These etiologies are most di-

rectly associated with multiple mechanisms of neuronal development, allowing targeted inquiry as to

the specific disruptions caused by the associated gene mutations with mechanisms of “neurogenesis,

migration, differentiation, and/or function of cortical interneurons [43, p. 685],” which includes the

influence (or ability/lack of ability to mitigate deficits through intervention) of activity dependent

plasticity. The complex and extensive pleiotropies associated with single-gene alterations demon-

strate a mechanism by which disrupted neural develop may itself induce widespread downstream

changes dynamically within a homeostatic milieu. This allows recurrent disruptions to “reverberate”

given the fundamental interconnectedness of nervous systems and the multiple hierarchical levels of

functioning that are interdependent. [43] further follows [42] by expanding exclusively on the balance
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between excitatory and inhibitory circuits in ASD, specifically weighing subsequent evidence against

the initial postulation that ASD is substantially a disorder of hyperexcitability, with the strongest

lines of evidence observed being diminished GABAergic activity and comorbidity with epilepsy.

Additionally, the relative paucity of inhibition is supposed to contribute to a relatively “noisy” cog-

nition, driving the impairments seen in ASD. Ultimately, a “homeostatic view [43, p. 684]” is taken

to synthesize and reconcile the apparently opposing excess excitation/excess inhibition views. While

an exhaustive review of the multiple nuanced mechanisms at genetic, molecular, and cellular levels

would prove excessive in light of the explicitly neurocognitive focus of this thesis directed towards the

domain of functional connectivity, the current literature provides broad support for a fundamentally

circuit-derived, neurodevelopmentally realized disruption of widely distributed cognitive networks

underlying ASD.

Neuroanatomical evidence of synaptic changes in ASD has also been corroborated by analysis

of ASD brains postmortem. Neocortical mini-columns of both glutamatergic and GABAergic neu-

rons had fewer vertical arrays, and the peripheral neuropil space was comparatively disordered in

ASD brains. Animal models corroborate the relevance of this difference; in musine Fmr1 knockout

models, there were regionally variable increases and decreases in glutamic acid decarboxylase con-

centration. In addition to the implications for impoverished inhibition due to lower GABA levels,

hyperconnectivity in excitatory connections has been observed anatomically in these models [42].

There is also direct anatomical evidence of pathological synaptic formation in ASD in humans.

Greater dendritic spine density in projection neurons in cortex in ASD, observed to be elongated

and with tortuous morphology in fragile x syndrome, is observed; Decreased synaptic pruning may

account for these structural differences in the synapse. Such malformation of dendritic arbors is also

observed in other neurological disease states. Fmr1 knockout mice provide a plausible mechanism;

dendritic spines in these models are observed to frequently fail to stabilize. As both dynamic

and stabilizing processes are necessary for optimal ADP in dendrites, this will cause fewer mature

synaptic connections to form. Fmr1 knockout also reduces axonal dynamism in mice, consistent

with hypothesized excessive stability of brain structure and function in ASD [42].

This model suggests some potential therapeutic avenues for treating ASD. Metabolic glutamate

receptor agonists cause learning and memory deficits, and GABAergic modulation can offset hy-

poinhibition; the positive allosteric modulator acamprosate demonstrates preliminary evidence of

improving social and communication deficits in subjects diagnosed with ASD. The implication of

critical periods also suggests that early intervention and environmental enrichment can offset some

neurodevelopmental disruptions in ASD, and in fact, early deprivation may in fact cause ASD-as-
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sociated traits, as in the Romanian orphan study [44]; this condition was reversed in some cases by

environmental enrichment. Therapeutic routes contingent on continuing technical innovations, such

as optogenetic control, have also been noted for their potential in light of these theories [42].

Intrinsic to critical period dysfunction, as implicated in multiple ASD-associated mechanisms,

is disruption first in subcortical, then in sensory, and finally in association areas of the brain. This

essential schematic suggests that investigation of sensory system dysfunction is likely to be fruitful

for the enhancement of understanding deficits in higher-level cognitive processes as well. Despite

this, popular conception, and the preponderance of research, focuses on deficits in social cognition.

This focus, though less exclusive recently, is inappropriate wherever it deemphasizes the role of

other neurocognitive mechanisms as multiple lines of evidence implicate sensory systems not just as

of potential explanatory importance, but also as potential therapeutic targets; sensory deprivation

induces some ASD-like symptoms that are partially reversed via therapeutic intervention in the

form of environmental enrichment. A potential confound in this approach is the heterogeneity of

ASD present at nearly every conceivable level of every major dimension. Multiple single genes are

associated with presence of ASD traits in ASD manifestations with associated somatic abnormalities

(syndromic ASD) beyond the therapeutic threshold. While these genes do share fundamental roles in

neurodevelopment, the existence of non-overlapping genetic causes of autism, let alone that majority

of ASD cases are not the result of single gene mutations, nor present with readily identifiable somatic

phenotypes (syndromic), at least cautions against overly optimistic assumptions regarding the extent

of the portability of therapeutic interventions that are successful in specialized cases to ASD more

generally [45].

Recent efforts have increasingly confidently and clearly recognized that a unifying ensemble

of synaptogenopathic alterations in experience-dependent neuroplastic mechanisms of ontogenesis

involving cortex of the frontal lobe and the sensory periphery, incorporating to-this-point-known

associations between ASD and a slew of genetic, metabolic, immunological, neurotransmissive, and

ensuing connectopathic modifications from putatively typical development and cognition, underlies,

substantially, at least, in its totality, both the existence and nature of the many particular mani-

festations, and the accordingly comprehensively multiplex heterogeneity of the disorder [46]. The

devisement and particularization of suchlike an amalgamated etiopathogenic machinery in the dis-

order, dreamed up specifically for and in view of the multifarity of its germaneness to many big

chunks of the multitudinous peculiar symptom instantiations seen totally within the confines of the

disorder’s diagnostic criteria, is an exercise of substantial nuance, and further one subject to near

constant refinements given the rapid pace of literature and associated improvements in technology,
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methods, potential subject access to healthcare and research settings, and so on. The asserted mech-

anism itself is, chiefly, lower than hypothetically canonical microglial influence on synaptic pruning

due to ASD-associated genetic alterations to synaptic function, mainly exuberant synaptogenesis

followed by excessive fixity of established synapses, results in a cascade of macroscopic differences

in connectivity associated with ASD that are not necessarily expediently compartmentalizable into

categories “hyperconnectivity” and “hypoconnectivity.” A mechanism suchlike the above has two

attractive properties in terms of putative “theories of autism:” First, it has broad, deep explanatory

power given its combined syntheticity and fundamentality, and second, could be plausibly generative

of a whole host of (heterogeneous) disorder presentations. Theories conforming to generic schema

of this nature that at present remain, at the very least, consistent with the observational evidence

putatively bearing on their soundness are those with the most substantial plausibility within and

across explanatory modes. Effectively, they are the most parsimonious consistent theoretical forms.

Relevant to the present experiment, various anatomical and functional neural circuits have been

proposed as underlying RRB, both in ASD, and as a general symptom presentation in psychopathol-

ogy: “[A] circuit-oriented approach is likely to provide great utility towards understanding the

complex and heterogeneous phenomena of RRB appearing in ASD and related neurodevelopmental

disorders [47, p. 153].” In even less oblique terms, “ASDs are disorders of connectivity [46, p. 10].”

A summary of implicated circuits is given in section 1.4.3.

Social motivation theory of autism

The social motivation theory of autism [9, 18, 48–54] posits that social deficits of individuals di-

agnosed with ASD are the result of atypical reward processing in the brain [51]. Unlike the prior

two theories, it is formulated in behavioral and cognitive terms, though this nevertheless allows the

incorporation of neural data within such a context.

In relevant behavioral experiments, children with high-functioning ASD have been found to be

less likely to approach avatars with positive expressions than controls [50]. One possible explanation

for this, incorporating underlying neural systems explanations within the social motivation frame-

work, is that lower levels of activation in the reward system in response to social stimuli, potentially

due to aberrant function of neural systems that utilize oxytocin, and their relationship with the

“reward hormone” dopamine via the mesocorticolimbic dopamine circuit, reduce cognitive salience

of positive social stimuli. [9]. Some lines of inquiry have yielded results contrary to the social mo-

tivation theory. In an EEG study, early-stage face perception and recognition of emotion in facial

expression were inversely related to extent of social motivation [53]. While this theory is appealing
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for covering two of the core deficits, if ASD communication deficits are conceived as ultimately social

in nature, it insufficiently addresses the third (restrictive and repetitive behavior, RRB).

Extreme male brain theory of autism

The extreme male brain theory of autism posits that a putative autistic cognitive phenotype is effec-

tively an exaggeration of the typical male cognitive phenotype in comparison to the typical female

cognitive phenotype. The most central difference between the two gender-typical cognitive pheno-

types under this theory is the extent of preference for empathizing (female) versus systemizing (male),

and indeed, the extreme male brain theory of autism is expansion of the empathizing-systemizing

theory of autism. “Systemizing” is the preference for and ability to interpret phenomena as logical

and orderly, characterized by predictable patterns. Empathy, the ability to recognize the internal

states of others, differs from systemizing in that the phenomena it successfully characterizes are

much more variable and “complex.” The “autistic brain” is idiomatically “the ultimate pattern

detector [55, p. 172].” While this formulation has many faults, it shares important fundamental

aspects with evolutionary cognitive explanations, paradigmatically, the assortative mating theory

discussed below, which further provides an explicitly adaptive explanation for RRBs. Such adaptive

explanations form a major part of the theoretical context in which RRB deficits can be explained.

The original formulation of this theory, by [55], views both the mean difference between men

and women, and between individuals with ASD and putatively typical individuals, as comprising

spectra with no clear delineation or explicit breakpoints. [55] suggests multifactorial contributions

to the ASD neuropsychological phenotype, including genetic, hormonal (specifically degree of fetal

testosterone exposure), and social factors. While the extreme male brain theory, like autism itself,

is defined in psychological or cognitive, and not neurobiological, terms, [55] notes that to at least

some extent, the neuroanatomical differences associated with ASD as compared with putatively

cognitively typical individuals are coterminous with the differences between biological males and

females. Specifically, [55] enumerates anterior cingulate cortex, superior temporal gyrus, prefrontal

cortex, and thalamus as larger in females and putatively typical individuals, and amygdala and

cerebellum, as well as overall brain size, as large in males and individuals with ASD diagnoses.

[56] attempts to resolve the plausibility of the extreme male brain theory by testing its predictive

power with respect to a mental rotation task. Performance on this spatial task is broken into

rotational components (slope of the function of reaction time and error rate vs. degree of rotation)

and non-rotational components (intercept of the function). The non-rotational component involves

all cognitive requirements of the task other than the rotation itself.
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The process of computing the task stimuli recruits the occipital lobe for encoding visual informa-

tion, the parietal lobe for receiving this information and processing it in three dimensions, and the

right frontal lobe for the final determination of a response to the task. Adult males outperform adult

females on average on this task primarily due to improved performance on the rotational aspects.

Individuals diagnosed with ASD, however, were previously shown to have an advantage primarily in

the non-rotational component. Some fMRI data suggests that this is due to a systemizing advan-

tage, as lower frontal activity was observed in subjects diagnosed with ASD during a rotational task,

and higher frontal activity was observed in female subjects. [56] corroborates this interpretation of

the fMRI data by combining a mental rotation task with a systemizing test based on an assessment

of physics intuition (intuitive physics test). The results of this experiment suggest that it is in

fact a systemizing advantage that leads to better performance specifically due to the non-rotational

components of the task; the incongruous results with the prior male vs. female comparison could

be due to insufficient angles of rotation in the task. Proxy measures for circulating testosterone

(time awake) suggest that task performance improves with circulating testosterone levels, but not

prenatal testosterone exposure. [57] likewise finds that prenatal testosterone exposure does not cor-

relate with performance on systemizing tasks, but across three spatial tasks concludes, explicitly

in contradiction to [56], that the “male advantage” and “ASD advantage” are distinct for rotation

tasks.

“Classical” autism is fourfold as common in males, the deprecated Asperger’s Syndrome, ninefold

[55]. While sources supporting the extreme male brain theory consider the differential diagnosis

rates to be supportive of the theory, [16] argues for the plausibility of a reversal of this causality; a

predisposition towards viewing the autistic phenotype as fundamentally “male” contributes to this

very differential, and indeed, explicitly articulating ASD in such terms may further reinforce this

pattern. In any case, the others point out, reasonably, that popular interpretation may adversely

affect quality of life for girls and women diagnosed with ASD due to prevailing institutional gender

norms and their implicit effect on factors such as social support and quality of medical treatment.

[58] finds evidence for increased digit length in family members of individuals diagnosed with

ASD, but not a decreased 2D:4D ratio specifically, the traditional proxy for prenatal testosterone

exposure. As digit length is controlled by both genetic and hormonal factors, this association may

form a putative basis for understanding the genetic and hormonal factors involved in ASD.

[55] points out certain types of apparent empathy deficits associated with ASD, and specifically

cites an impoverished theory of mind as an earlier theoretical model of autism writ large; [59]

corroborates this mechanism, but whereas [55] does emphasize that empathy can be divided into
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cognitive empathy (that is, theory of mind), and affective empathy, [59] points out that affective

empathy does not seem to be diminished in ASD.

Hans Asperger originally postulated a nascent form of the extreme male brain theory to explain

ASD, but he lacked substantial behavioral and neurobiological data, or the theoretical framework

of the empathizing/systemizing dichotomy. The extreme male brain theory does not predict every

observed symptom associated with ASD, but does purport to explain all of the symptoms common

to all ASD diagnoses [60].

Assortative mating theory of autism

The assortative mating theory of autism [61–63], related to the hyper-systemizing theory of autism,

itself a refinement of the extreme male brain theory, posits a fundamentally evolutionary mechanism

to account for the symptoms and prevalence of ASD. Systemizing is a cognitive process fundamentally

tied to likelihood and variance within the outcome space of given events or processes: It allows the

estimation of the likelihood of certain outcomes based on prior conditions and their associated

outcomes. A conceptual break with its progenitor theories, especially now, seems a prudent revision

to be explicitly made to the theory: Recent results have suggested a lack of sex-effects in the repetitive

and adaptive symptom and behavior domains [64], themselves the category of ASD deficits most

directly associated with the theory. This in addition to the fact the putative “male brain,” or

any other such conceptualization in terms of gross population-level demographics, is, despite lay

literature entitled contrariwise [65], not a thing discrete nor a notion substantially demonstrated to

this point to exist, as such.

Philosophically, [62] distinguishes between the classes of phenomena that systemizing and em-

pathizing are respectively capable of successfully apprehending as non-agentive and agentive. Agen-

tive changes occur when they are the result of the intention of a cognitively endowed entity. From the

fundamentally utilitarian articulation that “[b]eing able to anticipate change . . . allows the organism

to avoid negative consequences or benefit from positive change [62, p. 866],” it is simple to conclude

that, to whatever extent systemizing and empathizing are in competition for (metabolic, cognitive)

resources, there exists variation on which natural selection can act. Game-theoretic analyses could

therefore determine an evolutionarily stable strategy based on the utility of varying combinations of

the strength of these faculties. Assortative mating, the tendency of sexually reproducing species to

self-organize into reproductive pairings consisting of similarly fit individuals, may thus take stock of

the relative and absolute levels of systemizing/empathizing faculties among potential pairings.

While agentive and non-agentive changes do exist along a continuum of complexity, with agentive
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changes tending towards more complex, [62] notes that humans, in light of their high level of social

sophistication, have an innate apparatus for dealing with qualitatively agentive changes: This appa-

ratus includes amygdala, orbitofrontal cortex, medial frontal cortex, and superior temporal sulcus

as part of its “wiring (section 1.4.3).” In fact, this very sociality, [62] posits, may facilitate positive

assortative mating between high, but not extreme, systemizers; it is the offspring of such parents

who are likely to have ASD. Evidence for this theory comes in the form of a higher prevalence of

relatives of individuals diagnosed with ASD in careers where systemizing ability is beneficial (e.g.

engineers, scientists) [61, 62, 66].

However, [67] suggests that the return on systemizing cognitive styles (quantitative ability) is

increasing over time, and that even the increased diagnosis rates of ASD do not offset the counter-

vailing increase in such returns. Thus, the assortative mating theory may in fact provide an example

of natural selection increasing fitness due to changing environments (e.g., prevalence of various types

of careers, skills necessary to “survive in the modern world”). Because ASD is rare, relatively smaller

changes in the variance of the distribution lead to relatively larger percentage changes in the number

of ASD cases. However, other evidence, with some differing underlying methods, suggests an absence

of any effect of systemizing preference on partner selection [68]. This discrepancy warrants further

investigation, as assortative mating sufficient to significantly increased ASD prevalence would have

to overcome the tendency of offspring’s phenotypes to regress towards the mean.

The family of theories is of substantial overall interest to ASD research writ large because it pur-

ports to engender all of the core deficits of the disorder. Succinctly, “the Empathizing–Systemizing

theory is successful in interpreting the core features of autism, both social and non-social, compared

to other current theories of autism [69, p. 321].” The same source concludes that an explicit measure

of systemizing must at least be included in a successful diagnostic measure of ASD.

Mirror neuron theory of autism

The mirror neuron theory of autism contends dysfunction in the mirror neuron system homologs and

analogs in humans contributes to the theory of mind deficits (cf. mindblindness theory of autism)

and deficits in social attention and responses. A thorough conceptual account of the mirror neuron

theory is given by [70].

The mirror neuron system (MNS) was first described on the basis of functional activation of its

neurons in macaques. The putative neuronal population fired in the course of both the performance

and observation of a given action (even if that action was performed by a human in recordings

of monkeys). This suggests that these neurons and the system comprising them were necessary for
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social motor learning and its underlying cognitive processes. Since its discovery in monkeys, multiple

neuroimaging methods have elucidated the structural and functional properties of the analogous

system in humans. Given the remarkable phylogenetic conservatism typifying interspecific nervous

system variation, it is unsurprising that such a functional neural domain would likewise arise in

human cortex. The homologous cortical domain in humans to F5 in the macaque is Broca’s area,

which also suggests a role of the putative MNS in language evolution or production [71].

[72] gives cortical regions that contribute to the MNS as pars opercularis, inferior frontal cortex,

inferior parietal lobule, and superior temporal sulcus. In the experiment in that paper, multiple

areas of the cortical sheet were found to be thinner in subjects with an ASD diagnosis as compared

to matched controls exhibiting typical development. These areas included the above mentioned

putative MNS regions as well as those associated with sensory and motor areas subserving facial

expression recognition and production, as well as in areas of prefrontal cortex, anterior cingulate,

medial parietal cortex, the supramarginal gyrus, and the middle and inferior portions of the temporal

cortex, which in sum contribute broadly to social cognition. Importantly, thinning only in the MNS

regions was correlated with ASD trait extent, and thinning in none of the areas was associated with

differences in IQ, suggesting unique importance of the MNS in ASD etiology.

Contemporaneous fMRI evidence also provides early support for the mirror neuron theory of

autism as well. [73] suggests a corticolimbic functional network that integrates parts of the putative

MNS. Subjects made or observed facial expressions while in the MRI scanner in their task, which

was supposed to require social cognition and mimicry components, which relate ASD and the MNS.

While task performance could not be measured in the scanner, some subjects performed the test

out of the scanner to verify compliance with instructions. Additionally, eye movements were tracked

in this additional phase to ensure that the results did not primarily reflect differences in attention.

Areas activated in the subjects exhibiting typical development included striate and extrastriate,

primary motor, and premotor cortex; bilateral pars opercularis and pars triangularis; structures of

the limbic system; and cerebellum. In the subjects with ASD, striate cortex was also activated,

with the fusiform gyrus specifically reported; face premotor regions; and amygdala. Activation of

the pars opercularis, however, was not reported in the ASD group. This lack of activation in the

human homolog of the macaque MNS implicates that system in some ASD deficits. Furthermore,

the subjects diagnosed with ASD exhibited relatively greater activation of left anterior parietal

and right visual association cortex, and less in the insular area, periamygdaloid complex, ventral

striatum, and thalamus. Thus, it appears that the subject diagnosed with ASD are relying on

cortical areas to overcome functional connectopathy in regions of the insula integrating limbic and
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cortical areas. Further implicating the pars opercularis as figuring in the deficits of ASD, activation

in this structure was negatively correlated with ADOS-G and ADI-R social subscale scores.

A slightly larger, roughly contemporaneous group of subjects diagnosed with ASD of group size of

16 provided results in a similar vein, implicating a similar array of MNS-associated neural structures,

using a task in which an image of a hand either displayed a specific finger being raised, or used one

of two different symbolic cues to indicate a finger, which the subject is to raise in response [74].

The salience of this stimulus regime is that it separates an identical motor task (finger raising) into

an imitative (cued by a depiction of the action being performed) and a non-imitative (symbolically

indicated) version.

Currently, however, there is a lack of confirmatory evidence for the mirror neuron theory. For

example, the MNS or its homologs are present in some species which are generally not presumed to

possess theory of mind [75]. Further objections to the theorization emerged alongside its increasing

prevalence in neuroimaging literature [76]. First, the mirror neuron system is a circumscribed neural

system with relatively specific functions. While imitation deficits are observed in ASD (including

imitative behavior not typically seen, such as echolalia), MNS dysfunction fails to account for the

vast majority of deficits observed in ASD, and thus fails to provide sufficient mechanistic relevance

to merit the inclusive label “theory of autism.” Furthermore, activation of the putative mirror

neuron system is not associated with other sensory and integral social components of collective

motor learning, meaning it does not even satisfactorily account for the primary phenomenon it

would be invoked to. Finally, the mirror neuron system, despite the straightforward implication of

its name, appears to subserve a subtler array of functions than explicit mimicry, all of this leaving

the theory “ambitious but underspecified [76, p. 228].”

Metarepresentation theory of autism

The metarepresentation theory of autism proposes that deficits in theory of mind in individuals

diagnosed with ASD undergird the suite of ASD-associated traits [17]. This early theory was one of

the first attempts to characterize ASD in terms of a central mechanism that ostensibly accounted

for diverse features of the disorder, and hence was one of the first “theories of autism;” “[s]o far,

nobody has had any idea of how to characterize such mechanisms in even quasi-computational terms

[17, p. 38].” In seeking to explain the broad swathe of ASD-associated social deficits, a general

inability of individuals diagnosed with ASD to ascribe emotional states to other people succeeds

in accounting for many. The data presented as supporting the theory were the results of a “false

belief” task, in which subjects, either children diagnosed with ASD or else those of putatively typical
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neurocognitive development, were asked to infer where a doll (agent) would look for a marble that

had been moved without the knowledge of the doll. The children diagnosed with ASD demonstrated

inferior performance on this task without other obvious cognitive impairments. [77] notes that

children with Down’s syndrome outperform children with ASD despite having lower intelligence

quotients. While little of this is surprising in light of the above-discussed theories of autism, the

theory of mind and metarepresentation theories were fundamentally novel approaches, seeking to

explain ASD in terms of discrete cognitive mechanisms that differ in their function in individuals

diagnosed with ASD as compared with those exhibiting putatively typical neurocognition.

Learning based on feedback from task responses differed between ASD and intellectually impaired

nonautistic subjects based in a task in which subjects chose one of two boxes, both opaque in the first

condition, and both with a window facing only the subject in the second [78]. In each case, a prize was

in one of the boxes, and the subjects were rewarded with this prize if they chose the empty box. Once

the windowed boxes were substituted, the task became trivial; subjects were even advised of this fact.

Furthermore, the task was performed either with or without a putative opponent, who reaped the

prize whenever the subject did not. The nonautistic subjects demonstrated improved performance

when an opponent was present while the subjects diagnosed with ASD did not. This suggests a more

fundamental processing error than simply lacking the cognitive apparatus to represent the cognitive

states of others (the opponent), as the authors suggest, because otherwise task performance would

improve in the no opponent condition. No competitive motivation (or “set [78, p. 502]”) occurs

in the subjects diagnosed with ASD either as it seemed do for nonautistic subjects. [78] instead

suggests an explanation of mental disengagement, in which the salience of the prize dominates

among participants diagnosed with ASD. In fact, participants diagnosed with ASD frequently chose

the box with the prize in the windowed condition for every trial, meaning that their trial success

rate was 0% and they never earned a single prize. Evidence for this contention came additionally

in an experimental task in which subjects had to first eschew the most direct physical route to grab

a marble inside a contraption in the form of a box with a knob and lever on respective sides and a

platform inside supporting the marble. Reaching directly for the marble caused the platform to drop

and render the marble inaccessible. Rather, the knob allowed a one-step acquisition. The second

and decisive portion came when the knob solution was inactivated, leaving only the switch solution

which required coordination between the subject’s two hands to use the switch to deactivate the

beam that senses the subject’s hand and trips the mechanism to block access to the marble. Despite

the mechanism’s tendency towards arcaneness, the results were unambiguous: subjects diagnosed

with ASD compared to subjects diagnosed with intellectual disability and preschool aged subjects of
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putatively typical development faltered markedly on the switch portion of the task, reinforcing the

notion that the saliency of the marble was disruptive to the efforts of a subject diagnosed with ASD

in a specific manner and to a significant degree. As the switch protocol involved no other humans

directly, this potentially contradicts the metarepresentation theory, while still allowing the general

conceptual mechanism to be involved with, if not fundamental to, ASD deficits. This observation is

also consistent with a central role of RRBs and related behaviors in the presentation of ASD broadly.

Cerebellar theory of autism

A putative cerebellar theory of autism would assert the cerebellum is the focal structure of ASD

pathophysiology. Such a theory definitely exists, with all the necessary features of a putative theory

of autism, implicitly [79], but exists as a discrete phrase similar to the other theories discussed only

marginally (but also definitely) explicitly. For example, it has been stated, with explicit reference

to the phrase “cerebellar theory of autism,” that it is “probably the most unlikely neurobiological

hypothesis of autism, as on first observation autistic individuals hardly show any of the traditional

signs of cerebellar abnormalities [80, p. 108];” it has in stark contrast, however, also been observed

that “[a]lterations to the cerebellum are . . . one of the most consistently reported pathological findings

in post-mortem studies in ASD [47, p. 165].” This assertion can be found verbatim elsewhere as well

[81]. While relevant context will be established next, first, a superficial discrimination between these

contrasting, broad, albeit for the moment, isolated claims, is informed by the facts that, first, the

cerebellum-negative claim is caveated by both resting on a lack of observations and the restriction

of the type of observation that would be considered positive to “traditional signs” of cerebellar

pathology, and second, the cerebellum-positive claim is 13 years more recent and specifically a

review of neuroimaging in autism. In the same reference, similar aberrance is noted to be the most

commonly observed in basal ganglia specifically for RRBs across disorders. The numerous intrinsic

functional relationships between these two structures, mediated by their mutual broad, substantial

impact on neocortical function [82], likewise suggests strongly that alterations to their function

comprise an important aspect of ASD pathophysiology across ASD core deficit categories. Further

supporting this relationship is the fact that cerebellar lesions have been associated with cognitive

deficits similar to those seen in ASD and in other neurodevelopmental disorders (ADHD, dyslexia),

and that the earliness of such lesions is associated with the severity thereunto [83], implying a

specifically developmental component, consistent with the disorder classification of ASD.

The aforementioned context provides theoretical and practical direction to the present study more

than does the mere fact that contrasting claims have been made about the plausibility of a putative
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cerebellar theory of autism. The source of the cerebellum-negative claim is, if not plainly consistent,

thorough in its theoretical treatment of the cerebellum—ASD relationship, predominantly citing

Courchesne (cited elsewhere in this thesis, [84–87]) and, for example, affirming as above that “[t]he

most extensive and consistent anatomical and imaging evidence” in autism brain research “relate

to the cerebellum [80, p. 20],” as well as to limbic and frontal cortex. Moreover, executive dys-

function is advanced as a plausible consequence of cerebellar dysfunction in ASD, and even more,

the theoretical association is “very strong [80, p. 116],” particularly because of its competence to

account for the developmental nature of the disorder. The primary critique, in fact, is that adult

cerebellar injury does not present similarly to ASD-associated deficits, but the fundamental differ-

ence in etiology, despite the mutual implication of the same structure, between disorders of neural

development affecting cerebellum ontogenetically and injury to the adult, relatively aplastic brain,

establishes preliminary motivation to further characterize the structure—function relationship be-

tween cerebellum and ASD symptoms. Despite the centrality of this discrepancy to the apparent

modest skepticism of the plausibility of a cerebellar theory, the observed correlation between cere-

bellarly mediated deficits in cognition and behavior, whether through injury, hereditary dysplasia,

or other insult, is discussed; this relationship is discussed extensively in section 4.5.1. Thus, while a

cerebellum-centric neural conception of autism has faced scrutiny relatively recently, ostensibly crit-

ical assessments acknowledge the evidence of significance, if not causality or necessity, of cerebellar

dysfunction or dysplasia in association with ASD deficits is well-established.

Some of the most thorough evidence of a prominent cerebellar component in ASD pathophysi-

ology comes from numerous translational studies. Knockout models of a gene (PTEN ) associated

with neuronal growth and survival, which conditionally targeted only Purkinje cells of cerebellum,

resulted in ASD-like traits [88]. This, in addition to reinforcing the major role of cerebellum in ASD

pathophysiology, relates it to neural circuit, and therefore connectivity, theories of ASD. Similarly,

Shank2, a gene discussed above also in reference to neural circuit theories, also inactivated only in

cerebellar Purkinje cells, likewise resulted in RRB-analogous behavior, although not ASD symp-

tom analogies in the other core deficit domains [89]. These patterns have been repeated in other

investigations based on animal models as well [90, 91]. Symptomatologically, cerebellar dysplasias

are associated with ASD-like deficits across domains in the absence of ASD in both humans and in

animal models as well [79].

Revisiting the most extensively discussed family of theories so far, neural circuit theories, as

extensive evidence from animal models shows, are not constrained in implications to cerebrum.

Functional connectivity differences along with excitation—inhibition imbalance, specifically, reduc-
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tion, in posterolateral cerebellum and dorsolateral prefrontal cortex was associated with impaired

listening comprehension among adolescent and adult subjects with ASD [92]. However, the broad

implications of the excitation—inhibition ratio in the etiopathogenesis of ASD correspond to con-

comitant circumscription of its specificity and consistency; not only do different brain functional and

anatomical divisions present differential alterations to the ratio, but patterns present heterogeneously

between individuals diagnosed with the disorder as well [93]. Resolution of this apparent conun-

drum of heterogeneity, however, requires nothing more than consideration of the relevant factors in

experimental design, although this does increase complexity. Recent efforts have done exactly this,

observing rs-fcMRI in subject populations, and identifying genes of known functional significance

to excitation—inhibition ratios in the same subject populations, and finding associations between

the two in terms of ASD deficits [94]. Such an approach has all the functional and anatomical

specificity that any other typical rs-fCMRI experimental design would while including the relevant

genetic context in terms of its known implications on functional connectivity.

In addition to neural circuit and connectivity theories’ relationship to the putative cerebellar

theory, functional deficits in cognition in theory of mind, empathy, and executive function have

been observed in a human medical case of bilateral cerebellar damage [95], relating this latter the-

ory to the social motivation, metarepresenation, and weak central coherence theories of autism,

furthering its significance as a fundamental pathophysiological mechanism of ASD deficits across

symptom domains. Cerebellum also, relevant both to ASD’s developmental nature and more specif-

ically to neural circuit theories of autism, exhibits analogous neuroplastic flexibility and associated

molecular mechanisms to as cerebrum [96]. Hemispheric specialization in patterns at least partially

corresponding to those in ipsilateral cerebral cortex have been identified in cerebellum as well, e.g.,

left-language and right-spatial specialization [97]. Like cerebrum, then, cerebellum exhibits hier-

archical functional organization [98]; functional lateralization and hemispheric specialization [97];

activity dependent structural and functional plasticity, along with underlying molecular mecha-

nisms analogous to those subserving cerebral plasticity [96]; functional ubiquity, operating across

cognitive—behavioral domains [99], both integrating and segregating information streams relevant

to behavioral intention, execution, monitoring, and optimization; and inevitability of imputation to

at least some significant aspects of the neuroanatomical and neurophysiological correlates of per-

vasive neurocognitive disorders irrespective of their (conjectured, where appropriate) provenience.

However, cerebellum, especially cerebellar cortex, is of striking anatomical homogeneity, in contrast

to the intrinsic laminar, cytoarchitechtonic, and biomolecular diversity of cerebrum and especially

cerebral cortex. Just as some ASD-associated functional differences in cortex display lateralization
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corresponding to, though not necessarily consistent with, the functional lateralization of the un-

derlying cortical substrates in putatively typical cognition, cerebellum too presents an analogous

functional scaffold for the investigation of differences in brain functional and anatomical lateraliza-

tion associated with ASD. Cerebellum has been implicated in deficits in other neurodevelopmental

disorders as well, for example, cerebellar dysfunction has been posited to underlie ADHD executive

dysfunction as well [100].

Finally, yearly research output within neuroscience on the cerebellum has increased continuously

for a few decades now, spurred by the number and significance of many novel findings which suggest

no risk of saturation in the subfield as of yet; research output on the cerebellum is predicted to

increase from the 310 articles published in 1980 and approximately 800 published per year in recent

years to 891 per year by the end of 2028 [101]. Hence, research, especially on ASD, should discuss

relevance of cerebellar mechanisms where possible given the potential for magnification novel findings

at this time seem to facilitate.

Synchrony theory of autism

A synchrony theory of autism could account for the observed slower processing speed in addition

to specific deficits. Evidence for a (a)synchronous explanation for ASD symptoms includes weaker

interhemispheric synchronization in naturally sleeping toddlers observed via fcMRI. Notably, this

method allowed correct identification of 21/29 ASD toddlers and 36/43 TD controls. The weaker

synchronization was correlated with measures of expressive language ability (Mullen test), which

the authors suggest might indicate excessive lateralization of language function in the cortex of the

ASD toddlers [84].

Outstanding issues Clearly, the proliferation of theories, rather than their paring down, suggests

that a single theory encompassing all generally accepted aspects of the disorder is not likely to be

forthcoming. However, their explanatory nature is of expected utility at the very least because

the coherent nature of the disorder itself, even in full consideration of its heterogeneity, suggests

that rigorous attempts to synthesize research results should yield analogously coherent theoretical

explanations of the disorder; even if they are numerous and incomplete, they are still less numerous

that the individual research results underlying them. Nevertheless, the extent of neurocognitive

heterogeneity in what is classified as a neurodevelopmental disorder presents challenges for any

synthetic theory of autism. ASD neurocognitive heterogeneity also proceeds across multiple domains.

Among the more striking of these include IQ (which can be low, high, or within the typical range),
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association with an identifiable direct genetic mechanism with somatic abnormalities (syndromic), or

presentation with no clear differentiating genetic/somatic markers (non-syndromic, idiopathic) [102],

and, most directly, symptom severity measures across the three core deficits that seem to vary, to at

least a substantial extent, independently of one another [13]. Further complicating the matter is the

fact that, in the case of syndromic ASD diagnoses, the underlying syndromes, most frequently fragile

X syndrome, tuberous sclerosis, and Rett syndrome, can occur without the concomitant meeting of

the ASD diagnostic criteria [14]. In light of this, the present dissertation seeks to assess whole-brain

functional connectivity patterns associated with RRBs not as an attempt to explain the entirety of

ASD, but to assess if the extent of heterogeneity even in this one symptomatological domain can be

reduced inside the confines of rs-fcMRI. The rationale and context justifying this approach is given

in the following section (1.3).

1.3 NEUROCOGNITIVE HETEROGENEITY AND ITS PROPOSED EXPLANA-

TIONS

In addition to being heterogeneous, ASD has phenotypes that are “seemingly dissociable [103,

p. 1433].” Both widespread methodological variability as well as the rapid pace of developments

in neuroimaging, in combination with this heterogeneity of the disorder itself, makes ASD neu-

roimaging research, as a discrete field, particularly challenging [104]. Evaluations of the significance

of the observed heterogeneity in the presentation of the disorder vary widely, from dismissing the

viability of the disorder entirely, to reducing it to single mechanisms and attempting to explain all

features in terms of those mechanisms. Heterogeneity in the disorder, then, also spurs the potential

for heterogeneous interpretations of its significance.

Waterhouse [105, pp. 103–113], in her monograph on the topic, summarizes what she describes

as “a modern ‘phrenology’ ” of brain neurotransmitters, regions, and connections associated with

specifically social deficits in ASD, and, in line with much popular and clinical and scientific thought,

explicitly takes social deficits as the “core” of ASD in so doing. Included in her table are many of

the results invoked by the above “theories of autism (section 1.2.2).” While Waterhouse asserts that

the fragmentation in the evidence for ASD as a discrete, socially-mediated developmental disorder

ultimately points towards the existence of multiple discrete disorders that are now aggregated into

the current ASD, others coincidentally assert that a fundamental mechanism of disruption in the

“social brain” actually tends to resolve the extant heterogeneity of the disorder [106]; under this

paradigm, symptoms in the other core deficits naturally proceed form disrupted development of the

“social brain” in specific patterns, arising from both genetic and environmental mechanisms.
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Beyond the proliferation of disparate individual results, apparent contradictions have also been

observed in individual studies. A longitudinal MRI study of subjects with idiopathic ASD, those

with fragile x syndrome-associated ASD, and putatively typical subjects found that substantial en-

largement of the caudate and modest reduction of volume of the amygdala in the fragile x subsample,

while in the idiopathic ASD subsample, caudate enlargement was modest, but amygdala volume was

substantially larger [107]. In a review of neuroimaging evidence bearing on ASD heterogeneity [27]

makes several succinct observations:

• Social brain areas are particularly well characterized, and therefore, more likely to be invoked

in explanations of ASD as a whole. However, correlations between specific symptom severity

and structural or functional alterations across these brain regions are less numerous that simple

association between social deficits, period, and alterations in the regions.

• Similarly, several particularly highly specific language areas have been associated with equally

specific functions, these implicated in language deficits in ASD. Reduced or reversed asymmetry

among typically highly lateralized brain regions was associated with language deficits, as well as

changes in grey matter volumes in language areas. However, similar alterations were found in

subjects with language impairment, but without ASD, and such differences were not observed

in individuals with ASD but without language impairments [108], suggesting the differences

are specific to language impairment, not to ASD.

• While associations between RRBs and both basal ganglia and frontal (i.e., motor and executive)

structure and function have been documented, these too have presented directly contradictory

results in the research, e.g., both positive [109] and negative [110, 111] correlations between

caudate volume and RRB severity.

Worth noting additionally is the fact that the social category by far had the greatest number of

individual citations of the three dealing with the core deficits—36 for social deficits, 19 for language

deficits, and 14 for RRBs. Furthermore, additional subheadings related to sensory-, anxiety-, and

attention-related features of ASD also relate these more frequently to social deficits: first, findings

that explicitly correlate sensory abnormalities and social deficits [112], and second, findings and a

proposal that the ASD construct is a socially impaired “version” of ADHD [113, 114]. Clearly, there

is a, if not universal, clear predilection for accounting for the general features of the disorder in terms

of primary social deficits, perhaps highlighted best by the latter assertion, in which ASD symptoms

are substantially reproduced in another neurodevelopmental disorder, and it is specifically and exclu-

sively the addition of social features that “transforms” that other disorder into ASD. This assertion,
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though, is also itself complicated by an equally stark observation of the neurodevelopmental research

literature: “Impaired social functioning has been well documented in individuals with [ADHD] [115,

abstract (specifically, the first sentence)].” A distinct, but perhaps fundamentally related set of

deficits, in that they are associated with an excessive and distressing preference for systemizing,

is observed in borderline personality disorder, but recognizable variations of the other core deficits

in ASD have not, to this point, been clearly associated with borderline personality disorder [28],

reinforcing the view that ASD cannot be uniquely conceived in exclusively social terms, even if it

can in primarily social terms.

Perhaps more significant than these difficulties in conceptualizing ASD in purely social terms

is the tendency to conceptualize ASD RRB features, an ostensibly co-equal core deficit, in terms

of other disorders, particularly obsessive compulsive disorder [116, 117] and Tourette’s syndrome

[118, 119]. Thus, the relevance of RRBs to a putative “core ASD phenotype” is subject to “double

jeopardy” in terms of affording it theoretical significance: The disorder is presumptively and pre-

emptively conceived in primarily, or even exclusively, social terms, whereas RRBs by comparison

are, implicitly, at least, seen as to varying extents non-essential and even nonspecific. Of course,

asserting ASD is fundamentally a disorder of RRBs or of language deficits would likely eventually

run into analogous problems due to overlap with other disorders as in these very examples.

The simplest alternative hypothesis both to ASD’s status as a heterogeneous disorder and one

primarily associated with only one of its own three core diagnostic features is that it is in fact mulit-

ple, distinct disorders. Some evidence that can be reasonably construed to support this possibility

is the fact that there are clearly delineable clusters of comorbidity patterns among clinical patients

with ASD diagnoses [120]. In fact, this possibility is especially attractive given the actually derived

clusters from the clinical data. Individuals with ASD diagnoses in clinical records were assessed for

their specific constellation of symptoms. Analysis of symptom clustering revealed that diagnosed

individuals presented specific groups of symptoms that allowed their classification into one of three

essentially exclusive groups, or “types” of ASD:

1. A high (77.5%) incidence of seizures and intellectual disability (60%)

2. A relatively high incidence (48.7%) of intellectual disability, along with high prevalence of

autoimmune disorders, including asthma, and certain craniofacial abnormalities, especially ear

and hearing problems

3. A relatively low (27.8%) incidence of intellectual disability, with comorbidities that are most

frequently psychiatric disorders, with the exception of asthma and cardiac dysrhythmia; highest
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incidence of the now deprecated Asperger’s syndrome diagnosis

While three ASD “types” were identified, they do not correspond to the three discrete diagnoses

in the DSM-IV, nor to the three severity categories in the DSM-5 (section 1.1.2). Moreover, while

the authors do not explicitly assert the invalidity of the ASD diagnosis along any conceptual dimen-

sions, the authors allow that substantially distinct phenotypes do apparently exist within the extant

diagnosis, stating “[t]hese phenotypic distinctions may point to distinct etiologies with different ge-

netic and environmental contributions [120, e55];” furthermore, with respect to both psychiatric and

neurobiological aspects of the disorder “. . . analyzing individuals with ASD as a single group may

have blurred the different etiologies responsible for this heterogeneous disease [sic] [120, e61].”

Overlapping, but distinct, “connectotypes” have been observed in ASD in association with di-

vergent symptom presentation [121], both in part explaining, and recapitulating, the observed het-

erogeneity the cognitive and behavioral aspects of the disorder. In particular, subjects were distin-

guished as having equal, or directionally imbalanced, sociocommunicative- and RRB-domain deficits.

Distinct, but not wholly isolable, patterns of connectivity were found between somatomotor, peri-

sylvian, and visuoassociative cortical divisions such that somatomotor—perisylvian connectivity is

reduced in the case of sociocommunicative predominance, whereas in equivalent extent of deficit

severity, medial motor—anterior salience (ACC) circuitry was identified. Genes associated with

these connectivity differences were too identified, resulting in a tripartite conception of ASD hetero-

geneity; such problematization is at this stage necessary given the proliferation of dimensions along

which ASD may present heterogeneously, and efforts have been multiply made thereunto [46].

Some authors, however, feel no need to proffer any nuanced caveats; for example, the perspective

article entitled “Time to give up on a single explanation for autism [122]” leaves little uncertainty as

to the authors’ conclusion regarding the nosological implications of ASD heterogeneity. Specifically,

the paper notes the apparently independent mechanisms underlying each of the three core deficits in

ASD based on twin studies. Nevertheless, the same paper notes that the ensemble of ASD symptoms

is “highly recognizable” while still being represented among “richly heterogeneous [122, p. 1218]”

individuals.

A similar position is held by Waterhouse [123]: The final chapter of her monograph Rethinking

Autism includes a section entitled “Abandoning autism as a single disorder would eliminate three

inferential problems in autism research [123, p. 414].” Among the specific benefits of so abandoning

the disorder, she asserts, would be the resolution of apparent difficulties in relating the three core

deficits to one another; avoiding having to explain and clinically treat the extensive list of frequent

comorbidities observed in ASD diagnoses (e.g., epilepsy, intellectual disability, ADHD, etc.), which
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tend to foster misunderstandings about the disorder and make specializing in clinical services directed

towards it more difficult; the resolution of outstanding conflicts between certain evidence and certain

theories of the disorder, and more generally, obviating any need for such synthetic theories of what

is in any case a heterogeneous disorder in the first place; and ultimately, removing any need for any

explicit discussion of what ASD is or is not, or which of its features are fundamental and which

are not. She summarizes: “Given the totality of the existing research evidence, I believe the least

speculative scientific position is that autism symptoms are just that, symptoms . . . and not a single

disorder or multiple disorders [123, p. 427].”

Certainly, eliminating the clinical diagnosis altogether would solve many extant issues in ASD

research by rendering them moot. It would not, however, answer any of the unresolved questions

actually underlying those issues. Ultimately, ASD is a recognized diagnosis with clearly articulated,

if not always neatly conformed to, metes and bounds. While in certain respects it may be true

that “the ever-increasing volume of research on [ASD] has, of late, been paralleled by an increasing

opacity in the basic definition of the condition [124, p. 359],” such observations must be squared with

those such as that “two key biological themes, namely synaptic non-plasticity and abnormal brain

connectivity, link idiopathic and syndromic [ASD] [46, p. 23];” the extensiveness of the apparent

explanatory divide made manifest by the fundamentally distinct conceptions of syndromic and non-

syndromic disorder presentations is one whose bridging, in any manner or to any extent, has seemed

to be an especially tall order. There is, too, additional substantial research on neurocognitive features

of the disorder, as defined, and multiple such lines have just recently begun to collectively illuminate

possibilities for the potential tailoring of treatment to discrete “neurosubtypes” within the disorder

[125], clearly demonstrating the potential for ASD neurocognitive research to resolve issues with

heterogeneity in the disorder, in contrast to simply compounding them. And, while Waterhouse’s

prescriptions are not wholly inconsistent with the literature, in fact making substantial use of it,

the issue of heterogeneity within the disorder, and specifically, neurocognitive heterogeneity and

its potential relationship with heterogeneity in clinical presentation and behavioral and cognitive

aspects, has been the subject of scrutiny by those performing neuroscientific research on the disorder,

with syntheses of results, including contradictory ones, cautiously summarized across the entire brain

[126].

Consistent with these trends, and in an effort to generate results of the most clinical and the-

oretical use, this thesis proceeds with an “agnostic” view about the “true nature” of ASD, while

still seeking to elucidate the potential neurocognitive implications of the hitherto least characterized

core deficits: restrictive and repetitive behaviors (RRBs).
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RRBs can be classified as belonging to repetitive motor behavior, insistence on sameness, and cir-

cumscribed interest domains [127], or, alternately, into restricted, stereotyped, ritualistic/sameness,

and self-injurious classifications [128]. Symptom presentation can include motor behaviors such as

flapping of the limbs and rocking of the body in addition to more abstracted patterns of behavior,

such as persistent insistence on sameness (of environment, daily schedule, foods, etc.); the latter

have been termed “higher-order” RRBs in contrast to the former “lower-order” or motor-centric

presentation [47]. Whether two, three, or four classificatory subtypes are preferred, they all impli-

cate overlapping but not entirely coterminous functional cortical and subcortical divisions [127] as

summarized in section 1.4.3. RRBs can be identified in infants at least as young as 12 months [128].

Whereas there is significant between-core-deficit heterogeneity in the severity of symptoms, RRB has

been associated sensory changes in ASD, often considered a hallmark, though not a diagnostic fea-

ture of primary significance to the disorder. For example, increased stereotypy has been associated

with increased seeking of sensation-seeking behavior (colloquially, “stimming”) using the repetitive

behavior scale, revised (RBS-R) [129] to measure RRB severity [130]. While the mentioned lack

of exclusive or even primary pharmacotherapeutic intervention in ASD treatment abides towards

RRB symptoms, specific neurotransmitter systems, including serotonergic and adenosinergic trans-

mission, have been found to have significance to RRBs in animal models [131]. Of the multiple

implicated neurotransmitter systems in RRBs, dopaminergic transmission especially is associated

with such behaviors, and alterations in dopamine receptor function [132, 133], transporter activity

[134], and response to relevant psychopharmacological agents (in a mucine model) [135] have all

been implicated in ASD-associated RRBs. Additionally, a putative “dopamine theory of autism”

has been proposed in which dopaminergic system dysfunction in mesocorticolimbic pathway is as-

sociated with social deficits, whereas that of nigrostriatal pathway is so implicated in RRB deficits

[136].

Additional primary motivation for the research of RRBs comes from the fact that they are

associated with clinically significant measures of distress, and certain RRB manifestations in fact

increase with stress level [137]. Correlations between RRB severity and task measures that might

otherwise plausibly be identified as idiosyncratic and substantially of pure psychometric interest

predicted RRB presentation in daily living in adolescent and young adult subjects with ASD [138].

Beyond specific relevance to ASD, RRBs are a common component of mental disorders generally,

and are known to have a genetic basis distinct from ASD [139].
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1.3.1 Designing a “theory-free” approach to ASD neurocognitive research

Many prior neurocognitive studies of ASD utilize a simple contrast between ASD and putatively

typical subjects and identify significant effects at the group level; this method comports especially

well to task-based fMRI methods in which task/no-task conditions form a binary contrast. However,

given the previously discussed substantial heterogeneity within the disorder, even within the pre-

sentation of the individual core deficits, an experimental design that accounts for the full spectrum

of heterogeneity can capture ASD-associated patterns of neurocognitive difference without the need

for any a priori theory or model. An additional risk of subject differentiation via exclusively binary

grouping is noted by Noriega: “An unfortunate consequence of this broad definition is the clear

trend in research to focus on subjects on the ‘mild’ end of the spectrum. This trend, anecdotally

known for some time, has now been well established in systematic fashion [2]. Inevitably, this bias

is to the detriment of the more severe cases [124, p. 359]. ” Even ordinal-scale measures of subject

attributes overcome this challenge because they encapsulate severity. Noriega also notes, however,

that symptom severity can make participation in neuroimaging research as subjects difficult for in-

dividuals who experience it; barring improved tolerability of neuroimaging apparati, extrapolation

from observable variation in putatively quantifiable subject attributes nonetheless provides a better

proxy for the plausible neurophysiology of more severe disorder forms than does the embiggening

of observed effects between binarily grouped subjects. While formulating the analysis in this way

does have the noted benefits with respect to analyzing heterogeneity in ASD and its neural bases,

it must be noted that task-based activation studies in general are the source for many of the known

cognitive functions of cortical areas as well as the areas previously implicated in ASD and RRBs,

and hence, necessarily, such varied approaches together, and inseparably, form important bases from

which various aspects of ASD neurocognition can be surmised.

Whole-brain connectivity analysis followed by modeling and testing of potential underlying brain

networks allows the formulation of holistic, integrative hypotheses regarding aspects of ASD neu-

rocognition without being constrained by preexisting theoretical models. Beyond the bare association

of ASD symptom severity with changes in specific neurocognitive networks, a near certainty as dis-

cussed above, no assumptions are made with this approach about the specific nature of the networks,

nor the way in which they vary with ASD symptoms. The comparison between this approach and

the traditional two-subsample approach is depicted in figure 1.2.
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Figure 1.2: Comparison of design matrices using behavioral measures within
a group of participants who have ASD diagnoses (A) and traditional binary
contrast utilizing a value of 0 for “controls” and 1 for “ASD diagnosis.” The
green arrows point to the “filled in” blocks representing a value of 1 in (B) rather
than the continuous variation represented in the graded size of the blocks in (A).
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Table 1.4: Strengths and weaknesses of neuroimaging modalities [140].

Modality Spatial res. Temporal res. Functional spec. Anatomical spec.

fMRI High Low Medium High

M/EEG Low High High Very low

PET Low Very low High Low

1.4 FUNCTIONAL CONNECTIVITY AND NEUROCOGNITIVE NETWORKS

1.4.1 Functional brain imaging

Functional brain imaging has a long history that begins with the discovery of the scalp currents aris-

ing from brain activity detectable by superficial electrodes (electroencephalography; EEG). Further

methodologies, comprising magnetoencephalography (MEG), positron emission tomography (PET),

and nuclear magnetic resonance imaging (MRI) and its variations, followed thereafter. Each has been

substantially utilized in ASD neurocognitive research. A brief summary of the methods themselves

is presented in table 1.4.

All of these techniques can be used to image neurocognitive networks. fMRI, as the modality

utilized in this thesis, will be explored in the most depth. The others will be briefly covered with

respect to their impact on ASD neurocognitive research, and results from these modalities are

included elsewhere in this chapter as well.

One of the most obvious clinical applications of the EEG is in epilepsy diagnosis, as spikes of up

to 1000 uV can occur, in comparison to the 50 uV peak-to-peak measurement observed in normal

physiology [141]. Additionally, its fine temporal resolution allows the discrimination of types of

activity that fMRI simply cannot resolve; the order of the timescale they can discernibly image is

on the order of one millisecond in the case of EEG, and two seconds, 2,000 times as coarse a scale,

in the case of fMRI.

Subtler EEG patterns have been sought and identified in ASD clinical research. Comparison

with clinically healthy controls of well-characterized auditory potentials has suggested differences

in interhemispheric processing associated with ASD [142], perhaps relevant to observed language

deficits [143, 144]. EEG measures have also correlated with differences in higher-order stimulus

processing, in tasks which include components of novelty and error detection [85, 145].

While source-level analysis is ideal for studies of connectivity using electroencephalography, in

clinical populations especially, a smaller number of electrodes and/or sensor-level analysis only may
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be more practical. Sensor-level metrics continue to be used in clinical populations, including ASD

and ADHD [24, 146].

EEG’s primary advantage is its relatively high temporal resolution, which is sufficient for record-

ing whole-brain oscillations. Dysfunctions in these oscillations are termed oscillopathies [147], and

these, like functional connectivity disruptions, seem to be relevant to psychological disease states in

general.

MEG is, for the most part, analogous to EEG; the primary difference is the orientation of the

neurons within the cortical sheet that give rise to the largest part of the observed signal. MEG

imaging of age-dependent differences in auditory potentials in subjects diagnosed with ASD suggest

altered maturation of the brain compared with typical development [148].

PET is another major imaging modality, and the first, before fMRI, to create 3-dimensional func-

tional reconstructions that directly localize activity in the brain in space. However, its fundamental

mechanism involves the use of radiolabeled analogs of the molecules of interest (neurotransmitters,

sugars, hormones, water, etc.) that expose subjects to potentially harmful radiation, and thus its

use is limited in research applications. PET is further deprecated in comparison to fMRI for mod-

ern neurocognitive imaging in that it shares with MRI a very high installation cost [149], but also

adds the additional preference for, although not requirement of, on-site cyclotrons to produce the

necessary radioisotopes [150]. Nevertheless, the ASD neurocognitive imaging literature does present

applications of PET.

PET imaging detected hypoperfusion among children with ASD and idiopathic intellectual dis-

ability using radiolabeled H2O (water) in bilateral temporal lobe bounding areas of auditory as-

sociation and multimodal regions of cortex, and these results were verified on a further sample of

autistic adults [151]. More recently, and more specific to PET’s differential utility, employment of a

radiolabeled protein molecule of 18 kDa, two orders of magnitude heavier than glucose, and approxi-

mately three heavier than water, enabled detection of reduced expression of the protein translocator

protein across multiple regions of cortex in young adult male subjects diagnosed with ASD [152].

Most notably, perhaps, PET in the future may more fully characterize the relationship between

ASD-specific social deficits and cortical oxytocin expression, as some studies have begun to attempt

to do [153, 154]. Oxytocin has been of significant interest, including as a therapeutic agent, regard-

ing its association with ASD social deficits. However, research thus far has been complicated by the

lack of useful PET-compatible human oxytocin receptor ligands [155].
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fMRI theory

As fMRI is the focus of this thesis, the theory underpinning it will be briefly covered.

Magnetic resonance imaging, and more recently, functional magnetic resonance imaging, use

the magnetic field generated by protons in tissue in order to construct a three-dimensional image

of that tissue. The physics behind MRI operation are complex, and are reviewed briefly here.

It is especially important to theoretically justify functional MRI experiments given the manifold

assumptions required in their construction; a now infamous study [156] found neural activity in the

brain of a dead salmon using commonly accepted statistical protocols to demonstrate the necessity

of such caution. The following discussion of fMRI physics and fundamental statistical concepts refers

principally to [157].

Physical basis of MR imaging Magnetic resonance imaging of tissue consists of the placing of

the subject in a scanner which uses a strong magnetic field with strength B0 to align protons ( 1H

nuclei, specifically ones attached to oxygen in water) in the same direction of the field. Protons have

an angular frequency which is dependent on the strength of the applied magnetic field, the Larmor

frequency, which determines what wavelength and frequency of electromagnetic radiation they are

capable of absorbing and emitting, important for the next step.

Although the protons are aligned in the direction of B0, their phases relative to one another are,

by default, random. In order to align the phases, a strong radio frequency pulse of the appropriate

frequency is applied, tipping the nuclei over so they precess in the xy-plane. After the phase-aligning

pulse, a magnetic field with a spatial gradient is applied that varies in magnitude proportionally

with distance. As the protons become out of phase with one another, there is some distance which

must be traversed from one proton to the next one with the same phase for a given point in time.

Thus, the phases are aligned helically, and the distance from one proton to the next with the same

spin can be described as a “spatial period,” similar to the inverse of the frequency of a typical wave.

The theoretical basis for image formation is that spin density varies in different types of tissue.

Since water, which contains hydrogen atoms, is ubiquitous in human tissue, but in varying concen-

trations, different types of tissue have different proton density. The differences in proton density

are used to create an image which is lighter or darker depending on the density, creating an image

whose contrast correlates with the type of tissue represented.

MRI imaging protocols Two time constants describe the relaxation (return to equilibria) charac-

teristics of an MR signal:

36



T1 (longitudinal relaxation constant) The longitudinal relaxation constant (or spin-lattice re-

laxation constant) signifies the amount of time it takes for protons to recover their thermo-

dynamically equilibrious magnetization in the z-direction (parallel to the applied field), which

had previously been disrupted by the radiofrequency pulse so that all nuclei were “tipped”

orthogonally to the direction of the magnetic field.

T2 (transverse relaxation constant) The transverse relaxation constant (or spin-spin relax-

ation constant) describes the amount of time it takes for a loss of net magnetization in the

transverse plane due to the phase relationship between protons tending towards random, after

initially being aligned due to the RF pulse.

Correspondingly, there are two scanner parameters that can be adjusted that effect the dynamics

of the signal generated:

TE (echo time) The echo time describes how soon after the pulse data collection is begun.

TR (repetition time) The repetition time describes how frequently the RF pulse is repeated.

In functional MRI, a parameter called T2∗ is defined by the adjustment of T2 for local distur-

bances in the magnetic field. These disturbances are caused by the magnetic differences between

oxygenated and unoxygenated hemoglobin in red blood cells. Because cerebral blood flow is as-

sociated with neural activity, if T2∗ is emphasized, the signal and image will contain a correlate

of neural activity. This correlate is called the BOLD (blood oxygen level dependent) signal, and

forms the basis for functional MRI. As noted in the introduction to this chapter, careful theoretical

considerations must be made when judging neuronal activity from a correlate so far removed from

the actual physical basis (metabolism, action potentials, and neurotransmitter release and receptor

binding). The same goes for finding neural correlates of cognition, and actually conscious infor-

mation processing even moreso, as consciousness, let alone cognition in various abstraction, is even

more profoundly phenomenologically distinct from the BOLD signal.

In task-based fMRI, presentation of stimuli and data collection can occur in “blocks” or “events.”

In blocked fMRI studies, separate stimuli are presented repeatedly in blocks, i.e., a given stimulus

A is repeated several times over, and then a given stimulus B is repeated several times over. The

strength of this method lies in the fact that a robust signal can be generated based on the assumption

that the BOLD signal is additive (linearity), and hence, the total response to a given block is the sum

of the individual responses to each iteration of the same stimulus. Event related fMRI experiments

randomize the presentation of stimuli. Although lower in statistical power, randomization prevents

37



the acclimation and/or habituation to stimuli which may attenuate the BOLD response over time.

While the BOLD signal is the MR signal correlate of blood flow, and hence, neural activity, some

functional relationship between the BOLD signal and the actual extent of the change in blood flow

must be established. The change in blood flow is referred to as the hemodynamic response, and

the specific hemodynamic response underlying a, in this case, neural event is referred to as the

hemodynamic response function (HRF). The current most common way to model the HRF in fMRI

activation experiments is a linear time invariant (LTI) system, in which postulated neural activity

in response to cognitive events represent an impulse to which the HRF directly corresponds.

Shortcomings of the task-based and activation-based approaches to fMRI research in autism

spectrum disorder include, respectively, that they make strong, if implicit, assumptions about the

specific relevance of the task, both to the brain areas of interest and in the proposed analogy of the

task to natural behavior, and that they discount the manifoldly connected nature of the brain when

analysis is constrained only to “relevant” brain regions. While such designs have and will continue

to provide vast insight into the nature of human neurocognitive function, this thesis seeks to identify

brain functional differences more innate to the brain itself, and thus uses techniques discussed in the

next section. Nevertheless, this tried and tested approach has yielded countless of the insights that

have guided the present research, demonstrating the importance of reciprocal contextualization of

brain imaging research results.

1.4.2 Resting state functional connectivity

The standard approach to functional cognitive neuroimaging studies has been to measure changes

between rest and task conditions and evaluate the implied association between the identified regions

and the task being performed and/or between subjects drawn from a clinical population of interest

and putatively typical controls. However, the experimental canon in neuroimaging has comprised

measures of resting-state activity since essentially the inception of the field, with the discovery of a

regular oscillation in human EEG in 1924 [158], the α-wave, that disappeared or was substantially

attenuated when subjects were engaged in mental tasks, or even upon opening of the eyes [159]. In

resting state functional connectivity inferred via fMRI, or rs-fcMRI, the measure usually taken as

representing functional spatiotemporal relationships in the brain is the Pearson correlation between

the time series of any two discrete regions, defined in various possible ways (voxels, anatomical

structures, distributed functional networks, etc.). Other metrics, such as wavelet coherence, mutual

information, dynamic time warping, and other measures [160] of relationships between two or more

time series data, have seen employment varying from substantial to marginal. Beyond the metric
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chosen, interpretation (see following subsection) is a primary methodological concern given the

phenomenological separation of any particular metric from the underlying neurophysiological and,

therefore, cognitive significance; section 3.7 in this thesis comprises its interpretation of the Pearson

correlation values obtained in the connectivity analysis.

The proliferation of methods in general is of no surprise given resting state networks remain of

methodological interest for many reasons. First, they are not dependent on tasks which may be

difficult to reproduce and which may result in observed effects that are quite idiosyncratic to the

specific task implementation. More importantly, the magnitude of the metabolic changes in brain

activity between clinical and putatively typical subjects may be on the order of 1% [161]; hence,

analyzing whole-brain activity, without specificity to any task, might enable the identification of an

ensemble of changes which, in total, are more metabolically significant and therefore associated with

correspondingly larger changes in the BOLD signal and any derived measures, such as functional

connectivity.

Candidate neurocognitive networks active at rest have been called “endogenous” and “intrinsic”

networks [162]. These networks may arise from a sort of neural homeostasis present at rest that

differs in consistent ways in disease states [163]. Such differences may interact with task-related

changes, resulting in the observed clinical symptoms in psychological disorders. Despite the rapid

proliferation of resting-state studies, Greicius noted in the introduction to a 2008 paper that “fMRI

has largely failed to fulfill its promise in the clinical realm [164, p. 424].” One such network with

substantial empirical support is the default mode network (DMN), which has been substantially

implicated in the social and communication deficits in ASD [165]. Multiple associations between

ASD or particular of its features and aspects of DMN connectivity have been observed in rs-fcMRI,

including decoupling of DMN structures [166] in accordance with long-range hypoconnectivity.

The traditional statistical approaches to rs-fcMRI analysis, both for studying disease states and

typical patterns of connectivity, comprise seed-based approaches that utilize “seed” or “source”

ROIs, which use anatomically defined volumes of the (typically normalized) brain as the functional

target of analysis and calculate the connectivity between the functional/anatomical seed and other

voxels in the brain, and voxel-based approaches, such as independent component analysis (ICA),

which decomposes the voxel-to-voxel connectivity values into independent spatial components. In

addition, several machine learning approaches have been successfully applied to rs-fcMRI data [167].

Each analytical approach has at least some advantages and drawbacks relative to the others. For

example, independent component analysis (ICA) has the advantage of allowing whole-brain connec-

tivity to be characterized without being constrained or biased by predefined anatomical volumes
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corresponding to areas of known structural or functional significance, but the process, and hence,

without interpretation, results, are more opaque than for ROI-based analyses where a clear corre-

spondence can be made between the computed results and the neurology and cognitive neuroscience

literature writ large. One manifestation of this concern is the fact that the components in ICA

must be independent, which limits or abrogates the ability to find nodes that comprise portions of

overlapping networks [168] or subnetworks.

Interpreting rs-fcMRI results

One important consideration is they very nature of rs-fcMRI: It identifies functional connections.

Such connections are obviously of a priori interest because they indicate the manner in which

disparate brain regions interact with each other, and yet exist both in the presence and absence of

identifiable structural connections between the regions; in each of these cases, the precise implications

of identified functional connections are subtly constrained. In the ideal case, functional connectivity

results can be compared in the same data set with structure connectivity measures [169]. Likewise,

hypotheses about the implications of altered rs-fc on behavior in clinical populations can only be

directly tested when both resting-state and task-based imaging is performed on the same subject

population under as nearly identical as possible circumstances [170].

1.4.3 Neurocognitive networks

A synthesis of the results of functional connectivity experiments requires assessment of the ensemble

of connections at the level of a proposed network of brain regions subserving functionally specific

cognitive processing; such networks are termed neurocognitive networks. The revelation that the

brain comprises functionally distinct subunits provided one of the fundamental precepts underlying

cognitive neuroscience. In 1861, French physician Paul Pierre Broca published a clinical case of a

patient who had lost his speech faculties who upon autopsy was found to have lesions localized to

a circumscribed area in the left frontal lobe. He concluded about this patient “[t]here is therefore

every reason to believe that, in the present case, the lesion of the frontal lobe was the cause of the

loss of speech [171] (translated).” His discovery of the now-eponymous Broca’s area established a

firm rationale to study the brain from the perspective of functional localization, and this paradigm

has long been the dominant one, with clear shift toward reduced emphasis on localized activation

alone occurring recently. However, combined with the already established nature of neurons as

manifoldly interconnected with one another within cortex, this discovery simultaneously gave rise to

a new problem in understanding the functioning of nervous systems: if there are functionally (and
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cytoarchitechtonically) distinct “modules” in the brain, and yet neurons are densely interconnected

with one another within and between regions, how, and to what extent, does the brain operate as a

unified whole versus as a (mere) collection of “modules [172]?”

While cortex, and the rest of the brain, is certainly functionally segregated at the very least

with respect to sensory and motor streams, there has always existed the notion in neurology and

neuroscience that the entirety of the brain is involved (mass action) in at least some way in any major

motor or cognitive activity, and that regions of brain are capable of adapting their functions as a

consequence of damage to other areas (equipotentiality). Karl Lashley described the potential for the

“diffusion of impulses through a fairly homogeneous matrix [173, p. 253]” of sensory information once

it has left its associated primary cortex. Despite all the progress since 1931, Lashley’s fundamental

proposals were of accord with his own experimental observations, and the issues he raised, along with

the caveats offered with them, remain remarkably prescient: “From the standpoint of an adequate

cerebral physiology also, the classical concept of cerebral localization is of limited value, because of

its static character and its failure to provide any answer to the question of how the specialized parts

of the cortex interact to produce the integration evident in thought and behavior. The problem

here is one of the dynamic relations of the diverse parts of the cortex, whether they be

cells or cortical fields. The diversification of parts is a fact of fundamental importance, but it is

only one of many which must be discovered before we can form any adequate conception of cerebral

organization [173, p. 246] (emphasis added).”

Fundamentally, therefore, the notion of brain networks allowed the resolution of a long-standing

debate over whether the brain was organized into functional modules, or acted as a unitary mass

with all parts, at all times, acting in concert [172]. In the theory, brain networks consist of func-

tionally distinct but interconnected regions at multiple scales, from microscopic columns of coactive

neurons, to topographically organized sensory receptive fields or motor units, to higher level sen-

sory cortex that integrates and segregates sensory information that is reciprocally connected with

association cortex, which itself is reciprocally connected with other areas of association cortex, to

the lobes of the cerebral hemispheres and finally to the entire cerebral cortex. The dense recip-

rocal projections between cortex and thalamus, limbic structures, and the basal ganglia show that

networks are not restricted to neocortex alone. At the simplest level, functional networks comprise

“interareal correlated activity [172, p. 289].” “Correlated” includes anticorrelation as well, allowing

for functional reciprocal inhibition to undergird dynamic network behavior. As the vast majority

of corticocortical connections between areas are in the form of excitatory synapses from cortical

pyramidal cells, subcortical structures reciprocally connected with multiple cortical areas at once
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could enable such mutual inhibition. Contrary to supervised machine learning models based on

artificial neural networks, the real biological brain has no teacher, and so the manifold nature of

cortical and subcortical-cortical connections allows for the different areas to guide the behavior of

other areas through reentrant (also called recursive or reciprocal) connections and processing [172,

174]. Furthermore, biologically, processing can be parallel or serial, allowing for functional topology

optimized for stimulus or behavior class. For example, visual input comprises a massively parallel

stream of information beginning with the numerous photoreceptors in the retina, whereas, should

that information stream contain visual data about a map that is being used to plan out a driving

route, each step must be assimilated before the next, even while the photoreceptors themselves and

even primary visual areas of cortex persist unhindered in transducing the sensory information to

higher cortical areas for the relevant processing.

A further fundamental aspect of brain network behavior is metastability [174] (also section 1.5).

Functionally, this characteristic is reflected in the balanced interplay between segregation and inte-

gration of information streams and the corresponding brain networks. Thus, the science of coordi-

nation dynamics is the most informative and biologically relevant quantitative framework in which

to assess the behavior of real biological brain networks. An apt description in light of this view, in

context referring to monkey local field potential data, can be found in “[t]he rapid transition from

low to high coherence, and back again, is indicative of the relative coordination of these sites—their

ability to partially synchronize their oscillatory activity without becoming locked into global syn-

chronization [174, p. 27].” To suspend any uncertainty, the authors state: “We propose that a

crucial aspect of cognitive function, which can both integrate and segregate the activities of multiple

distributed areas, is large-scale relative coordination governed by way of metastable dynamics [174,

p. 30].” Of interest to this study, one of the noted “outstanding questions [174, p. 34]” is whether

or not errors in brain network coordination can lead to cognitive impairment or disease.

Evidence has been accumulating rapidly for a distributed network view of cognitive organization,

and this has both been spurred by, and provides a motivation for further, advances and refinements

in neuroimaging hardware and the analytical techniques used to understand the data it provides

[175]. For example, node identification still frequently proceeds from a basis of cytoarchitectonic

areas as identified by Brodmann and his contemporaries around 100 years ago. While the Brodmann

scheme of cortical parcellations certainly has underlying neuroanatomical justification, convention

likely also provides outsize influence in favor of its use in sophisticated functional connectivity

studies. On the other hand, MRI is typically unable to differentiate cortical areas on the basis of

their cytoarchitecture, and so there is a fundamental challenge in basing anatomical discrimination
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in such a context on cytoarchitectonic properties. Advancements do continue, however, and other

functional and anatomical atlases of brain ROIs with greater specificity and consistency across the

entire brain are now used, such as those in this thesis (section 2.3.2).

With respect to ASD, the immensely distributed nature of social and emotional processing

strongly implicates the significance of a neurocognitive network-based mechanism in the central

deficits observed in ASD. For RRBs, too, motor behavior is dependent upon multiple functional di-

visions across cortical and subcortical structures and cerebellum and their reciprocal relationships.

In turn, many outstanding questions invite further intensification of efforts in the area; differences

associated with symptom-specific heterogeneity in connectivity, the developmental course of such

heterogeneity, network classification according to neurotransmitter activity, and so on, are all av-

enues of promise for further research. In this study, heterogeneity in the RRB domain among subjects

with an ASD diagnosis will be correlated with differences in functional connectivity in an effort to

identify a putative brain network underlying this dimension of variability in ASD.

Brain networks in restrictive and repetitive behaviors

A putative “connectivity theory of autism,” both as a developmental consequence of disruption in

neural circuit formation and as a distinct explanatory framework, has substantial and increasing

empirical support. The prevailing synthetic model aggregates connectivity patterns in ASD into a

general scheme of increased local connectivity and decreased long-range (cortico-cortical) connectiv-

ity [86]. This simple theoretical scheme has significant explanatory power for various ASD cognitive

deficits, but faces challenges. For example, instances of both long-range hyperconnectivity [176]

and short-range hypoconnectivity [177] have been posited. Length-dependent connectivity variation

determined via rs-fcMRI found decreased connectivity for both long- and short-range functional

connections, but no pattern for medium-length connections [178]. Furthermore, intrinsic connectiv-

ity patterns in the grey matter in ASD, for example, are multifold and to some extent apparently

idiosyncratic, as shown in table 1.5 [179].

ASD connectivity studies across neuroimaging modalities abound, but RRB-specific, and espe-

cially, RRB-specific within the diagnostic universe of ASD, connectivity studies are less numerous

than those addressing social and communication domains. While neuroimaging research in animal

models of ASD has become increasingly prevalent, as references in this thesis demonstrate, recent

criticism has included that “there has been almost no exploration of how these findings pertain to

RRB, or other abnormal behaviors, in such models [47, p. 153].” As discussed under the neural

circuit theories heading in section 1.2.2, neural circuits, which comprise functional and anatomical
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connections between multiple related regions, form a high plausibility candidate substrate in the

pathophysiology of RRBs in ASD, and these subunits have been extensively and successfully re-

searched in animal models of ASD RRBs. In RRBs specifically, cortico-basal ganglia neural circuits

have been implicated in addition to interaction effects between basal ganglia and cerebellar networks

mediated by mutual connectivity with multiple cortical, thalamic, and pontine nuclei regions. Given

especially the functional ubiquity of basal ganglia across sensory, motor, and cognitive functions, it

is not surprising that multiple subcortical nuclei would therefore be implicated in RRB manifesta-

tion; the manifold functional interconnectivity between brain regions, which does not require direct

anatomical connectivity, would seem to suggest that a better question given cumulated evidence than

“if” is “how” basal ganglia underlie relevant aspects of RRBs, especially in view of their motoric

significance. Basal ganglia loops comprising cortico-subcortical connectivity subserve diverse limbic,

associative, and motor function, with discrete, well-characterized basal ganglia circuits underlying

each.

The default mode network (DMN) has also been implicated in ASD pathophysiology in general,

and social-communication deficits [165] repeatedly, as well as in, though less frequently and com-

paritively more recently, RRB deficits. For example, DMN connectivity analyzed via ICA on fMRI

data found the network to be more weakly connected in individuals with ASD, and the extent of

the difference was associated with the severity of social and communication deficits [180].

While putative roles of DMN in RRBs in ASD are increasingly the subjects of neurocogni-

tive research on the disorder, this proliferation has both raised and answered questions about the

RRB—rest network functional relationship. Increased posterior cingulate—right parahippocampal

gyrus rs-fcMRI has been associated with more severe RRB using the ADI-R measure [181], although

an underlying functional network associated with RRBs beyond the DMN was not postulated from

this result, and DMN connectivity across several ROIs has been identified in association with the

compulsive behaviors in obsessive-compulsive disorder [182], increasing confidence as to its funda-

mental role in the class of behaviors.

Atypical striatal connectivity has been identified both with the disorder in comparison to puta-

tively typical controls [183] and in specific association with RRBs [184, 185]. Specifically, corticostri-

atal hyperconnectivity has been observed between a priori chosen striatal seeds and frontoparietal

and occipital cortex in association with higher RRB severity, measured as RBS-R score, as in the

present study (and also using ABIDE datasets).

In cerebellum, “[t]he cerebellum and associated circuitry has begun to emerge from neuroimaging

studies of RRB. Alterations to the cerebellum are also one of the most consistently reported patho-
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logical findings in post-mortem studies in ASD [47, p. 165].” This latter result is to be of no surprise

given the manifoldly extensive functional and anatomical reciprocity with supernumerary targets

[186] when contrasted with most empirically employed functional brain parcels. The basal ganglia,

however, are similarly so connected, and this creates the expected multifarious interactions between

the anatomically discrete structures: In ultra-high field imaging in animal models of RRB, severity

correlated with volumetric changes in cerebellar crus II, subthalamic nucleus, and striatum, together

comprising important nodes in the indirect pathway [187]. Cerebellothalamocortical circuits have

been broadly implicated in RRB manifestation as well.

At the RRB subcategory level, 12- and 24-month resting state scans of infants identified a

negative ritualistic/sameness and visual—default mode network connectivity relationship, a positive

stereotyped/restricted symptom extent and default mode—executive network connectivity, and two

relationships between rs-fc and dorsal attention network connectivity: Stereotyped behavior was

positively correlated with dorsal attention—subcortical connectivity, and restricted behavior severity

was with dorsal attention—default mode connectivity [128].

An overview of multiple reviews and large-scale imaging studies[47, 127, 188] of resting-state

functional and anatomical connectivity in RRBs in ASD and other neurodevelopmental disorders is

given in table 1.6.

Beyond these incipient results, RRBs have even in recent history often been conceptualized

in terms of their analogs in other disorders (in addition to OCD), such as Tourette’s syndrome

[118, 119] and Prader-Willi syndrome [47], whereas language, and to an even greater extent social

deficits, have formed the bases for proposed unitary mechanisms underlying the whole of ASD

pathophysiology (section 1.3). However, RRBs actually provide the set of symptoms most directly

relevant to the cognitively-defined “hyper-systemizing” theory of autism, or, in slight variation,

the “extreme male brain” theory of autism, as well as the adaptively-defined “assortative mating”

theory of autism (section 1.2.2). This is because these theories conceive ASD as the manifestation of

a preference for lawful, predictable, simple systems, rather than against complex ones, such as social

interactions. Meticulous arrangement of objects, collection and organization of various objects (e.g.,

baseball cards), and a strong desire for uniformity in diet and routine all directly implicate such

a preference for lawful systems. While apparently repetitive and purposeless motions, which are

classified as RRBs, are of less clear significance, they nevertheless represent a sameness preference.

By analogy, dance improvisation may be construed as purposeless, but, at least in contemporary

Western forms, is not generally repetitive in a categorical sense as RRBs are. In fact, an article

on the subject in The Journal of Aesthetic and Art Criticism warns that “. . . improvisation as a
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form of performance runs the risk of falling into habitual repetitive patterns that may become

stale for performers and viewers [189, p. 182] (emphasis added).” The significance is that dance

improvisation is “successful” when it is unpredictable, not only for the audience, but specifically

for the performer as well. RRBs, on the other hand, are “successful” precisely when they are

predictable, whether through the satiation of a psychological compulsion, or via whatever intrinsic

objective they satisfy. Hence, even stereotyped movements in isolation of other organized behavior

satisfy the criteria for being the sorts of behaviors predicted by the aforementioned cognitive and

adaptive theories of autism. As RRBs, unlike improvised dance, are not performed for an audience,

this is also consistent with an at least apparent distaste for socializing: if easily predictable motor

behavior is preferred, oneself is the most reliable source for it.

Because of this clear centrality to the relevant theories of autism, while also not contradicting that

the other core deficit symptom categories are significant, combined with the correspondingly sparse

research for RRBs compared to the other core deficits, they are chosen as the phenomenon of interest

for seeking potential brain networks associated with ASD without making assumptions about the

“true” nature of the disorder. While a composite measure of ASD symptom severity could also be

used, assessment of the result would be less straightforward, and, additionally, repetitive behavior

is marginalized in the ADOS-G as well, as discussed in chapter 2. Connectivity summarized here

in prose and in tables 1.5 and 1.6 will provide a major facet of the context in which results are

ultimately assessed.
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Table 1.5: Differences in intrinsic connectivity in ASD

Measure Anatomical cluster BAs Significance

Mean separation

distance

Primary motor cortex, precentral gyrus, postcentral gyrus, so-

matosensory cortex, posterior parietal cortex (all left)

1, 2, 3, 4, 5, 7 Lower

Anterior temporal lobe, middle temporal lobe (all left) 20, 21, 38 Lower

Orbitofrontal cortex (left) 10, 11 Lower

Temporoparietal junction (right) 39 Lower

Inferior temporal lobe, somatosensory cortex, central gyrus,

orbitofrontal cortex (all right)

10, 20, 37 Negatively corre-

lated with ADI-R

repetitive scores

Temporoparietal junction (left and right) 39, 40 Negatively corre-

lated with ADI-R

repetitive scores

Radius function

(within-path dis-

tances)

Anterior and medial temporal lobe (bilateral) 21, 22 Lower

Dorsolateral prefrontal cortex (bilateral) 10, 11 Lower

Somatosensory cortex, postcentral gyrus (bilateral) 1, 2, 3 Lower

Posterior parietal cortex, temporoparietal junction (all left) 5, 7, 39 Lower

Generally nega-

tively correlated

with ADI-R repet-

itive scores and

social and commu-

nication deficits

Perimeter function Temporal lobe (bilateral) 20, 21, 38 Higher

Ventrolateral prefrontal cortex (bilateral) 10, 11 Higher
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Precentral gyrus (bilateral) 4, 6 Higher

Generally posi-

tively correlated

with ADI-R repet-

itive scores and

social and commu-

nication deficits
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Table 1.6: Differences in rs-fcMRI and DTI measures in RRBs in neurodevel-

opmental disorders. PWS, Prader–Willi syndrome; CBC, compulsive behavior

checklist [190]; ADI-R, autism diagnostic interview, revised [191].

Region Finding Disorder RRB inven-

tory/direction

of effect

Superior frontal

gyrus

Decreased fractional anisotropy in SFG ASD (children) ADI-R↑ ⇐⇒ FA↓

Increased SFG—ACC resting state functional connectivity ASD (children) ADI-R↑ ⇐⇒ FC↑

Decreased SFG—PCC resting state functional connectivity ASD (adoles-

cents)

ADI-R↑ ⇐⇒ FC↓

Middle frontal

gyrus

Decreased fractional anisotropy in MFG ASD (children) ADI-R↑ ⇐⇒ FA↓

Increased MFG—caudate resting state functional connectivity ASD (adults) ADI-R↑ ⇐⇒ FC↑

Inferior frontal

gyrus

Decreased right IFG—ACC and right IFG—insula resting

state functional connectivity

ASD (adults) ADI-R↑ ⇐⇒ FC↓

Superior temporal

gyrus

Increased right STG—right ventral putamen resting state

functional connectivity

ASD (children) ADI-R↑ ⇐⇒ FC↑

Anterior cingulate

cortex/salience

network

Decreased fractional anisotropy in ACC ASD (children) ADI-R↑ ⇐⇒ FA↓

Increased ACC salience network resting state functional con-

nectivity

ASD (children) ADI-R↑ ⇐⇒ FC↑

Decreased left ACC—right insula resting state functional con-

nectivity

ASD (children

and adults)

ADOS↑ ⇐⇒ FC↓

Decreased rostral ACC white matter integrity ASD (adults) ADI-R↑ ⇐⇒ WM-

INT↓
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Decreased salience network resting state functional connectiv-

ity

ASD (children) ADI-R↑ ⇐⇒ FC↓

Default mode net-

work

Atypical default mode network resting state functional con-

nectivity

ASD (adoles-

cents, adults)

ADI-R↑ ⇐⇒ FC↔

Decreased left posterior cingulate cortex—right angular gyrus

resting state functional connectivity

ASD (adoles-

cents)

RBS-R↑ ⇐⇒ FC↓

Increased left posterior cingulate cortex—left STG (Wer-

nicke’s) resting state functional connectivity

ASD (adoles-

cents)

RBS-R↑ ⇐⇒ FC↑

Insula Decreased right insula—left ACC resting state functional con-

nectivity

ASD (children

and adults)

ADOS↑ ⇐⇒ FC↓

Caudate Increased right caudate—right MFG resting state functional

connectivity

ASD (adults) ADI-R↑ ⇐⇒ FC↑

Decreased right caudate—mPFC resting state functional con-

nectivity

PWS (adults) CBC↑ ⇐⇒ FC↓

Putamen Increased right putamen—right STG resting state functional

connectivity

ASD (children) ADI-R↑ ⇐⇒ FC↑

Decreased right putamen—left globus pallidus and thalamus

resting state functional connectivity

PWS (adults) CBC↑ ⇐⇒ FC↓

Increased left putamen—right fusiform gyrus resting state

functional connectivity

ASD (adoles-

cents)

RBS-R↑ ⇐⇒ FC↑

Increased left putamen—primary motor and somatosensory

cortex resting state functional connectivity

ASD (adoles-

cents)

RBS-R↑ ⇐⇒ FC↑

Globus pallidus Decreased GP white matter fractional anisotropy ASD (children) ADI-R↑ ⇐⇒ FA↓

Increased right GP—left primary motor cortex resting state

functional connectivity

ASD (adoles-

cents)

RBS-R↑ ⇐⇒ FC↑

Cerebellum Decreased cerebellum fractional anisotropy ASD (children) ADI-R↑ ⇐⇒ FA↓
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Increased superior/middle peduncle fractional anisotropy

(low-order/motor)

ASD (young

children)

ADI-R↑ ⇐⇒ FA↑

Increased middle peduncle fractional anisotropy (high-

order/ritual/sameness)

ASD (young

children)

ADI-R↑ ⇐⇒ FA↑

White matter Decreased forceps minor volume ASD (adults) ADI-R↑ ⇐⇒ WM-

VOL↓
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1.5 COMPLEXITY AND COORDINATION IN NEUROCOGNITIVE FUNCTION

The complex systems concept forms the basic theoretical framework from which the approaches in

this thesis were developed and its results interpreted. A complex systems approach, rather than one

of specific methods, methodology, or interpretation, is, to a substantial extent, one of a particular

type abstraction. While a putative system certainly either does or does not operate complexly, the

type abstraction of the interactions between its components is the practical challenge in a complex

systems analysis. Rather than a formal definition, or an exhaustive treatise, generally accepted

properties of complex systems given in [192] will be summarized. Complex systems typically:

• comprise constituent, hierarchically arranged subsystems that interact within and across mul-

tiple distinct scales in time and space

• are not explicitly contingent on their particular material substrate or on the precise nature of

the physical interactions between their subsystems

• exhibit macroscopic patterns of behavior at yet larger scales than any of their subsystems, a

property termed “emergence”

• dynamically shift between discrete modes or states such that they can be satisfactorily modeled

with orders of magnitude fewer degrees of freedom than they formally possess in terms of their

most basic subunits, even to the extent that their dynamical features can be successfully

extrapolated beyond what direct casual observation reveals

This expansive description critically permits sundry natural phenomena to be conceptualized in com-

plex systems terms, as has been increasingly done in the field of neurocognitive science and research

on both putatively typical cognition and that defined or diagnosed as pathological. Moreover, not

only mental disorders and their causes and symptoms, but their specific intensive milieu and all its

idiosyncrasies, along with how they relate to other mental disorders and nonpsychological illnesses,

and all of the above as they interface with environmentally relevant social interactions, institutional

experiences with healthcare and education, natural histories, subjective experiences, and more, can

be assimilated into a given complex systems model of a diagnostic category writ large. For exam-

ple, it has been noted that “[h]eterogeneity is major feature of autistic disorder. This means that

nonlinear, complex, dynamic relationships govern the disorder, since plenty of factors have been

no[?] collectively, unpredictably implicated in its aetiology, pathogenesis, phenotypic expression and

prognosis. Subsequently, principles from complex-dynamic systems theory could contribute to un-

derstand such a multidimentional disease [193, p. 2]. ” This quotation should be considered while
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noting that the “dynamical model” eventually formulated in this thesis is an abstraction of only a

very small subset of phenomena that could be abstracted from the proffered list of nonlinear com-

ponent systems, comprising substantially phenotypic expression, with further categorical overlap

between the formulated model and above-listed possibilities being marginal or nominal. However,

the point of merit is that substantial complexity of the stated kind is suited to meaningful analysis

after drastic dimensional reduction without seriously compromising the elucidated behavior of the

underlying “real world” system. Dynamical systems approaches can also be in terms of spatial,

temporal, and spatiotemporal relationships in the brain, with a parcellation into a core—periphery

spatial scheme proffering a hypothesized avenue for finding significant differences in dynamical be-

havior of brains of individuals with ASD [194]. Information theoretic measures, too, given their

intrinsic nonlinearity, fall under the umbrella of complex systems approaches, and have recently and

substantially been employed in neurocognitive ASD research [195], utilizing, as the present study,

the ABIDE database and CONN functional connectivity toolbox. But, beyond these studies and

their varying levels of analogy to the present thesis, more ambitious complex systems analytical

approaches to ASD and its sociocultural context have begun appearing [196]. In the particular case

cited, cognitive flexibility, related to executive function and underlying aspects of it, was evaluated

in terms of its complex, time-dependent nonlinear relationship to the real sociocultural milieu in

which individuals with ASD diagnoses find themselves, revealing, for example, that bilingualism

may grant some protective effects against ASD-associated deficits in cognitive flexibility. These and

other society-scale phenomena fall squarely within the theoretical purview, if not yet always the

methodological scrutability, of the complex systems approach.

“Complexity” also can be conceived in the more common sense of “intricacy,” and intricate sys-

tems tend to be complex, as many in nature so far studied have shown. Complexity, for example, is

not just a property that the brain exhibits in its hierarchical organization and functioning, but one

that is in fact desirable, in terms of the selective advantage it imparts on organisms possessing com-

plex brains, and in terms of metabolic and computational efficiency. [197], for example, referencing

[198], notes “a quantitative measure of complexity has been proposed as a measure of consciousness

and brain binding (p. 13).” This is because increasing complexity is an intrinsic consequence of si-

multaneously increasing functional diversity and efficiency in a given domain with a fixed substrate,

in this case, a fixed neuronal mass. Neural organization is a problem of optimization rather than

maximization. Neurons possess certain common characteristics that enable their integration into

functional subunits at dramatically different scales, and by this capacity, combined with manifoldly

complex interactions across time, space, and between hierarchical levels of processing, the brain is
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also said to be self-organizing, an intrinsic result of its complex dynamical behavior. That is, to put

it succinctly—

High values of complexity correspond to an optimal synthesis of functional specialization

and functional integration within a system. This is clearly the case for systems like the

brain—different areas and different neurons do different things (they are differentiated)

at the same time they interact to give rise to a unified conscious scene and to unify

behaviors (they are integrated) ([197, p. 13]).

Metastability, a property of complex dynamical systems, is the tendency to fall into regimes

of various configurations of elements that lead to transiently stable states on, in this case, the

biologically relevant timescales. Changes between such regimes are characterized by dynamic self-

reorganization of the system subcomponent behaviors and the interactions between them in state

space. This too, it has become increasingly clear in recent years and decades, is utterly fundamental

to the functioning of the brain [199]. Metastability is a primary, and potentially the primary, nature

of the behavior of the brain. Hence, identifiable transitions in dynamic behavior associated with

repetitive behavior intensity in a hypothesized brain network identified via resting state functional

connectivity analysis will be sought in a time-varying dynamical model of brain activation in various

interconnected functional subnetworks in response to external stimuli in section 3.7; there is a long

precedence of modeling the dynamical behavior and stable and transitional states of ensembles of

neural masses analytically [200], of which functional ROIs and networks/subnetworks are a particular

conceptual form.

1.5.1 Brain dynamics and ASD

The ultimate nature and purpose of brain networks is transaction of information [172]. Information

processing in biological systems has been rigorously defined [201] and therefore lends itself to investi-

gational techniques that assess brain dynamics in terms of underlying information processing activity.

Information does not need to be complicated to undergo complex processing, and this fact is taken

advantage of in section 3.7 in which a dynamical model is constructed based on the results (chapter

3) of the brain connectivity analysis that explicitly includes the connectivity values (Pearson corre-

lations) between every pair of significantly connected nodes in the functional network subunits by

constructing parameters from a simple linear combination of every possible path within and between

functional network subunits and using them as coefficients for the model variables in the dynamical

rate equations. Stimulus input to the network, however, is initially modeled as a sine wave, or even,
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in the preliminary assessment of the model’s qualitative behavior, as an arbitrarily varied integer

constant within each model realization representing a fixed stimulus drive. Additionally, rest, used

as the “stimulus” in the present study, is likewise a simple stimulus. Resting state brain activity

can be construed as “noise-driven fluctuations around a state of equilibrium, which corresponds to

a stable fixed point [202, p. 2]” in the dynamic landscape of brain activity. Background “noise”

prevents the total entrenchment of any stable state at rest by proffering continuous perturbation.

The sinusoidal stimulus function in the dynamical model in section 3.7 likewise provides contin-

uously varying, if predictably so, perturbation. In order to more faithfully capture the notion of

“noise driven fluctuations,” however, the sinusoidal model stimulus input is augmented by stochastic

influences modeled in the form of a random walk. Because complex dynamics form the very heart

of the brain’s function as a biological system, they are inescapably imputed in disease states, and

it should be possible to capture such a dynamic relationship via quantitative modeling based on

empirical results, if such results are of true significance to the disorder (and the experimental data

is of sufficient quality and quantity, and the chosen model form is biologically appropriate).

Given the recency of the (actually applied) neurodynamic approach to ASD research, the land-

scape of research results is still relatively sparsely populated; neurodynamics in ASD was “under-

studied [203, p. 2] in 2016. However, work that has been done so far shows the promise of the

approach and the motivation to broaden its deployment; it is especially suited to a systems-level ac-

count of the ASD neurocognitive phenotype, and is also synergistic with the growth in collaborative

neuroimaging databases, which, if they include resting state data, also allows such approaches to be

extended to lower functioning individuals with ASD [204].

Nascent though the application of the approach to ASD research may seem (as may the ap-

plication of even the most orthodox research methods to the neuroscience of ASD given the vicis-

situdes of research on a subject of exuberant interest), robust results have been obtained. Using

an energy-landscape quantitative method on resting-state fMRI data, the brains of subjects with

high-functioning ASD were found to exhibit fewer state transitions than the brains of TD controls

[203]. The intermediate state between transitions was less stable in participants diagnosed with

ASD, resulting in more frequent return to the prior state. Furthermore, IQ in the TD group was

positively correlated with the frequency of transitions, while it was correlated instead with greater

stability in individuals with ASD. This suggests that there may in fact be a unique ASD “cognitive

style” that could perhaps impart benefits in addition to imposing costs in a manner that comports

with the adaptive theory of ASD. The method employed creates an “energy landscape” of different

brain states based on an analogy to the concept of physical potential energy. Complex systems ap-
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proaches are replete with such quantitative abstractions that may elucidate patterns of function of

biological, neurocognitive, psychological, and sociocultural relevance. Information theory generally

is applicable to biological systems as processors of and responders to inputs from the environment,

and complex systems theory generally is applicable to information theory. An information theoretic

metric, paradigmatically a class of fundamentally dynamical, fundamentally complex metrics, infor-

mation gain, also termed relative entropy, calculated at the sensor level for resting-state MEG data

found that the brain activity of subjects diagnosed with ASD in response to stochastic inputs en-

capsulated greater information gain than for TD controls, suggesting that, at rest, the ASD brain is

“noisier,” which the authors go through great pains to emphasize might reflect a cognitive quality of

withdrawal into a personal inner world [202]. Another explicit information metric, active information

storage, was calculated for source-level MEG data from subjects with ASD and TD controls, with

results showing that the brains of individuals with ASD showed activity patterns that were some

combination of less predictable and less dynamically rich than those of TD controls [205]. While

findings so far have been mixed, as has often been the case with any modality employed in ASD

research, even those repeatedly so, graph theoretic models have indicated generally lower modularity

of brain networks with less apparent segregation, consistent with the results of other methods of

connectivity analysis in neuroimaging [204]. The characterization of brain network dynamics lends

itself to cutting-edge analytical techniques as well, such as machine learning algorithms for pattern

classification [204].

The present study will employ traditional analysis of the dynamical trajectories in systems of

differential equations of variables abstracted from neurocognitively-functionally and behaviorally

relevant constructs, such as repetitive behavior and cognitive executive control of compulsive motor

activity. This approach constitutes one to the matter of fMRI’s ponderous rate of data polling in

comparison with the timescales of known physiological mechanisms, electrophysiological oscillations

and neuronal impulse discharge, of neural activity. The relevance of the timescale of brain activity

underlying fMRI has become of increasing interest recently, with techniques such as sliding window

analysis [206, 207] assessing changes in the time course of functional connectivity measures within

a resting state scan session, rather than evaluating time series correlations between operationalized

brain functional parcels across the entire scan duration, thus assigning each such functional or

anatomical division a single, unisolable time series. The conceptual appeal of the elected method

here is that the modeled system is ostensibly independent of temporal scale entirely, although in

actual fact this would require that the functional connectivity measure used, the Pearson correlation

between activation time series in subject fMRI data, itself arises out mechanisms infinitely temporally
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decomposable, when in fact, contrariwise to this postulation, the temporal dynamics underlying rs-

fcMRI measures are known to have underlying neurophysiological mechanisms with which they share

the correspondence to the actual timescales along which such data is collected [208].
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CHAPTER 2

METHODS

2.1 SUBJECTS

Data were acquired from the publicly available ABIDE II dataset ([209], http://fcon_1000.

projects.nitrc.org/indi/abide/abide_I.html) provided by Katholieke Universiteit Leuven

(KUL) [210]. 28 male subjects (22 right-handed, 6 left-handed) aged 18 to 35 years with diag-

noses of autism spectrum disorder were selected from a clinical sample for inclusion in the dataset

at KUL. One participant was excluded from the current analysis for not having complete behavioral

assessments.

The inclusion criteria used by KUL were a DSM-IV-TR diagnosis of ASD, aged in the above

range, and male sex. No control subjects were included. Measures or estimates for IQ, Repetitive

Behavior Scale, Revised (RBS-R) (self-reported, Dutch version), Autism Diagnostic Observation

Schedule—Generic (ADOS-G), and Social Responsiveness Scale, Adult (Dutch version), were col-

lected, and subjects were screened for comorbid psychological conditions. Potential subjects were

excluded based on comorbidity of depression or anxiety, or contraindications for MRI scanning.

2.1.1 Behavioral assessment

Analysis was performed directly with the behavioral data, which were also used in the fMRI connec-

tivity experimental design matrix, as described below. The ADOS-G and RBS-R inventories provide

the measures used for analysis.

Autism Diagnostic Observation Schedule—General

The ADOS-G provides a diagnostic assessment tool for establishing an ASD diagnosis. The DSM 5

provides the current diagnostic criteria for ASD, but the ADOS-G provides a systematic, standard-

ized tool that can be used by clinicians and in research. Scores for the communication, social, and

stereotyped behavior domains, as well as the total (or composite scale) score, are provided for each

subject in the dataset. The social subscale score of the ADOS-G inventory were used to identify

possible correlations between RRBs and social deficits, and the communication ADOS-G subscale
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was likewise used for RRB-language deficit association assessment.

Repetitive Behavior Scale—Revised

The RBS-R provides a behavioral inventory specific to repetitive and stereotypical behavior, the

primary ASD deficit of theoretical interest in this analysis. Subjects were administered the RBS-R

questionnaire by the KUL researchers. Scores were provided for the stereotyped, self-injurious, com-

pulsive, ritualistic, sameness, and restricted subscales, as well as for the composite scale. Measures

from version 6 of the test were used in the present analysis. Scores for one subject are missing in

the dataset, so this subject was excluded from analysis.

2.2 MRI SCANNING AND IMAGE PROCESSING

Scan acquisition was by a 3.0 T Philips scanner with a 32-channel phased-array head coil at KUL.

Anatomical scans were performed first followed by functional scans. Task-related scans followed

resting state scans, but these data are not used in this analysis. Subjects were told to relax, fixate

on a white cross on black background, and to think of nothing in particular.

Anatomical scans used a 3D turbo field echo sequence with T1 = 900 ms, TE = 4.6 ms, TR =

9.4 ms, 182 axial slices, a slice thickness of 1.2 mm, a 250 mm × 250 mm FoV, 208 × 207 acquisition

matrix, and a slice in-place resolution of 1.2 mm × 1.2 mm. Functional scans used an echo planar

sequence with TE = 30 ms, TR = 2500 ms, 45 axial slices, a slice thickness of 2.7 mm, an FoV of

200 mm × 200 mm, 80 × 78 acquisition matrix, and a slice in-place resolution of 2.5 mm × 2.56

mm. 162 measurements were acquired with a total scan time of 420 s.

2.3 DATA ANALYSIS

2.3.1 Regression of behavioral assessments

Subject ADOS-G, social and communication subscale scores, and RBS-R composite scale scores

(RBS-R CSSs) were analyzed using ordinary least squares regression in R in order to assess the

extent to which behavioral measures of one of the core deficits of autism might correlate with

measures of another of the core deficits. Since the present analysis is concerned specifically with

RRBs, given their relative paucity of rsfc-MRI analysis compared to the other core deficits, both

ADOS-G social and communication subscale scores will be regressed on RBS-R CSSs to determine if

repetitive behaviors are behaviorally correlated with the other core deficits within this subject data.
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2.3.2 fMRI data analysis

The CONN connectivity toolbox was used in the MATLAB environment to analyze brain functional

connectivity. The metric used was the bivariate Pearson correlation.

A schematic representation of the rs-fcMRI experimental pipeline and results analysis is shown

in figure 2.1. A summary of the steps taken in the ROI-to-ROI connectivity analysis in CONN is

shown in figure 2.2. A summary of the steps taken in the seed-to-voxel connectivity analysis in CONN

is shown in figure 2.3.

Preprocessing

Processing on the raw dataset as provided consisted only of excluding the most extreme instances of

subject movement from the sample, as reported in the ABIDE II KUL dataset summary information,

so the data were processed using standard MRI preprocessing procedures for the purposes of the

present analysis. Preprocessing was performed in CONN, which utilizes SPM functions to do so, and

consisted of functional realignment and unwarp, slice-timing correction, outlier identification, direct

segmentation and normalization, and functional smoothing, indirect segmentation and normaliza-

tion, and functional/anatomical coregistration. Realignment and unwarp consisted of coregistering

and resampling all scans to the first scan of a session via b-spline interpolation. Next, motion dis-

tortion was estimated and corrected via the derivatives of the deformation field and resampling of

the functional data to match the deformation field. Slice-timing correction accounted for temporal

misalignment between slices in functional image scans. Segmentation and normalization was per-

formed to normalize subject scans to standard MNI space. Functional smoothing was performed

with an 8 mm FWHM Gaussian kernel to increase SNR in the bold data, the default setting in CONN.

Inter-modality coregistration was then performed to co-register functional and anatomical subject

data. CONN’s default denoising pipeline was used. This pipeline consists of linear regression to esti-

mate BOLD signal confounds and the application of a temporal bandpass filter to the data. Signal

components outside of the interval 0.008 ≤ f(Hz) ≤ 0.09, f the frequency in cycles per second, are

filtered, as these arise primarily due to non-BOLD physiological sources, or from subject motion or

other sources of noise. Linear regression then estimates and removes white matter, CSF, and subject

motion signal components.

Connectivity measures

Whole-brain ROI-to-ROI, and seed-to-voxel, connectivity measures associated with subject RBS-R

CSS were calculated in accordance with the procedures given in [211] using default settings except
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where noted.

ROI-to-ROI connectivity Anatomical ROIs were defined using CONN’s combination of the FSL

Harvard-Oxford atlas for bilateral cortical (91 ROIs) and subcortical (15 ROIs) areas; the AAL

atlas for cerebellar areas (26 ROIs), provided with CONN, was excluded in the initial whole-brain

connectivity analysis. Anatomical ROIs used are described in conn/rois/atlas.info in the CONN

toolbox. These ROIs are defined anatomically in MNI152 space. 32 network ROIs are defined “from

CONN’s ICA analyses of HCP dataset (497 subjects),” as described in conn/rois/networks.info.

Brainstem ROIs (comprising a single anatomically defined ROI) were also excluded, and connectivity

between the remaining 137 mapped ROIs was calculated. Subject RBS-R composite scale score was

used in this design as a predictive variable to identify pairs of ROIs with connection strengths

significantly correlated with RRB severity.

Network-level thresholding ROI connectivity data was performed to identify ROIs that were sig-

nificantly connected within the entire calculated ROI network and exclude connections to ROIs not

more significantly connected to the rest of the network than would be predicted by chance (p < 0.05).

A strict uncorrected threshold for connection significance was used in order to identify only those

ROIs of the most plausible significance to RRB severity given the numerosity of statistical com-

parisons inherently performed. The ROI pairs with significant RBS-R CSS-correlated connectivity

values were used as seeds in the subsequent analysis to identify which connections show the strongest

subject RBS-R CSS effects.

Seed-to-voxel connectivity Seed-to-voxel connectivity maps were calculated using ROIs identified

empirically in the previous step. The default significance threshold for random-field theory para-

metric statistics in CONN was used to characterize connections of potential significance to RRBs.

Clusters to which the chosen seeds demonstrated significant RBS-R CSS-correlated connectivity

were recorded along with their MNI coordinates and size in voxels.

Next, two a priori seeds (bilateral nucleus accumbens) were used to assess the level of corre-

spondence with prior literature results for RRB-associated connectivity and confirm the potential

significance, or lack thereof, of seed-based connectivity results calculated using ROIs identified in the

above-described exploratory search as seeds. Two additional a priori seeds (bilateral hippocampi)

were chosen to identify and characterize potential effects arising specifically within the default mode

network due to their dense connections within it.
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Subject-level analysis

Connectivity values were extracted for connections identified as significant in the previous step for

each subject based on the value of the Pearson correlation coefficient between the chosen seed and the

peak voxel of the most significantly connected cluster. Summary subject-level data were represented

graphically to qualitatively assess trends in the data via methods in [212, 213].

In addition to individual subject RBS-R CSSs, subjects were parcellated into high- and low-

RRB severity categories using a binary variable based on a literature threshold of “high” RRB trait

presence [184], corresponding to an RBS-R CSS score of 22. Again, trends in the data associated

with this parcellation scheme were qualitatively assessed.

Regression testing of RRB and connectivity relationships

While qualitative assessment of cortical surface projections did identify several patterns of connec-

tivity that seemed to be plausibly related to RRB severity or category, none was definite enough to

form the basis for a model of the data.

The most salient trend identified in the graphical representation of subject- and group-level data

were an apparent qualitative shift occurring at or near the previously discussed threshold for “high”

RRB severity. The subjects in the “high” RRB category always shared the same sign for their con-

nectivity values for a given connection with all other members of their category. This was not true

for the “low” RRB severity subgroup. In fact, the trend within the “high” RRB group was observed

to no longer hold by the inclusion of the “low” RRB subject with the highest RBS-R CSS score into

the putative “high” RRB group. Hence, a candidate regression analysis approach was devised and

developed in order to determine if this trend in the data could be quantitatively verified relative to

analogously identified patterns arising due to statistical chance. The candidate regression comprised

a (log transformed) linear probability least-squares regression utilizing a statistic calculated as the

product of all connectivity values for a given subject for each connection in order to ensure the

salience of the sign of the connectivity value, and not just its magnitude, in determining the regres-

sion equation’s viability. That is, the sign of a given connectivity value, if inconsistent with the sign

of the subgroup average connectivity value, would lead to an entirely erroneous prediction by deliv-

ering a negative probability estimate. The statistic was thus the pure interaction term between all

candidate regressors (Pearson correlations between pairs of ROIs whose connectivity is significantly

associated with subject RBS-R CSS). As interaction term significance implies the interdependence

between underlying variance of the dependent variable and multiple independent variable observa-

tions simultaneously, and the ROI pairs identified certainly function interdependently in the context
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of the brain, this was chosen as the most constraining straightforward test of underlying ensemble

significance of observed connectivity, both in terms of the risk of regression overspecification, which

is minimized in light of such constraint, and in terms of the risk of identifying spurious correlations,

which is likewise maximally mitigated.

Because of mediation effects (see [214]) due to the correlation between the response variable (RRB

severity category) and the method of deriving the regressor (beginning with subject RBS-R CSSs

in ROI-level exploratory analysis), further mitigation of Type II risk was achieved by implementing

a structurally identical model using separate values for these same measures that were identified

via identical computational steps, but which were statistically independent from the values in the

original model. The independent regression model realization was constructed in order to test the

hypothesis that the original regression equation’s predictive capacity was the result of genuine RRB-

functional connectivity associations, versus the alternative that its predictive capacity arose from the

hyperabundance of possible permutations intrinsic to data of the present capacity and the volume

of empirical search computations, that is, by chance alone due to multiple comparisons effects. The

model was evaluated in light of the results of hypothesis testing of its statistical validity using

methods in [215].

To control for the effects the specific regression equation form might have, additional variations

using standard linear and power regression equation forms were analyzed for fit for both indepen-

dent model derivations, and compared between the real empirical and randomized data realizations.

Step-wise analysis [216] of all five identified significant connections was performed using sequential

replacement to compare the empirically and a priori identified connections in terms of their pre-

dictive power, and to identify which connections independently had the most and least predictive

power for subject RRB classification.

Internal model validity was then evaluated, and distinct regression equation forms compared,

using leave-one-out cross-validation according to the method in [217].
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Figure 2.1: Schematic of connectivity analysis. Based on the hypothesis regard-
ing ASD RRB-associated brain connectivity, RBS-R CSSs were used to identify
connections in whole-brain ROI-based analysis. Significant ROIs identified in
this step were then used as seeds for seed-based metrics, as were a priori seeds
chosen based on existing knowledge regarding RRBs in ASD. Subject-level con-
nectivity values were exported for each significant connection identified in the
seed-based analysis. Regression testing was performed (i) using only the em-
pirically identified connections, (ii) using both the empirical and a priori seeds,
and (iii) based on spurious reassignment of RBS-R CSSs. The empirical and
spurious models, and well as the empirical and full models, were compared to
assess the plausibility of the association between the identified connections and
RRB severity.
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Figure 2.2: Summary of ROI-to-ROI connectivity methods. (a) Subject RBS-R
CSSs as a 2nd-level covariate. (b) Selection of the subject effects. (c) Roi-to-ROI
connection diagram of significant results. (d) Names and statistics for significant
ROIs.
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Figure 2.3: Summary of seed-to-voxel connectivity methods. (a) Subject RBS-R CSSs as a 2nd-level covariate. (b) Selection
of the subject effects and seed ROI. (c) Identification of significant cluster coordinates. (d) Input of the identified coordinates in
MNI space. (e) Display of subject-level connectivity values from the seed to the selected voxel in the cluster. (f) csv-export of
subject-level data.
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2.4 QUALITATIVE CONNECTIVITY PATTERN ASSESSMENT AND HYPO-

THETICAL NETWORK DELINEATION

Using the identified ROIs from either the ROI- or seed-level connectivity analyses, seed-to-whole-

brain connectivity was explored seeking connections with large effects sizes, plausible functional

significance to ASD RRB manifestation in light of prior literature, and functional overlap with the

putative network of until-then identified ROIs. All ROIs identified were used as seeds in turn,

with the prior restriction to cerebral ROIs removed. When a seed chosen in this way exhibited

connectivity with large RBS-R CSS effects sizes to other ROIs, those ROIs too were then used as

seeds. This sequence was performed iteratively with those ROIs most frequently identified forming

the functional “core” of the putative functional network, and peripheral ROIs being evaluated in

terms of connectivity to the core regions. This process resulted in the identification of a densely

functionally connected cerebellar hub, which formed the core of the putative network, and from

which multiple additional ROIs were identified as significantly connected to either the core seed

itself, or to ROIs which were themselves significantly connected to the core.

In constructing a simple graph-theoretic representation of the putative network, cerebellum and

anterior cingulate cortex were identified and placed as functional network hubs that mediated trans-

mission between sensory, default mode, salience, executive, motor, and reward functional network

subdivisions. Subject connectivity (Pearson correlation) values between each network edge we used

to calculate parameter values in the dynamical model whose description follows.

2.5 DYNAMICAL MODELING OF THE PUTATIVE BRAIN NETWORK

Based only on the identified functional connections between ROIs within putative neurocognitive

network functional subdivisions of conjectured significance to the generation, maintenance, or sup-

pression of restrictive and repetitive behaviors in ASD in the connectivity analysis and qualitative

network assessment steps, a three-dimensional system of differential equations will be constructed

to assess how modulations in a stimulus input function, x, to sensory areas of the brain may in turn

modulate the functional activation, y, of connected executive and salience subnetwork regions in the

computed network, and how these in turn modulate repetitive behavior, z, in this case abstracted

as functional activation in parts of the motor subnetwork with relatively direct anatomical routes

to descending motor pathways. For simplicity, the change in the intensity of the time-varying stim-

ulus function will be modeled either as a sinusoid, allowing the manipulation of the initial intensity,

periodicity, and amplitude peaks to affect the dynamical behavior of downstream network subunits,
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in order to effect analytically scrutable spatiotemporal dynamics while attaining threshold physi-

ological plausibility in that the time-varying stimulus signal is functionally realized by changes in

activation in sensory regions of cortex, or, for initial model behavior characterization, as taking a

null value, construing model stimulus input as a constant input or drive to the sensory functional

network subdivision. Dynamic stimulus input will then be considered in terms of model behavioral

regimes induced.

The model will be explored in terms of its a priori utility for realizing dynamic, spontaneous

shifts into new patterns of time-dependent behavior based on simple manipulation of its parameters,

but, necessarily, it will only be regarded as plausibly significant in the real case of RRBs in ASD

if it can successfully generate such dynamical regimes based only on the actual connectivity values

for connections between the identified brain regions, without the introduction or fine-tuning of

extraneous parameters.

To achieve this, changes in cortical activation in response to environmental stimuli will be mod-

eled as the product of the initial sensory subnetwork’s activation and the product of the Pear-

son correlations of all connections between the sensory subnetwork node, the relevant executive

or salience network nodes, and finally, the motor subnetwork nodes, representing behavioral out-

put. Additionally, changes in within-motor-cortex reinforcement activation will be realized via cou-

pling parameters, again the corresponding Pearson correlations and their products between the

relevant nodes, intrinsic to the motor subnetwork and independent of contemporaneous stimulus-

or executive-network-mediated cortical activity, representing motor behavior not in response to the

environment, or, that is, intrinsic, repetitive motor behavior, a proxy for restrictive and repetitive

motor behaviors. These interactions in sum will be abstracted from the several nodes per subnet-

work into three discrete model parameters. The derivation of these parameters is defined in section

3.7, and described and illustrated in more detail in A.2.

Only if the dynamical model so-derived exhibits salient qualitative reorganization of time-

dependent behavior (course of activation extent within the subnetwork regions) using none but

the true subject connection values and group-level averages, and using exactly all of the connection

values within and between each of the relevant subnetworks, can it be said that it plausibly rep-

resents dynamic relationships between brain function connectivity, and only if these patterns can

be quantitatively (statistically) correlated with relevant subject behavioral measures can it be said

that it plausibly represents such dynamic relationships as are relevant to RRB manifestation among

those diagnosed with ASD; in the absence of these observations, irrelevance of the model will be

taken as most probable. The functional—neurophysiologically plausibility of the dynamical model
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will thus be assessed via multiple avenues relevant to establishing confidence in its demonstration of

these two properties:

• The dynamical behavior of the simplest implementation of the model will be ob-

served in response to arbitrary manipulation (not based on any subject data) of

its parameter values to determine whether or not it can demonstrate even trivially

distinct spatiotemporal patterns (e.g., figures 3.29 and 3.31).

• Empirical (subject-derived) parameter values will be substituted into the aforemen-

tioned simple model implementation to determine if its dynamical behavior varies

with measures of RRBs in ways consistent with its conception, that is, if it can

produce abstract output with both a statistically significant and theoretically intel-

ligible relationship to the upstream behavior-measure and brain-connectivity input

it is attempting to operationalize in time (e.g., figures 3.36, 3.37, and 3.38).

• Any statistically significant relationships found in the preceding manner will be as-

sessed for whether or not they also appear when the dynamical model form is sub-

stituted with an analogous, but neurocognitively näıve alternate form that utilizes

all of the same underlying brain connectivity data to calculate its parameters, that

is, it uses the same parameters but the system of differential equations is simplified

to ignore certain hypotheses about the between-subnetwork functional relationships

relevant to RRB manifestation (e.g., table 3.19, figure 3.46).

• General model behavior under more dynamic stimulus input conditions will be qual-

itatively assessed (e.g., figure 3.52).

• Based on the preceding qualitative assessment, dynamic stimulus input will be in-

corporated into a extension of the base model that adds a reactive, nonlinear com-

ponent to the modeled cortical activation. Statistical significance and theoretical

intelligibility of the extended model’s output will be assessed as above (e.g., figure

3.64, table 3.22).

• In addition to the dynamic stimulus and nonlinear reactivity components incor-

porated so far, a stochastic component will be added to the value of the stimu-

lus function at each step and multiple randomized iterations will be computed of

this inclusive dynamical model. Again, model statistical robustness to increased
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complexity, and model neurocognitive and behavioral plausibility and theoretical

intelligibility, will be assessed (e.g., figure 3.75, table 3.25).

• The putative relationship between the extensive dynamical model and ASD symp-

toms, including but not limited to those in the RRB domain, will be assessed syn-

thetically, to generate preliminary conclusions and further hypotheses (table 3.27).

In addition to the results of the dynamic modeling analysis in section 3.7, relevant code examples

and output data tables are given in A.2.
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CHAPTER 3

RESULTS

3.1 ASSESSMENT OF BEHAVIORAL DATA

Mean subject age was 23.57 years at the time of scan with a minimum of 18 and a maximum of 35.

The quartile cutoffs were 19.5, 24, and 25. The standard deviation was 4.85. The two highest ages

were outliers in the dataset, but as age is not a target of analysis, this was tolerated. Mean subject

RBS-R CSS was 11.89 with a minimum of 1 and a maximum of 38. The quartile cutoffs were 4, 6,

and 19. The standard deviation was 11.38. There were no outliers in the RBS-R CSS data. Mean

subject ADOS-G total score was 8.21 with a minimum of 2 and a maximum of 16. The quartile

cutoffs were 6, 8, and 10. The standard deviation was 3.60. There were no outliers in the ADOS-G

total data.

Subject ADOS-G, social subscale scores versus RBS-R composite scores are displayed in figure

3.1, and regression statistics are summarized in table 3.1. For both scales, a higher score indicates

a greater presence of ASD traits. Ordinary least-squares regression finds a significant intercept and

a small and statistically insignificant negative coefficient of the RBS-R composite score regressor.

Regression of ADOS-G communication subscale score on RBS-R composite scale score yielded a

statistically significant small, negative relationship between the variables. Subject values are plotted

in figure 3.2 and the model is summarized in table 3.2.

These results indicate that there does not appear to be a substantial correlation between the

measures for the different core ASD deficits for a subject provided in the KUL dataset, but that

there is plausibly a relationship between the severity of the communication and repetitive behavior

deficits, albeit one that suggests an inverse relationship.
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Figure 3.1: Subject ADOS-G social score plotted as the dependent variable
versus subject RBS-R composite scale score.
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Table 3.1: OLS regression model for ADOS-G social score on RBS-R compos-
ite score. Multiple R2 = 0.03422. The coefficient of RBS-R composite score
is statistically insignificant and the model explains a negligible portion of the
observed relationship.

Estimate Std. error t-value Pr(> |t |)

Intercept 6.35609 0.84290 7.541 6.79e-08***

rbsrtot -0.04864 0.05169 -0.941 0.356
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Figure 3.2: Subject ADOS-G communication score plotted as the dependent
variable versus subject RBS-R composite scale score.
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Table 3.2: OLS regression model for ADOS-G communication score on RBS-R
composite score. Multiple R2 = 0.1855. The coefficient of RBS-R composite
score is significant and negative at p < 0.05.

Estimate Std. error t-value Pr(> |t |)

Intercept 2.82317 0.30292 9.320 1.3e-09***

rbsrtot -0.04432 0.01857 -2.386 0.0249*
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3.2 ROI-TO-ROI CONNECTIVITY RESULTS

Subject data were analyzed to find connections that were significantly correlated with subject RBS-

R composite scale score. Connectivity values are summarized in table 3.3 and figure 3.4. Significant

connections are diagrammed in figure 3.3 and ROI locations and connections are represented in a

glass brain in figure 3.5.

Significant positive connectivity values were found between the left planum temporale and both

the left supplementary motor area (T(25) = 4.01, p = 0.000482) and the salience network, anterior

cingulate cortex (T(25) = 3.88, p = 0.000682). Significant negative connectivity values were found

between the left pars triangularis of the inferior frontal gyrus and the visual occipital network

(T(25) = -4.49, p = 0.000141), and between the right lateral parietal default mode network and the

left anterior division of temporal fusiform cortex (T(25) = -4.29, p = 0.000235). When including

cerebellar ROIs in the connectivity analysis, connectivity between right posterior division of temporal

fusiform cortex and vermis 10 was significantly associated with RBS-R CSS, but this result did not

survive cluster-level thresholding; however, as the qualitative network generation procedure (section

3.6) is contingent on sufficient functional connection overlap between the final set of component

ROIs, and as said functional connections will actually be used to generate parameter values for

an analytically disconnected model system of differential equations representing the time course of

brain activity rather than as entities explicitly conjectured to independently comprise functional and

anatomical units of isolable pathophysiological centrality in ASD RRB manifestation, effects sizes,

rather than particular explicit threshold values of specific statistics, will be the salient quantity in

that procedure, and this observation was therefore recorded.
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Table 3.3: Pearson correlation coefficient values for connections significantly
associated with subject RBS-R composite score, connection threshold 0.001,
cluster threshold 0.05, uncorrected p-values.

ROI Connection T(25) p Mass

L planum temporale 0.018781 31.10

L supplementary motor 4.01 0.000482

Salience network, anterior cingulate 3.88 0.000682

L pars triangularis 0.031518 20.13

Visual network, occipital -4.49 0.000141

R DMN, lateral parietal 0.037730 18.40

L anterior temporal fusiform -4.29 0.000235
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Figure 3.3: Connections for ROI-to-ROI connectivity significantly associated
with subject RBS-R composite score. Significant ROIs, clockwise beginning
from 12 o’clock: left planum temporale; left supplementary motor area; salience
anterior cingulate cortex; left pars triangularis of inferior frontal gyrus; left an-
terior division of temporal fusiform cortex; right default mode network, lateral
parietal; visual occipital cortex.
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Figure 3.4: Connectivity values for RBS-R composite score-associated func-
tional connectivity, connection threshold 0.001, cluster threshold 0.05, uncor-
rected. Two transcortical (one interhemispheric and one from the frontal to
occipital lobes) connections display a significant negative correlation between
their strength and RBS-R CSS. The left planum temporale, in the superior tem-
poral gyrus, displays significantly positively correlated connection strengths to
frontal areas. ROI labels: aTFuscC L: left anterior division of temporal fusiform
cortex; DefaultMode.LP R: right default mode network, lateral parietal; IFG tri
L: left pars triangularis of inferior frontal gyrus; PT L: left planum temporale;
Salience.ACC: salience anterior cingulate cortex; SMA L: left supplementary
motor area; Visual.occipital: visual occipital cortex.
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(a) Lateral (right)

(b) Anterior

(c) Superior

Figure 3.5: Glass brain representation of significantly connected ROIs associ-
ated with RBS-R composite scale score. Note the long range of the two con-
nections with a significant negative correlation with RBS-R CSS: the left pars
triangularis—visual occipital connection spans most of the posterior-anterior
axis of the cerebral hemispheres, and the right DMN—left temporal fusiform
connection prominently crosses the midline, as well as a significant portion of
the superior-inferior axis.
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3.3 SEED-TO-VOXEL CONNECTIVITY RESULTS

Seed-to-voxel connectivity maps were constructed from the significant ROIs found in the empirical

whole-brain ROI-based connectivity analysis. Additionally, seeds in each of the hippocampi and

nucleus accumbens were chosen a priori based on the intrinsic dense connection to the default mode

network and prior literature results implicating them in RRBs, respectively.

The left planum temporale seed displayed significant positively RRB-correlated connectivity to

anterior cingulate cortex and left and right paracingulate gyri, consistent with the connection to

the salience network, ACC portion found in the ROI-level analysis. However, no significant results

were identified for the corresponding salience.ACC seed. Statistics are summarized in table 3.4. A

cortical surface projection of the identified cluster is shown in figure 3.6.

The left pars triangularis seed displayed significant negatively RRB-correlated connectivity to

a cluster comprising parts of right inferior lateral occipital cortex, the right occipital pole, and

right occipital fusiform gyrus. This is consistent with the ROI-based search. In this case, however,

significant negatively RRB-correlated connectivity was found in bidirectional tests, with the seed

placed in the visual occipital network ROI likewise yielding significant results. However, subject-

level analysis did find important differences in the connectivity patterns depending on which ROI

was used as the seed. These differences are demonstrated in section 3.4. Statistics are summarized

in table 3.4. A cortical surface projection of the identified cluster using the pars triangularis seed is

shown in figure 3.7.

The left temporal fusiform seed displayed significant negatively RRB-correlated connectivity to

the right superior lateral occipital cortex, an ROI largely within the right lateral parietal default

mode network ROI. Statistics are summarized in table 3.4, and a cortical surface projection of the

identified cluster is shown in figure 3.8. This connection is consistent with that identified in the

ROI-level analysis. However, no significant connections were found from the right lateral parietal

DMN seed, the paired ROI in the ROI-level analysis.

In addition to the seeds chosen based on the empirical ROI-based analysis results, two seeds were

chosen a priori based on prior literature results of RRB-associated connectivity. The seeds chosen

were in left and right nucleus accumbens. Significant RRB-correlated connections were identified

in a similar manner to above. A significant positively RRB-correlated connection was identified

from left nucleus accumbens to left Brodmann area 6, comprising parts of left pars opercularis, and

precentral and middle frontal gyri, regions adjacent to left pars triangularis. No such connections

were identified from the right nucleus accumbens seed. Statistical results are summarized in table
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3.4, and a cortical surface projection of the significant cluster is shown in figure 3.9.

Because of the widespread connectivity of hippocampus to DMN structures due to the prominent

memory-associated functions within DMN [218] bilateral hippocampus was chosen as a control to

ascertain the extent to which connectivity strength correlations are broadly distributed across DMN-

associated ROIs. Left and right hippocampal seeds were analyzed independently. No significant

RRB-correlated connections were found from either hippocampal seed.
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Figure 3.6: Cortical surface projection of clusters with significant RRB-
correlated connections to left planum temporale using default random field the-
ory parametric statistics settings (voxel p < 0.001, cluster size p−FDR < 0.05).
Consistent with ROI-level analysis, connection strength to portions of cingulate
cortex are significantly positively correlated with RBS-R CSS.

83



Figure 3.7: Cortical surface projection of clusters with significant RRB-
correlated connection to left pars triangularis using default random field theory
parametric statistics settings (voxel p < 0.001, cluster size p−FDR < 0.05). Be-
cause of the lower voxel threshold used to visualize the cortical surface projection,
bilateral occipital cortex connectivity appears as negatively RRB-correlated.
The negative RBS-R CSS correlation in connection strength is consistent with
the ROI-level analysis.
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Figure 3.8: Cortical surface projection of clusters with significant RRB-
correlated connection to left anterior temporal fusiform cortex using default
random field theory parametric statistics settings (voxel p < 0.001, cluster size
p − FDR < 0.05). The right lateral parietal default mode connection demon-
strates significant negative correlation with RBS-R CSS.
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Figure 3.9: Cortical surface projection of clusters with significant RRB-
correlated connection to left nucleus accumbens using default random field the-
ory parametric statistics settings (voxel p < 0.001, cluster size p−FDR < 0.05).
This seed, chosen a priori based on results in the literature, displays statistically
significant, positively RBS-R CSS-correlated connectivity to regions of ipsilat-
eral frontal lobe, confirming the plausibility of the empirically derived seeds used
to this point to identify putatively RRB-associated connections and networks.
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Table 3.4: Seed-to-voxel connectivity statistical summary. Clusters with sig-
nificantly RBS-R CSS-correlated connectivity to the selected seeds are identified
by their MNI coordinates and size in voxels, voxel p < 0.001 uncorrected, cluster
p < 0.05 FWE-corrected. Seeds from which no significant connectivity correla-
tions were identified have dashes for all entries. Note that the p-value for the a
priori left nucleus accumbens seed is bound by the p-values for the empirically
derived seeds, suggesting it is plausible to consider the potential for a real effect
(see section 3.5) of RBS-R CSSs on the connection strengths.

Seed Cluster coordinates Size (voxels) p-FWE

L planum temporale (6, 22, 38) 207 0.010732

L Supplementary motor cortex — — —

Salience network, anterior cingulate — — —

L pars triangularis (32, -88, 8) 323 0.000883

Visual occipital network (-54, 34, 4) 220 0.008410

Right lateral parietal DMN — — —

L anterior temporal fusiform cortex (42, -72, 32) 176 0.020281

L nucleus accumbens (-48, 0, 18) 256 0.001894

R nucleus accumbens — — —

L hippocampus — — —

R hippocampus — — —
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3.4 ANALYSIS OF GROUP- AND SUBJECT-LEVEL CONNECTIVITY DATA

Using a cutoff value of 22 for RBS-R composite scale score, as in [184], separates the highest 5

subject scores (the “high” RRB group) from the other 22 subjects (the “low” RRB group). Taking

the significant seeds with RRB-associated connectivity identified in section 3.3 and summarized in

table 3.4, cortical surface projections were created for the entire subject pool and the high-RRB

category subjects (figure 3.10). Then, the entire-pool connectivity was compared on the cortical

surface to the contrast between entire-pool and high-RRB category connectivity (figure 3.11).

Connectivity from each seed was then individually compared between low-RRB category and

high-RRB category subjects to determine if the baseline putative network including the identified

seeds overlapped significantly in terms of connected ROIs (figure 3.12). For these qualitative repre-

sentations of connectivity and network differences between groups, uncorrected p-values were used

for both voxel- and cluster-level thresholds, with the voxel threshold set between p < 0.01 and

p < 0.05 to generate figures with roughly equal total significant connectivity due to the differences

in sample sizes between low- and high-RRB category groups. The heatmap scale was [-10 20] for all

figures.

Individual subject connectivity values from each significant seed to the voxel coordinates identi-

fied within the most significant cluster identified in table 3.4 were then extracted and are summarized

in figure 3.13.
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(a) All subjects

(b) High-RRB category subjects

Figure 3.10: Cortical surface projection of clusters with significant connectiv-
ity to the significant seeds/ROIs identified in table 3.4, separated into (a) the
average across all subjects and (b) for high-RRB subject. There is significant
negative connectivity to visual cortex in (b) compared with the lack of significant
connectivity to that ROI in (a). This is consistent with the connectivity values
from IFG to visual cortex. Both projections show significant positive connectiv-
ity to portions of left and right angular and supramarginal gyri, corroborating
the overall significance of these ROIs as they comprise the lateral parietal DMN
network ROI.
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(a) All subjects

(b) Contrast between all subjects and high-RRB category subjects

Figure 3.11: Cortical surface projection of clusters with significant connectiv-
ity to the significant seeds/ROIs identified in table 3.4, separated into (a) the
average across all subjects and (b) the contrast between all subjects and high-
RRB subjects. (b) shows the major connections identified in table 3.4, with
endpoints from the seeds located at L PT (+), cingulate cortex (+) L IFG (-),
visual cortex (-), R LP DMN(-), and L SMA (+).
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(a) L planum temporale (b) L pars triangularis

(c) L anterior temporal fusiform cortex (d) Nucleus accumbens

Figure 3.12: Connectivity from significant seeds identified in table 3.4, excluding visual and LP DMN given connectivity overlap
with that depicted, for low- (top row in each pair) and high-RRB category subjects, thresholded qualitatively to show roughly
equivalent total connectivity for each group given subsample size difference.
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Figure 3.13: Plot of each individual subject’s connectivity values from the
significant seeds to the central voxel in each cluster identified in table 3.4. Sub-
jects are arranged in rank-order of ascending RBS-R composite scale score. The
5 highest RBS-R CSS subjects fall into the “high-RRB” category, and always
have the same connectivity value sign for a given connection as all other mem-
bers in the category. This trend no longer holds upon extending the category by
one subject, as the subject with the sixth highest RBS-R CSS demonstrates an
opposed sign for the left anterior temporal fusiform—right lateral parietal DMN
and left nucleus accumbens—frontal lobe connections.
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3.5 REGRESSION ANALYSIS OF FUNCTIONAL CONNECTIVITY RESULTS

The FWE-corrected p-values calculated for cluster size provided in table 3.4 adjust for the many

comparisons that occur between the chosen seed location and all other voxels in the brain (cerebrum,

in this case). However, as four of the five seeds with significant connectivity correlations to RBS-R

CSS were identified empirically, this adjustment undercorrects for the true number of comparisons

performed to arrive at the results. Considering the combined 137 anatomical and network ROIs, a

total of

n(n− 1)

2
=

137(137− 1)

2
= 9, 316 (3.1)

comparisons were performed to identify the initial 7 seeds of which four demonstrated connectivity

significantly correlated with subject RBS-R CSS. While the p-FWE = 0.001894 value calculated for

the left nucleus accumbens seed survives correction for the fact that three other a priori seeds were

tested and found to have no significant connectivity, using the ROI-level results obtained in section

3.2 as seeds in section 3.3, while more precisely characterizing their connectivity patterns, does not

increase confidence in the estimates, which are insignificant at the ROI level after correction for

multiple comparisons.

As discussed in the previous section, and shown in figure 3.13, “high” RRB presence seems to

correlate significantly with both the magnitude and sign of the calculated Pearson correlations for

all five significant ROIs. To ascertain whether the connectivity pattern (figure 3.11) putatively

associated with high-RRB trait presence represents a real effect, log-transformed linear probability

models (that is, functionally, power regression probability models) of subject categorization based

on the identified seeds/ROIs will be constructed, initially excluding the a priori seeds to specifically

determine if the putative empirically derived RRB-connectivity association is of overall significance

or an artifact of the large number of comparisons made to derive it.

In order to capture the postulated qualitative transition in the sign (correlation vs. anticorrela-

tion) of the connectivity values that occurs between the low- and high-RRB conditions, a regression

statistic will be computed by finding the product of the four significant empirically derived con-

nectivity values for each subject, that is, a pure interaction effect term based on subject FC; note

therefore that the model will include only one regressor and no other interaction effects, and is thus

first-order, rather than including any explicit polynomial regressors. This also ensures the regressor

is not biased towards any particular connection.

The initial interaction-term-only regression regresses RRB category, a binary variable, on a

statistic derived from the four significant empirical connectivity values. To test hypotheses about
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the actual relationship between RRB severity category and connectivity patterns, the statistical

comparison used must be independent of subject RBS-R CSS, because RRB categorization is not

independent from RBS-R CSS, the variable with which significant connectivity correlations were

originally identified. Thus, a second regression will be constructed using the same subjects along with

their corresponding rsfMRI data, and the same distribution of RBS-R CSSs, but which is independent

of the actual subject RBS-R CSSs. This will be achieved by reassigning each of the actual RBS-R

CSSs in the dataset to a random subject. Beyond this random reassignment, construction of the

second model is exactly identical to construction of the first: (1) whole-brain ROI-level results will

be used to identify ROIs that may potentially function as seeds that can more fully characterize any

connectivity patterns present in the data, then (2) seed-based connectivity values will be tabulated

from the seeds so identified, then (3) subject-level connectivity values will be extracted for each

significant connection, then (4) subjects will be segregated into low- and high-RRB groups (based on

the randomly reassigned RRB CSSs), and finally, (5) the connectivity values found in step (3) will be

used to construct a statistic that will be used as a regressor in a power-regression probability model

(log—log transformed variables used for ordinary least squares regression of a binary dependent

variable) that attempts to classify subjects according to the parcellation performed in step (4).

This process ensures that regression tests are independent from the self-correlations inherent in

the regression derivations. Additionally, because the same numerical RBS-R CSSs are used, the

data structure is identical in both models, and therefore any significant test results cannot be due

to the structure of the underlying data either.

ROI-level connectivity, analogous to that summarized in table 3.3 and figures 3.3 and 3.4, is

shown in figure 3.14 for the spurious model. The quantity and strength of significant connections is

similar to that found in the original analysis with correctly-matched subject RBS-R CSS data. Seeds

for seed-to-voxel connectivity measures were chosen from among the depicted ROIs, and subject-level

values were extracted for the four most significant connections and used to construct the regressor.

The regression results from both the real and randomly reassigned data are summarized in table

3.5. The regression coefficient and regression as a whole are statistically significant for the empirical

(p = 0.00196), but not for the spurious (p = 0.1722) version. The multiple R2 was 0.3236 for

the empirical and 0.0732 for the spurious regression. A Davidson-MacKinnon J-test found that

the addition of the fitted values from the other regression as a regressor significantly improved the

spurious regression, but did not significantly improve the empirical one (p = 0.002405).

This regression form verifies that the interaction component of the empirical network predicts

RRB category significantly better than if there were no real effects. However, to ascertain if the
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Figure 3.14: Connections associated with randomly reassigned RBS-R CSSs.
Note qualitatively, the number and strength of connection correlations does not
seem substantially distinct from that for the actual data depicted in figure 3.3.
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Table 3.5: Classification model of “high” (value = 1) versus “low” (value = -
1) RBS-R CSS and empirically derived connectivity. (A) The proposed model
based on subject classification and calculated connectivity values to central clus-
ter voxels. (B) The model resulting from the identical method except for random
reassignment of subject RBS-R CSSs. Random reassignment of scores was fol-
lowed by repeating the procedure used in sections 3.2, 3.3, and 3.4 verbatim,
ensuring that H0 (no true relationship) is true in this case. (C) Davidson-
MacKinnon J-test of the non-nested models, showing that actual equivalence of
the models would result in the calculated improvement of the spurious model
that results from the addition of the fitted results from the experimental model
as regressors is expected with p = 0.002405.

(A) Connectivity derived from subject RBS-R CSS

Estimate Std. error t-value Pr(> |t |)

Intercept -0.7553 0.1329 -5.685 6.4e-06***

I(ptl.cing * ifgl.occr * visocc.ifgl * atfuscl.dmnlpr) -89.7425 25.9465 -3.459 0.00196**

R2 = 0.3236, p = 0.001958

(B) Connectivity derived from randomly reassigned (spurious) RBS-R CSSs

Estimate Std. error t-value Pr(> |t |)

Intercept -0.4893 0.1798 -2.721 0.0117*

I(random1 * random2 * random3 * random4) -34.4508 24.5113 -1.406 0.1722

R2 = 0.07323, p = 0.1722

(C) Davidson-MacKinnon J-test of the models

Model 1: hi ∼ I(ptl.cing * ifgl.occr * visocc.ifgl * atfuscl.dmnlpr)

Model 2: hi ∼ I(random1 * random2 * random3 * random4)

Estimate Std. error t-value Pr(> |t |)

M1 + fitted(M2) 0.82838 0.59916 1.3826 0.179529

M2 + fitted(M1) 0.96673 0.28501 3.3919 0.002405**
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full power model, with its concomitantly greater degrees of freedom, erases this advantage, the

process was repeated while allowing the exponent of each individual connection to vary. Results

are summarized in table 3.6. As with the interaction-only regression, a Davidson-MacKinnon J-

test identifies that the empirical regression’s predictions would significantly improve the spurious

regression if added as regressors, but the reverse is not true. Additionally, three of the individual

regressors in the empirical version, but none in the spurious one, are significant.

In order to ensure that the form of the regression equation alone is not responsible for the observed

differences, despite the fact that it is taken to be the most physiologically plausible simple form,

a linear regression where each regressor was term with its own coefficient was constructed for the

empirical and spurious cases. The empirical regression explained more of the variation (R2 = 0.6896

versus 0.5546) and was more significant overall (p = 2.214×10−5 versus 0.0009723), however, a J-test

between the models found the predictions of each significantly improved the other, but with greater

confidence for the predictions of the empirical model (p = 0.0001385) versus those of the spurious

model (p = 0.0286510). Thus, the empirically-derived regression equation in this case, despite not

being taken as equally physiologically plausible to the power-regression and interaction-only forms,

is still superior in the proportion of variance explained and the confidence that the model represents

real effects. These observations are treated synthetically in section 3.7.5.

3.5.1 Comparison between empirical and a priori ROIs

Step-wise analysis of individual regressors in the full power-regression model, including the left nu-

cleus accumbens—left BA6 connection identified a priori, was performed to rank the regressors from

most to least independent predictive power of subject RRB classification. Results are summarized

in table 3.7. Of note is the fact that the first regressor included is for the connection between L tem-

poral fusiform cortex—R angular gyrus, but this connection does not appear in any iteration again

until the last. This implies that this connection contains the most information about subject RRB

classification independently, but also that the information it contains is substantially reproduced

in the other connections. This is consistent with the fact that, in the unrestricted regression, the

estimate for this connection is the least significant. Additionally, the L nucleus accumbens—L BA6

connection is the second to be included in the stepwise analysis, and it remains in all subsequent

iterations, further pointing to the significance of this a priori seed.
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Table 3.6: Classification regression equation utilizing the maximum available
number of DoF using the log-transformed data. Note no spurious regressor is
significant, and three empirical regressors are. A J-test identifies the empirical
model as a significant improvement (p = 2.221× 10−5).

(A) Connectivity derived from subject RBS-R CSS

Estimate Std. error t-value Pr(> |t |)

Intercept 0.16979 0.05375 3.159 0.00455**

logptl 0.78670 0.33628 2.339 0.02880*

logifgl -1.10030 0.39918 -2.756 0.01152*

logvisocc 0.69340 0.48964 1.416 0.17074

logatfuscl -1.10032 0.52910 -2.080 0.04942*

R2 = 0.7223, p = 6.775e-06

(B) Connectivity derived from randomly reassigned (spurious) RBS-R CSSs

Estimate Std. error t-value Pr(> |t |)

Intercept 0.44649 0.09789 4.561 0.000153***

lograndom1 0.56559 0.36675 1.542 0.137295

lograndom2 0.27751 0.22394 1.239 0.228322

lograndom3 0.11948 0.29623 0.403 0.690592

lograndom4 0.22889 0.29955 0.764 0.452926

R2 = 0.4568, p = 0.007313

(C) Davidson-MacKinnon J-test of the models

Model 1: loghi ∼ logptl + logifgl + logvisocc + logatfuscl

Model 2: loghi ∼ lograndom1 + lograndom2 + lograndom3 + lograndom4

Estimate Std. error t-value Pr(> |t |)

M1 + fitted(M2) 0.31339 0.23409 1.3388 0.195

M2 + fitted(M1) 0.94560 0.17435 5.4235 2.221e-05***
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Table 3.7: (A) A regression equation analogous to that in table 3.6 is first
constructed. (B) Then, sequential replacement of the regressors is performed to
compare their predictive ability. The iteration (number of regressors) is listed
along with the combination of regressors (connections) that maximize model
performance.

(A) Full power-regression

Estimate Std. error t-value Pr(> |t |)

Intercept 0.18808 0.04342 4.331 0.000294***

logptl 0.89620 0.27152 3.301 0.003404**

logifgl -1.12158 0.32036 -3.501 0.002127**

logvisocc 0.77782 0.39358 1.976 0.061406.

logatfuscl -0.48354 0.45731 -1.057 0.302356

logaccl 1.07519 0.29629 3.629 0.001572**

R2 = 0.8293, p = 2.035e-07

(B) Step-wise sequential replacement of the power regression regressors

5 Variables (and intercept)

Forced in: NONE

Forced out: NONE

logptl logifgl logvisocc logatfuscl logaccl

*

* *

* * *

* * * *

* * * * *
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3.5.2 Cross-validation of statistical analysis results

The p-values of the individual coefficients and whole regression equations using true subject data

establishes a significant correlation between these variables of interest, and the J-test between the

true-data and randomized-data regression variants establishes that the extent of the observed corre-

lations are extremely unlikely to have occurred by chance alone given the several orders of magnitude

between the test p-values between the two model derivations. Though the regression analysis was

performed to reinforce within-sample result validity rather than to model or predict associations

between brain and RRBs more broadly, the former goal still can be more substantially achieved

concomitant with the ability of the regressions to actually predict subject RRB categorization in

terms of statistical correlation. However, this requires validation against data not included in the

model derivations. In order to effect such an analysis, leave-one-out cross-validation was conducted

for the true-data regression equations according to [217]. Analysis results are summarized in table

3.8.

Important observations are that the interaction-term-only regression equation, consistent with

the significant constraints imposed by the regressor derivation, can explain only just over 20% of the

variance within the left-out observations, and likewise has a very substantial RMSE of 0.97 given

that the entire range of the independent variable is 2 being that it is a contrast variable taking

values of either −1 or 1. Since the original intent of this regression equation form construction was

to minimize explanatory power while still including all empirical connectivity data in at least some

form, these results are not unsurprising, but do provide further impetus for actual physiological and

functional analysis of the connectivity patterns associated with RRB severity in the present data.

Next, the stepwise iteration results likewise confirm that the addition of regressors in successive

iterations improves fit only incrementally with each step. This is consistent with the already noted

fact that the fusiform gyrus—LP DMN connection encapsulates information substantially redundant

with the remaining connections in the power regression model class; between the first and last step,

R2 less than doubles, whereas it more than doubles between the interaction-only and first iteration

stepwise models. By the Pearson correlation (and therefore R2 measure, however, statistical signif-

icance (if only statistical) would appear incontrovertible; in addition to the significant correlations

found with subject RRB-severity subgroup across regression equations for almost all of the condi-

tions using traditional statistical tests, note also the last stepwise iteration does in fact account for a

large percentage (73%) of the variance of the left-out observations with an RMSE of approximately

one-fifth the interaction-only model. This remains consistent with the numerous degrees of freedom

available in the underlying 5-connection model, but does reinforce the conclusion that a network
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of real functional significance might underlie RRB severity, motivating the effort to characterize a

potential form of such network in the next section, given the lack of such an association in the

spurious regression derivation. Additional assessment in the form of leave-one-out cross validation

and nonparametric statistical tests of the regression predictions clarifies the relationship between

RRBs and observed connectivity in this subject sample, but only by affirming further alternative

approaches before even seeking to validate results with external sample data.

Both cross-validation and unrestricted regression predictions are plotted in figures 3.15, 3.16, and

3.17, and in tables 3.9 and 3.10. A summary of both the cross-validation and final power regression

values predicted are shown in tables 3.11 and 3.12. An eclectic set of tests was performed given

the inherent eclecticism in the model derivation and selection process, as dramatically different pre-

cise model outputs in the essential form of power-regression probability model predictions are being

tested both against other model outputs and against binary behavioral data. To assess whether the

regression models were perhaps more closely correlated with one another than any were with the ac-

tual subject RBS-R severity subgroup category data, a suspicion the method confirmed, an omnibus

Hoeffding’s D test was performed across the subject behavioral data and regression predictions in

accordance with [219]. The three tests performed pairwise with cross-validation testing output and

full regression predictions comprised the Pearson test, tau star test [220], and Kallenberg test [221].

Note that the latter two test forms assess observation rank and assume non-atomic variables, that

is, variables like the subject RRB-severity category subgroups which are represented with binary

contrast in this data, though algorithms for each do account for rank ties. Because of extensive

self-correlations in the regression derivation procedure despite independent validation against struc-

turally and procedurally identical models of known insignificance, testing within the data set itself

faces substantial limits. Test results on either side of the standard α threshold p < 0.05 across both

nonparametric tests, and categorical insignificance in the Hoeffding’s D test results, combined with

the ubiquity of subthreshold results from the Pearson correlation test, along with the nature of the

dependent variable (a categorical contrast), all indicate the utility and necessity of other means of

result validation. Thence, a putative fully interconnected functional network will be constructed

based on subject connectivity data, and then used to model time-dependent interactions between

the component ROIs and subnetworks within the putative RRB-associated brain network.
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Table 3.8: Root-mean-squared error, R2, and mean absolute error for (A) the
interaction-term-only regression (table 3.5), (B) the step-wise regressions (table
3.7). The lack of improvement in CV predictions in the step 5 model is consistent
with the high independent predictive ability, but also substantial overlap with
information in other connections, of the DMN—fusiform connection.

(A) Interaction-term-only model

RMSE R2 MAE

Interaction model 0.973959 0.2092279 0.5839706

(B) Step-wise regression models

RMSE R2 LOOCV (full model) MAE

Step I 0.313359 0.4635955 (0.5485105) 0.2459801

Step II 0.2653374 0.6153522 (0.6978974) 0.2238443

Step III 0.2247882 0.7272578 (0.7959384) 0.1876212

Step IV 0.2198303 0.7391625 (0.8202430) 0.1772213

Step V 0.2260756 0.7258793 (0.8293294) 0.1785765
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ID RRB Cmp SI SII SIII SIV SV

1 -1 -0.7379 0.1196 0.135 0.0413 0.0575 0.0709

2 -1 -0.745 0.2726 -0.0066 0.0373 -0.0548 -0.0281

3 -1 -0.6549 0.0673 -0.214 -0.2461 -0.1986 -0.1538

4 -1 -0.7571 -0.0238 -0.2931 -0.1303 -0.036 -0.0266

5 -1 -0.7451 0.254 -0.2092 -0.0323 -0.038 0.0084

6 -1 -0.7514 -0.0761 -0.269 -0.1204 -0.0704 -0.0765

7 -1 -0.6358 -0.202 0.011 -0.2935 -0.4231 -0.4824

8 -1 -0.7169 -0.4378 0.1303 -0.0908 -0.0219 -0.1254

9 -1 -0.7358 -0.0277 -0.1631 -0.1361 -0.0515 -0.0394

10 -1 -0.7446 0.3766 -0.0714 -0.0982 -0.1427 -0.0755

11 -1 -0.7469 0.1627 0.3636 0.1393 0.1376 0.1272

12 -1 -0.7802 0.0469 0.2696 0.0713 0.1612 0.1648

13 -1 -0.7442 -0.0453 -0.0084 0.0768 0.0256 -0.0239

14 -1 -0.7458 0.2286 0.0569 0.2468 0.267 0.292

15 -1 -0.7455 -0.1944 -0.1963 -0.1109 -0.1859 -0.2946

16 -1 -0.7515 0.1842 0.2034 0.0904 0.1654 0.1964

17 -1 -0.7534 -0.0196 0.4063 0.3319 0.489 0.4606

18 -1 -0.7451 0.2264 -0.0508 0.0563 -0.0333 -0.0265

19 -1 -0.7461 0.5246 0.3568 0.3065 0.2454 0.3065

20 -1 -0.7452 -0.1127 0.2384 0.1987 0.1612 0.096

21 -1 -0.7792 0.6285 0.4366 0.2804 0.1296 0.2206

22 -1 -0.7519 0.1149 0.3649 0.3741 0.3457 0.3102

23 1 -0.7282 0.6422 0.7001 0.6838 0.7242 0.7572

24 1 -0.7179 0.718 0.6982 0.7599 0.852 0.9089

25 1 -0.8209 0.3021 0.628 0.6678 0.7212 0.6651

26 1 4.7043 0.7264 0.8154 1.4004 1.3175 1.244

27 1 -0.0561 0.8104 1.0631 1.0295 0.9733 0.9944

Table 3.9: Calculated predictions of subject RRB severity category, that is,
estimates of the probability a subject would belong to a given class RRB-severity
category group on the stepwise and composite (interaction term) regressions
developed when observations are excluded one at a time. Final power regression
prediction values are given in table 3.10.
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Figure 3.15: Graph of the leave-one-out cross-validation predicted values of
the composite, and all five stepwise regression iterations, color mapped from red
to cyan, of subject RBS-R severity category.
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Figure 3.16: Graph of the leave-one-out cross-validation predicted values of
the composite, and all five stepwise regression iterations, red, and final power
regression model predicted values of the composite, and all five stepwise regres-
sion step models, cyan, of subject RBS-R severity category. Contrast this with
figure 3.15; all of the predicted values plotted in figure 3.15, that is, those gen-
erated in the LOOCV calculation, are red in this graph. Final power regression,
or essentially, log-transformed variable linear probability estimate, predictions
are cyan, for ease of comparison of the difference in predictive ability between
the full-power power regression and that in estimating an excluded element.
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Figure 3.17: Direct within-model comparison of LOOCV predictions (red) and
those based on the full data set (cyan), for the composite (or interaction) and
all five stepwise regression iterations.
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ID RRB Cmp SI SII SIII SIV SV

1 -1 -0.7483 0.1149 0.1273 0.0383 0.0531 0.0653

2 -1 -0.7552 0.2622 -0.0062 0.0350 -0.0482 -0.0243

3 -1 -0.6677 0.0643 -0.1891 -0.2170 -0.1718 -0.1257

4 -1 -0.7670 -0.0224 -0.2594 -0.1093 -0.0282 -0.0208

5 -1 -0.7553 0.2444 -0.1906 -0.0276 -0.0325 0.0069

6 -1 -0.7614 -0.0711 -0.2334 -0.1000 -0.0574 -0.0623

7 -1 -0.6493 -0.1833 0.0103 -0.2386 -0.3203 -0.3533

8 -1 -0.7279 -0.3685 0.1250 -0.0793 -0.0184 -0.0908

9 -1 -0.7462 -0.0262 -0.1493 -0.1243 -0.0443 -0.0338

10 -1 -0.7548 0.3592 -0.0646 -0.0887 -0.1272 -0.0595

11 -1 -0.7570 0.1566 0.2002 0.0720 0.0710 0.0656

12 -1 -0.7894 0.0447 0.2590 0.0628 0.1350 0.1379

13 -1 -0.7545 -0.0426 -0.0078 0.0705 0.0231 -0.0205

14 -1 -0.7560 0.2201 0.0459 0.1885 0.2034 0.2206

15 -1 -0.7557 -0.1768 -0.1657 -0.0923 -0.1497 -0.2118

16 -1 -0.7615 0.1773 0.1952 0.0844 0.1488 0.1738

17 -1 -0.7633 -0.0185 0.3869 0.3122 0.4159 0.3699

18 -1 -0.7553 0.2180 -0.0472 0.0512 -0.0285 -0.0227

19 -1 -0.7563 0.4893 0.3369 0.2879 0.2214 0.2640

20 -1 -0.7554 -0.1046 0.2208 0.1834 0.1470 0.0770

21 -1 -0.7884 0.5734 0.4112 0.2488 0.0864 0.1352

22 -1 -0.7619 0.1103 0.3467 0.3554 0.3259 0.2732

23 1 -0.6638 0.7010 0.7497 0.7356 0.7761 0.8177

24 1 -0.6541 0.7788 0.7492 0.8052 0.9060 0.9654

25 1 -0.7486 0.3368 0.7038 0.7383 0.7920 0.7579

26 1 1.4702 0.7872 0.8656 1.2529 1.2066 1.1646

27 1 0.0853 0.8683 1.0723 1.0475 1.0075 1.0234

Table 3.10: Calculated predictions of subject RRB severity category, that is,
estimates of the probability a subject would belong to a given RRB-severity cat-
egory group based on the stepwise and composite (interaction term) regression
forms developed when all observations are included.
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RRB Cmp SIc SIIc SIIIc SIVc SVc Cmp SI SII SIII SIV SV

RRB N/A 1 0.264 0.164 0.164 0.164 0.164 1 0.264 0.164 0.164 0.164 0.164

Cmpc 1 N/A 0.247 0.158 0.268 0.311 0.033 0 0.247 0.158 0.268 0.311 0.033

S1c 0.264 0.247 N/A 0.003 0.001 0.003 0 0.247 0 0.003 0.001 0.003 0

S2c 0.164 0.158 0.003 N/A 0 0 0 0.158 0.003 0 0 0 0

S3c 0.164 0.268 0.001 0 N/A 0 0 0.268 0.001 0 0 0 0

S4c 0.164 0.311 0.003 0 0 N/A 0 0.311 0.003 0 0 0 0

S5c 0.164 0.033 0 0 0 0 N/A 0.033 0 0 0 0 0

Cmp 1 0 0.247 0.158 0.268 0.311 0.033 N/A 0.247 0.158 0.268 0.311 0.033

S1 0.264 0.247 0 0.003 0.001 0.003 0 0.247 N/A 0.003 0.001 0.003 0

S2 0.164 0.158 0.003 0 0 0 0 0.158 0.003 N/A 0 0 0

S3 0.164 0.268 0.001 0 0 0 0 0.268 0.001 0 N/A 0 0

S4 0.164 0.311 0.003 0 0 0 0 0.311 0.003 0 0 N/A 0

S5 0.164 0.033 0 0 0 0 0 0.033 0 0 0 0 N/A

Table 3.11: Matrix of p−values from Hoeffding’s D statistic. The purpose of employing a test based on this statistic here is to
determine if the low-high transition in RRB subject category is associated with a corresponding clear shift in the predicted values
between closer to -1 and closer to 1 as well. Additionally, if the modeled values were poor at capturing the transition itself due
to excessive linearity, this would be compounded by the fact the various predictions would still likely correlate with one another,
exactly as seen here, due to the very same relatively uniform fluctuations. These data suggest that the modeled RRB severity
category does not track the actual data closely, although as table 3.12 shows below, the “classical” correlation is still strong.

108



Cmp SI SII SIII SIV SV

Tau-star (CV) 0.055167 0.000577 0.000197 0.000197 0.000181

Tau-star (FM) 0.001659 0.000577 0.000197 0.000197 0.000197

Kallenberg (CV) 0.078892 0.001800 0.000700 0.001000 0.000900

Kallenberg (FM) 0.007499 0.002500 0.001300 0.000800 0.000500

Pearson (CV) 0.016444 0.0000925 0.00000128 1.61E-08 9.18E-09

Pearson (FM) 0.001958 0.00000998 5.91E-08 4.12E-10 8.34E-11

Table 3.12: Multiple statistical tests with the potential to provide further
novel information about the cross-validation process, and more importantly, the
ultimate relationship of the observed correlation between the behavioral mea-
sure RBS-R CSS and the brain connectivity patterns identified in the subject
population. As expected, despite the dual transformations of the data being cor-
related, Pearson correlation (last two rows) suggests significance of both every
cross-validation derived prediction of RRB severity category and every final re-
gression prediction. In general, these statistics show much greater significance of
the regression predictions overall, but notably, both the Tau-star and Kallenberg
test identify an insignificant relationship between the cross-validation derived,
but not final regression model, predictions of subject RRB-severity category
subgroup with the composite (or interaction-effect only) model form. While
none of the individual regressions, and least of all the composite regression,
were formulated to actually capture extra-sample associations in the population
between RRB severity and brain connectivity (the dynamical model developed
later does this), the specific insignificance of only the values derived during the
cross-validation step demonstrates that at least that model form does demon-
strate a high liability for a lack of generalizability. Of course, this is not the case
with the regression forms that were much freer to vary, albeit even in those cases,
the correlations were stronger between the predictions of the various regressions
with one another (table 3.11) than between any set of predictions and the actual
subject data.
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3.5.3 Summary of regression analysis

Importantly, both the empirical and spurious regression equations were equally prone to overfitting

their underlying data, in that the true RBS-R CSSs were used indirectly to predict the true RRB-

severity category in the empirical realization, and the randomly reassigned RBS-R CSSs were used

indirectly to predict the RRB-severity category associated with the randomly assigned score. There-

fore, if there were no significant relationship between RRB severity and the empirically determined

brain connectivity pattern, each analogous regression pair would be equally good at fitting its own

data. The fact that each empirical (true-value) regression was both significant when considered in

isolation, and a significantly better predictor of its own underlying data than the spurious model,

allows the rejection of the statistical hypothesis that there is no relationship between RRB-severity

category and brain connectivity.

While regression on individual connections actually tends to increase regression significance and

fit, this is the expected result given the ROI search and connection identification process; the

interaction-term-only regression was chosen for its ability to discern the presence of the postu-

lated strong relationship between high RRB severity categorization and predictability of the overall

connectivity pattern, should discrete patterns be discernible, while minimizing the total number of

degrees of freedom.

Further pointing to the real significance of the identified suite of connections, none of the in-

dividual regressor estimates was significant in table 3.6 for the randomized data regression, while

three of the empirical regression coefficients were significant for the empirical model. Additionally,

the empirical regression was once again a statistically significant improvement over the randomized

data regression.

Step-wise testing of the four empirical and one a priori seed verified that the a priori seed seemed

to be of comparable or better ability in predicting subject RRB classification independently, being

the second term to be included in the regression iteration. The single best predictor, however, was

the L fusiform—R default mode/angular gyrus connection.

Leave-one-out cross-validation suggested several properties of the ensemble of connectivity pat-

terns and, therefore, the putative network which in part comprises them:

• The interaction-term-only regression yields large prediction errors and a relatively low pro-

portion of variance in the excluded observations and therefore the connections seem likely to

constitute parts of functionally distinct subnetworks rather than a monolithic brain network

with a single pattern of functional connectivity changes associated with RRB severity.
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• Stepwise iteration revealed the step I regression equation substantially improved upon the

predictive power of the interaction-term-only model suggesting that individual connectivity

values do, conversely, vary relatively predictably with subject RRB-severity category.

• Likewise, the final (5-connection) iteration explained a substantial portion of the variance in

the excluded observations with an RMSE not significantly larger than a tenth of the overall

parameter space of the independent variable, which suggests the identified empirical and a

priori connections do potentially substantially underlie a putative functional network whose

behavior is altered in the presence of severe RRBs.

A putative whole-brain functional network will thence be specified via search of the largest effect

sizes of putatively within-network connections starting with the so-far identified ROIs in terms of

connection topology consistent with these observed features:

• Altered primary sensory, specifically visual, functional connectivity

• Altered DMN—sensory association functional connectivity

• Altered anterior cingulate salience network—sensory and association functional connectivity

• Involvement of both primary and supplementary motor cortex in the generation of motor RRBs

• Significant influence of striatal reward reinforcement on putative motor cortex activation

• Alterations to frontal executive influence on frontal motor areas

3.6 SYNTHESIS OF FUNCTIONAL CONNECTIVITY DATA INTO HYPOTHET-

ICAL NETWORK

The connections, and the network they putatively form, identified and assessed via regression test-

ing in the previous section, establish confidence in the behavior-neurocognition relationship in the

present subject data between RRBs and brain connectivity. While the relationship appears to be

one of clear statistical significance, the actual form of the dynamic relationship that mediates the

functional, neurocognitive, behavioral, and symptomatological aspects of ASD RRBs remains un-

established in light of this result alone.

To competently generate hypotheses of potential behavioral significance to the experience of

RRBs in ASD, both by those with the disorder and those with whom they interact, as well as

to potential future clinical developments when considered in full view of all the available evidence

on ASD RRBs, such a dynamic relationship must at least be postulated and demonstrated to be
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successful at dynamically mediating, at the very least, the relationship between abstracted measures

in the neurocognitive and behavioral domains. Before attempting to construct such a model in

analytical form, an initially qualitative assessment of the functional relationship between the nodes

of the putative network will be undertaken. Those ROIs which were removed in the network-

level and multiple-comparisons-associated thresholding in previous steps will be considered here, as

they can potentially be of modeling utility by providing edges between nodes in the network that

allow access between ROIs with known functional relationships without taking a circuitous route

through functionally unspecific areas of cortex, and, ideally, in the identification of functional hubs

densely connected to distributed network functional subunits. As well, ROIs in cerebellum and the

brain stem will be tested for connectivity to the seed ROIs already identified. As calculations in the

dynamical modeling step will use actual subject-level connectivity values for all included connections,

significance levels for the individual connections are not meaningful, but rather the functional-

topological layout represented by the chosen connections, and therefore the calculated significance

of the model’s output, determines the plausibility of the chosen connections in the aggregate; the

success of the model in abstracting RRBs in terms of dynamic brain behavior thus determines their

aggregate significance. While both the explicit model form and functional connectivity values are of

intrinsic importance to the model behavior, the model form specifically can construe the functional

connectivity values in ways that result in arbitrary correlation between model abstract numerical

output and subject RBS-R CSS, or any other set of values. Hence, simplicity and functional and

neurophysiological plausibility will be the objects of chief pursuit.

The initial ROIs and nodes are represented in figure 3.18. The relationship between functional

network subcomponents may be more easily visualized by splitting the network into negatives- and

positively-RRB associated connections, as shown in figures 3.19 and 3.20.

Proceeding in this manner, and further investigating seeds of potential significance as nodes in

the inclusive network as those to which the already-identified ROI seeds displayed significant con-

nectivity when thresholded as above, reveals the extremely dense connections between combined left

cerebellar area 8 and vermis area 10, and the majority of salience/executive and motor nodes in those

respective functional subnetworks. Hence, a topological arrangement of the nodes and connections

will be constructed as in figure 3.21. Specific connections from which the model was constructed

are given in table 3.13. Note that anterior cingulate, a substantial part of the salience detection

network, provides another, though less profusely connected, node that can potentially accommodate

the dynamic mediation of activity between subnetwork subcomponent ROIs. This arrangement of

nodes and their connections will be used in the model construction carried out in section 3.7, which
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asserts the functional significance of both ACC and cerebellum as trans-network hubs that mediate

communication between motor/reward and sensory/integration/executive subnetworks. Represen-

tation of putative hub connectivity on the cortical surface is provided by figures 3.6.1, 3.6.1, 3.6.1,

and 3.6.1, with commentary given in figure 3.26.

The functional divisions within the network mirror aspects of those in [127], with salience, exec-

utive control (cognitive control), attention (here, sensory input, as most identified sensory areas are

association), and reward (reward processing) functional network subdivisions being here suggested.

In the former case, network functional topology was derived from task-based contrasts across a large

number of fMRI activation studies primarily. Known behavior of the salience network implicates

it in mediation via reciprocal inhibition, or, in other words, functional selection between, default

mode and executive networks [222]. While no direct anterior cingulate—prefrontal connection was

identified as significantly associated with RRB severity herein, the shortest path between the func-

tional components via cerebellum results in the expected behavior via interaction effects: In the

absence of other influences (physiologically unrealistic, but consistent with the interpretation of

Pearson correlation and valid in the context of simultaneous functionally specific interdependence

across all functional subdivisions in the network as will be modeled), increased anterior cingulate

activation results in decreased DMN activation, and vice-versa (and also in both directions absent

other information because Pearson correlations are undirected).

3.6.1 Interpretation and significance of network topology

Although amygdala in the proposed functional network topology is otherwise to the cerebellum

functionally disconnected from the rest of the network, its established significance both in ASD

pathophysiology, along multiple dimensions, and in the early history of neuroanatomical and neu-

rophysiological research into the disorder, merits its mention. Decreased amygdalocortical effective

connectivity involving medial prefrontal cortex has been associated with social deficits in ASD [39].

Considering the proxy effect on motor subnetwork activation in the absence of other effects, the sign

of the interaction effect (product of the Pearson correlations) between amygdala and either supple-

mentary motor area or precentral gyrus, would be positive, implying (weak) functional coactivation.

Likewise, the signs of the interactions between amygdala and anterior cingulate, and between amyg-

dala and DMN, would be positive and negative respectively, which presents a functionally plausible

picture in which amygdalar activation results in suppression of default network activity, activation of

the salience network, and, plausibly, eliciting of motoric response. While not actually realized given

the resting state cognitive condition for the subjects, the network functional topology as explicated is
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consisted with such functional behavior. As time-dependent activity within component subnetworks

is to be modeled, it is this type of functional relationship that is of initial interest. Cerebellum,

however, is the central (functionally, and not just in the diagram) feature of the functional network

arrangement.

While relatively few uncontestably “motor” ROIs were identified in the network extension search

analysis, consistent, perhaps, with the fact that substantially motor cortex would have little prac-

tical importance, and indeed, would be according to the typical subject instructions deliberately

suppressed, alterations in motorically engaged brain connections and function have recently emerged

as mechanisms potentially fundamental to ASD pathophysiology [223]. This postulated mechanism

explicitly includes alterations in corticocerebellar motor circuits, involved in coordination, motor

planning, and cognitive control of motor function, which comprise an important, though far from

exclusive, functionally significant role of cerebellum [223]. Cerebellum—inferior parietal lobule con-

nectivity was identified as functionally associated with RRB severity as well, as is the case here with

respect to labeled “DMN” functional subunit which consists essentially of portions of right inferior

parietal lobule and is herein implicated in RRB-severity-associated connectivity with the putative

cerebellar hub. Cerebellum itself, though with profuse functional connectivity to other divisions

of cerebrum, and with therefore concomitant functional roles, does nevertheless display aspects of

topographic functional organization with respect to spatioanatomical distribution of skeletal mus-

cle, as does primary motor cortex. In fact, somatomototopic functional organization along primary

somatosensory and motor cortex is represented in a corresponding somatomototopic map in con-

tralateral anterior lobe of cerebellum, affirming the significance of the motor functional division of

cerebellum [224]. Retinotopic functional maps, too, have been identified within cerebellar cortex.

Finally, discharge of neurons in cerebellum of the bat, to whom auditory stimuli are of particular

importance, has been identified via single-unit recordings [225], establishing a cerebellar role in all

primary non-chemoceptive senses at least in addition to cerebellum’s unisolable functional inter-

connection with association cortex and basal cerebral nuclei. Yet further evidence for cerebellum’s

diverse role comes in the specificity of cerebellar dysplasias in different regions of cerebellum and

their associated cognitive deficits which imply a spatial organization that likewise includes functional

maps of frontal (lobules VI and VII of the posterior lobe) and limbic (posterior vermis) cortical areas

[226]. These features, in sum, correspond closely to cerebellum’s functional connectivity with neocor-

tex: Closed-loop functional connections between cerebellar output nuclei and cortex-wide functional

divisions are arranged spatially within those nuclei and allow reciprocal influence between cerebel-

lum and neocortex [227]. This all despite a general conception over two centuries of functional
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neuroanatomy that cerebellum was primarily, or indeed, exclusively, motor, too must be added to

direct implication in various cognitive processes known now for decades, for example, selective atten-

tion [228]. The observed interconnection between the putative cerebellar hub and salience, default

mode, limbic, and sensory association cortex clearly provides avenues along which such a cerebellar

role may proceed. The repeated implication of cerebellum in ASD pathophysiology across diverse

experimental paradigms is the most salient functional significance here, and this agreed-upon role

tends to render as plausible one significant aspect of the network topology: the dense cerebrocerebel-

lar connectivity. Four decades have passed since an anatomical association between vermal volume

and ASD was identified [87], although hypoplasia was observed in lobules VI and VII contrary to

the functional connectivity in cerebellum X identified herein. The finding, though, as stated, was

anatomical, but, as the generative process underlying the hypothesized network arrangement was

constructed in terms of postulated target regions, starting with the ROIs identified in the func-

tional connectivity analysis step, no assertion whatsoever is made that the hypothesized network

is wholly or even remotely substantially a significant component of any putative RRB-associated

brain network in any estimable proportion, but only that it does encapsulate and mediate a specific,

identifiable functional role. Therefore, it is asserted that the network will, in light of the functional

relationships between the regions known and the connectivity values identified for the connections,

underlie dynamical behavioral that can be modeled and assessed for at least statistical plausibility

in RRB pathophysiology.

Summary of cerebellar significance to the network and its modeled dynamical behavior merits

nuance, beginning even with its general structure and function. Succinct and thorough summaries

of cerebellar anatomy informing the relevant discussion in this thesis include [229, 230], though note

these sources are approximately two decades old. Of the most direct relevance to this thesis, cerebel-

lar functional connectivity and significance in cognition, including executive control, attention, and

motoric behavior, relevant to this RRBs in ASD, have been recently and thoroughly summarized

in [231], the latter extensively consulted for the proceeding discussion. At the most fundamental

level, the general functional scheme of cerebellum is one of motoric and somatotopic representation

in anterior lobe and cognitive representation in posterior lobe, with complete topographic maps for

each present. [232]. Thus, interpretation can be within the universe of the posited putative func-

tional RRB-associated network that includes cerebellum, functional significance in actual brains

given the same connectivity patterns to and from cerebellum, correspondence to prior results, and

so on. As a first-pass assessment of the bald feasibility of integration into known results, several

confirmatory observations are made: Cerebellum has significant functional connectivity to networks

115



significant in the resting state, these comprising at least the default mode network, salience network,

and frontal-control (executive) networks [233]. As noted, motor cortex and mototopic representation

in cerebellum is also precisely characterized and renders the two cerebellar connections to putative

motor cortex of at least threshold plausibility. Hence, already, then, the only unaccounted-for cere-

bellar functional connection in the hypothesized network is that to fusiform cortex. Interestingly, but

of unclear, if any in particular, significance, the presently observed increased cerebellum—fusiform

cortex connectivity in association with RBS-R CSS is consistent with likewise increased connectivity

between the structures in posttraumatic stress disorder [234]. In any case, variations in the connec-

tivity values between the structures have been significantly associated with neurocognitive disease

states.

While an inferential assessment when Pearson correlation of BOLD time series is the underlying

measure, in the hypothesized network with the high-RRB connectivity values, cerebellar functional

inhibition of motor cortex is not inconsistent with the popular conception of its role in motor

regulation which is, if not necessarily its primary one, nevertheless, a significant one. However,

while output of cerebellar cortex to deep cerebellar nuclei is inhibitory, deep cerebellar efferents to

thalamus, and hence, to various downstream cortical areas via functional connections, are excitatory

[235]. Therefore, only the general observation of significant functional connectivity, and not its

valence, can be said to reflect a cerebellar—motor functional relationship, not one with direct

relationship to known anatomical tracts and synaptic functions in the various structures along

them. Additionally, as illustrated below (table 3.21), the mirror symmetry of the connectivity value

correlation signs on either side of cerebellum reflect similar, but not identical, results of transduction

of sensory and executive input to motor areas in both low- and high-RRB subcategory subjects.

A broader incorporation of functional roles implicating potential “ground-truth” significance of

the putative cerebellar hub can be had in terms of segregation of cerebral and cerebellar structures in

terms of functional-computational terms. The scheme relevant here is that in which basal ganglia, in

this network represented only by nucleus accumbens, participate in reinforcement learning, cerebral

cortex participates in unsupervised learning, and cerebellum in supervised learning [236]. This

conception suggests that basal ganglia promote actions that conform to those that were in the

past successful in bringing desirable results, that cerebrum performs especially computations on

substantially incomplete or fragmented information, or information of an unfamiliar nature, and

that cerebellum actively assesses the results of undertaken actions and adjusts them on the fly in

order to bring them in conformity with intent (and outcomes also so). Therefore, the form of the

dynamical model shall reflect this by modeling cerebral areas as the primary agent of perturbation
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on the network, while reward and intrinsic reinforcement circuitry promotes gratifying behavior,

here an abstracted representation of repetitive motor behavior, and cerebellum, as its connection

topology suggests, mediates between these influences in terms ultimately determined by its suite of

functional connectivity.

Though supervised learning as a computationally-defined functional role is consistent with cere-

bellum’s anatomy and dynamic in vivo behavior, this influence on behavior includes action more

highly abstracted from “merely” refining motor behavior in real time, as discussed above. A pro-

posed mechanism by which cerebellum performs its functions across cognitive domains and cortical

functional areas despite a manifest uniformity across its cortex is a “cerebellar transform,” “trans-

form” in the sense of an algorithmic computational process that operates on information input

and modifies it for the purpose of returning the information in useful and actionable forms to the

originating cortical area [237]. This proposal squares the functional diversity with the anatomical

uniformity of cerebellum, and functional research on the structure confirms its plausibility across

cognitive domains. For example, cerebellum is proposed to participate in a functional loop in which

planned actions, intended outcomes, and anticipated rewards, all are integrated with the actual

results of behaviors inferred through primary sensory and sensory association areas, all mutually

updated in light of these sensory streams, and hence their specific influence on the “action selection”

role of cerebellum, and hence dynamic cerebellar function, are also both continually updated [238].

This, too, comports to the functional connections identified in the hypothetical network, as relevant

cortical areas (and amygdala, which may be conceived as attaching affective valence to results of

behaviors) are all functionally connected to cerebellum. An additional consistent observation is de-

creased functional connectivity between salience and default mode networks in undiagnosed relatives

of individuals with ADHD diagnoses [239]; this is consistent with the high-RRB functional network

in which, mediated by cerebellum, DMN and anterior cingulate salience components are weakly

inversely connected through their shortest path of functional connections. Also directly related,

while implicating distinct cerebellar divisions (VIIb and VIIIa), the dorsal attention network, over-

lapping in the hypothetical network with the lateral parietal network, is functionally connected to

cerebellum in visual working memory and attention tasks [240]. Also observed in ADHD has been

increased cerebellum—default mode, frontoparietal, dorsal attention, and visual (in the network,

fusiform cortex) network connectivity (consistent with the hypothesized network), and increased

cerebellar-DMN—connectivity to salience network (inconsistent with the hypothesized network in

high-RRB) [241]. While the patterns are not entirely coterminous, they implicate all of the same

functional networks, and more (4) are of the same than opposite (1) valence. This again substan-
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tiates the extensive role of cerebellum in a wide range of disorders (and therefore, their symptoms

across cognitive domains) of a neurodevelopmental nature, an even more significant fact given other

common features across neurodevelopmental disorder symptoms.

Cerebellar connectivity in the hypothetical network functionally both modulates and transduces

signals between subnetworks, establishing a path through which signals from any ROI can affect

that time course of activity in any other ROI. This includes, given the proposed network is not a

full enumeration of functionally significant ASD RRB-associated brain divisions (as that enumer-

ation would simply be the entire brain) and modeled activity must be transmitted along available

paths, communication between sensory, association, default mode, and salience and attention cor-

tical divisions, and subcortical structures, in the model, nucleus accumbens and amygdala, though

the latter is not incorporated into the first-approximation dynamical model in this thesis given its

sparse connectivity to the rest of the network. While not extensively incorporated into the model

in terms of ROI proportion, basal ganglia are of relative functional prominence in the model devel-

oped and evaluated. Functional significance of striatal connectivity identified in the present network

arrangement extends beyond the identification of the single included ROI (nucleus accumbens), not

only because it is of central importance to the modeled network behavior (in the next section), but

because basal ganglia, like cerebellum, and to an extent shared only by cerebellum, present ubiqui-

tous anatomical and functional alterations in ASD, across deficit categories, symptom severity, age,

gender, and most other relevant factors. While the hypothetical functional network constructed in

this section includes nucleus accumbens functional connectivity only to putative motor cortex, it

is modulated dynamically across SMA by PT in the functional model, the most directly associa-

tion cortex—striatum functional relationship in the model, of note since striatum—PT connectivity,

consistent with an observed pattern of general corticostriatal hyperconnectivity, especially involv-

ing association cortex, observed in children diagnosed with ASD via rs-fcMRI [183]. Specifically,

corticostriatal connectivity, when disrupted in mucine knockout models, is associated with substan-

tial and deleterious manifestation of RRB analogs [242]. Given that the cerebellar hub putatively

transduces all signals from the sensory periphery and control networks to motor cortex and limbic

and basal gangliar structures, the two in the model can be accurately conceived as contributing to

a competitive equilibrium based on modeled stimulus input and its propagation via network edges.

The specific hypothesized nature of cerebellar influence on subcortical, as well as motor function,

can be particularized in terms of anatomically and physiologically specific aspects of cerebellar func-

tion. This is a point of theoretical significance given that synthetic view of RRBs with accumulating

evidence is that functionally dysconnectivity between posterior cerebellar (neocerebellar) and basal
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gangliar control circuits [243]. Cerebellum’s centrality to modulation of (modeled, eventually, in this

thesis) cortical activity is its fundamental significance to the hypothetical functional network, and

its manner of effecting this role will be briefly reviewed.

Cytoarchitechtonically, cerebellum engenders highly stereotyped circuit arrangements, with only

a few types of neurons in repetitive arrangements subserving its diverse functions. This architec-

ture is thought to specifically endow cerebellum with its massively parallel processing power [96];

while both cerebrum and cerebellum exhibit ubiquity of function, cerebrum accomplishes its ends

specifically through structural heterogeneity, whereas cerebellum does so through structural homo-

geneity. It appears cerebellum performs the same general processing steps on all inputs, and its

functional generality therefore seems to rest in part on the contemporaneity of, and comparisons

between, its various input streams, i.e., most simply, between intended and actual results of actions,

although “actions” must be construed to comprise a hyperdiversity of cognitive regimes. Through

repeated comparison of cerebral afferent streams, including both sensory and association streams

relevant to the intentions and outcomes of behaviors, cerebellum refines cognitive processing in the

same manner it refines motor execution, both in real time, and through time [100], a role for which

cerebral processing speed is too slow relative to the perception of the consequences of actions, and

the incorporation of those consequences into a continually updated activity plan [238]. The actual

dynamical operation of cerebellum in performing these distributed functions has been conceptual-

ized for some time (1982) as that of an adaptive linear filter that optimizes the final (motor) output

of intentional actions, regardless of the actual nature of the intent (so independent of cognitive do-

main) by means of the optimization of the transfer function between the initial cortical output with

volitional intent and the final signal sent to the peripheral nervous system [244]. Note that this

function cannot be subsumed by cerebrum with equivalent efficacy; it is the massive parallelism of

cerebellum that engenders it with sufficient bandwidth and latency to effect its transfer function.

The signal transduced by cerebellum has been conceptualized both as representing likely sensory

feedback from an action (forward model) and as representing the course of motor behavior required

to effect a desired result [245]. Corroborating this processing behavior and its consequences is that

weaker corticoneocerebellar connectivity has been found to correlate with slower processing speed

in schizophrenia [246]. The conception of cerebellum as mediating between executive and motor

subnetwork function coheres the functional framework of cerebellum elaborated in the dynamical

model. Nearest the observed pattern in cerebellar functional connectivity associated herein with

RRBs is that weaker functional connectivity was also observed between cerebellum and executive

cortical areas in obsessive compulsive disorder [247].

119



From this, cerebellum can be comfortably asserted to subserve executive function generally [248,

249], and its deficits in ASD specifically [81], but beyond this, for the purposes of the present network

model, executive function must be operationally defined; the term “executive function” has been

criticized as underspecific [238], but consistent with the resolution proffered in the cited case, it

is taken here simply to encompass the various cognitive mechanisms that regulate behavior. The

word “regulate” in this case becomes key, and it is taken to mean “to attenuate excessive influences

and potentiate beneficial influences.” Thus, as will be seen, “executive function” is that contrary to

“intrinsic reinforcement function.” This specific generalized conception of executive function is not

wholly inconsistent with alternative schemes positing discrete domains of executive function, such

as set shifting, response inhibition, and working memory (implicated in the executive dysfunction

hypothesis [250]), and it also is compatible with such a scheme as “implicates a broader influence of

[executive function] on the ASD phenotype. These include impacts of [executive function differences]

on social cognition (16, 17), mental health (18), disability (19, 20), and lifelong functioning outcomes

(21). [250, p. 2].”
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Figure 3.18: Schematic representation of all the relevant ROIs and connec-
tions in the putative RRB-associated network, including those that were re-
moved due to network-level thresholding or multiple comparisons corrections in
the ROI- and seed-level connectivity calculations. These are included because
they increase the chances of finding an arrangement of network nodes that can
be straightforwardly dynamically modeled. Network and cognitive-behavioral
functional domains are given along the axes.
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Figure 3.19: Schematic representation of all the negatively RRB-connectivity
correlated connections, representing default mode, sensory, salience, and sensory
areas.
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Figure 3.20: Schematic representation of all the positively RRB-connectivity
correlated connections, representing especially motor and reward regions of the
brain, and other ROIs connected to them as nodes.
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Figure 3.21: Schematic representation of a hypothetical functional network
topology in which cerebellum, as the most densely connected single node, serves
a mediating role between sensory, executive, salience, motor, and reward areas.
This is consistent with its dense anatomical connectivity to disparate areas of
cortex. Anterior cingulate cortex provides an “alternative pathway” for medi-
ation between the subnetworks, albeit much less direct from the perspective of
most pairs of topologically distant nodes.
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Table 3.13: ROI coordinates in hypothetical network from network seeds. Tar-
get voxels were chosen as the voxel within the target ROI with largest effect
sizes from the indicated seed.

Seed Target Coordinates

+AC@rest R occipital (40, -74, 24)

+Accumbens l@rest L precentral (-50, 0, 18)

+Accumbens l@rest L supplementary motor (-12, 8, 52)

+aTFusC l@rest R frontal pole (12, 56, -12)

+aTFusC l@rest R DMN LP (42, -72, 32)

+0.5*Cereb8 l@rest +0.5*Ver10@rest Anterior cingulate (8, 12, 36)

+0.5*Cereb8 l@rest +0.5*Ver10@rest L frontal pole (-24, 44, 26)

+0.5*Cereb8 l@rest +0.5*Ver10@rest R frontal pole (42, 34, -16)

+0.5*Cereb8 l@rest +0.5*Ver10@rest R fusiform (40, -30, -20)

+0.5*Cereb8 l@rest +0.5*Ver10@rest Orbitofrontal (34, 28, -20)

+0.5*Cereb8 l@rest +0.5*Ver10@rest L precentral (-54,-2, 16)

+0.5*Cereb8 l@rest +0.5*Ver10@rest R precentral (58, -2, 32)

+0.5*Cereb8 l@rest +0.5*Ver10@rest L supplementary motor (-10, -2, 58)

+0.5*Cereb8 l@rest +0.5*Ver10@rest R supplementary motor (10,-8,64)

+0.5*Cereb8 r@rest +0.5*Ver10@rest L fusiform (-40, -46, -24)

+DefaultMode.LP r@rest L cerebellum (-24, -62, -46)

+PT l@rest Anterior cingulate (62, 2, 34)

+PT l@rest L supplementary motor (-24, 4, 48)

+pTFusC r@rest R frontal pole (30, 64, -4)

+SMA L@rest L precentral (-62, -4, 24)

+Visual.Occipital@rest L frontal pole (-50, 38, 4)
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Figure 3.22: Results of seed-to-voxel connectivity using bilateral cerebellum XIII and vermis X as seeds to ROIs within the
formalized putative functional network.
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Figure 3.23: Results of seed-to-voxel connectivity using bilateral cerebellum XIII and vermis X as seeds to ROIs within the
formalized putative functional network, high-RRB subject correlation compared to entire subject pool.
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Figure 3.24: Results of seed-to-voxel connectivity using anterior cingulate cortex network and anatomical ROIs as seeds to ROIs
within the formalized putative functional network.
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Figure 3.25: Results of seed-to-voxel connectivity using anterior cingulate cortex network and anatomical ROIs as seeds to ROIs
within the formalized putative functional network, high-RRB subject correlation compared to entire subject pool.
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Figure 3.6.1 shows clear, prominent motor and somatosensory cortex connectivity with cerebellum (XIII L and R and

vermis X) in the pooled subject connectivity data. Negative prefrontal connectivity with cerebellum is also exhibited,

including portions of frontopolar cortex and orbitofrontal cortex, connections identified as positively correlated with

high RRB trait measures. In this vein, lateral parietal DMN—cerebellum connectivity, the former represented roughly

by the location of the angular gyri and parts of supramarginal gyri, is positively associated with high RRB trait measure

and RBS-R CSS, and is clearly negative on average across the subject sample as a whole, although its putative overall

significance is supported given the well-delineated FC relationship for the whole sample across the ROI. Likewise,

connectivity opposite that of the “high-RRB pattern” is observable across the cortical surface from cerebellar hub,

including to anterior cingulate and superior temporal gyri, and primary and supplementary motor cortex.

Figure 3.6.1, showing the high-RRB subject subgroup data, largely explicitly depicts patterns opposite those im-

mediately above. There are positive connectivity associations of the cerebellar hub with frontopolar and orbitofrontal

cortex, as well as with apparent portions of fusiform gyrus, and negative associations with substantial portions of

motor cortex, along with lateralized effects on lateral parietal DMN connectivity. Cerebellar hub—whole brain con-

nectivity analysis identified a p-FWE and p-FDR significant (p < 0.05) voxel cluster comprising parts of right lateral

occipital cortex using default settings for random field theory parametric statistics.

Figure 3.6.1 most clearly indicates a spatial dependence of anterior cingulate functional connectivity, with adjacent

portions of cortex showing strong positive connectivity associations. Extension of this spatial pattern to planum

temporale, or else independent planum temporale connectivity, is evident. Notably, this is concordant with the high-

RRB connectivity pattern, rather than an inversion of it. Hence, anterior cingulate and planum temporale apparently

exhibit at least weak positive connectivity across the subject pool (this is consistent with the data tables beginning

with A.2; a very weak positive association across the subject pool) Some isolated, weak negative connectivity between

the anterior cingulate hub and orbitofrontal cortex is observed as well, consistent with extrapolated connectivity via

intermediate nodes in network diagram in figure 3.6, another pattern consistent between the whole subject population

and the high-RRB subgroup subjects, although the high-RRB subject subgroup evinces mixed patterns of sporadic

connectivity from anterior cingulate to orbitofrontal cortex. Connectivity to visual cortex is not apparent in the

cortical surface projection.

Figure 3.6.1 does manifest the major connectivity association distinctive of the “high-RRB” pattern: positive

connectivity association of anterior cingulate cortex with planum temporale. Additionally, in both the whole sample

and the high-RRB subgroup, apparent functional antagonism manifests between lateral parietal default mode network,

a significant node in the network, and anterior cingulate. Interestingly, and unaccounted for, the whole subject sample

exhibits apparent positive anterior cingulate—middle frontal gyrus connectivity, but this connectivity is negatively

associated with RRB severity. As anterior cingulate and middle frontal gyrus both are substantially implicated in

attention, but with middle frontal gyrus apparently subserving switching endogenous and exogeneous attentional

control [251], such a putative dysconnectivity pattern is not inconsistent with an implicit inward focus in RRB

manifestation in ASD.

Figure 3.26: Summary of functional connectivity patterns from figures
3.6.1, 3.6.1, 3.6.1, and 3.6.1 associated with putative network hub cerebellum
VIII/vermis X and anterior cingulate cortex function and relation to ASD RRB
manifestation.
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3.7 DYNAMICAL MODELING OF PUTATIVE FUNCTIONAL NETWORK

The identification of a statistically significant ensemble of functional brain connections that differs

between low- and high-RRB subject subgroups within subjects with ASD diagnoses clearly suggests

that altered functional brain connectivity is a highly plausible pathophysiological mechanism for

some of the behavioral and cognitive aspects of RRB presentation in ASD. Additionally, the fact

that the interaction-term-only regression was robustly significant in comparison with the chance-

model demonstrates the likelihood of relationships between not only the ROI nodes, in the form

of functional connections, but between and across the connections as well, forming a qualitative

network, as demonstrated in section 3.6. However, the relatively poor cross-validation results for

the interaction-term-only model (section 3.5.2) do merit an attempt to give the network an explicit

form that can be tested for actually physiologically plausible behavior.

Additionally, because the elucidation of a coherent, orderly topological arrangement of the net-

work components in the form of the ROI arrangement given in figure 3.18 allows for greater ease

in the analytical manipulation of the underlying data than regression modeling on the subject-level

connectivity values, a model will be designed that attempts to capture the functional implications

of the topological arrangement and its postulated significance. In order to do so, the consideration

of the wholly integrative and wholly interactive nature of the brain as a fundamentally complex and

dynamical system must be given due precedence in the model design. Hence, a three-dimensional

dynamical model will be constructed that can predict changes in the activation level within the node

ROIs based on such a change in any of the other nodes, duly constrained by the graph-theoretic

collection of nodes and vertices in the hypothetical network, and will be formulated in terms of the

three time derivatives of the activation level in the three major subnetworks: sensory (in terms of

stimulus input), executive/salience, and motor/reward. Full implementation will proceed through

three discrete realizations of the model with functional extension occurring in each so as to accom-

modate additional dynamical spatiotemporal regimes. The methods used are substantially described

in [192].

The model will initially take the form of a linear system described by

ẋ = −ω sin(ωt)

ẏ = cx− δy

ż = r|z|+ sz − fy

(3.2)
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where

x = time-varying stimulus function

ω = stimulus function angular frequency, 0 for static drive

y = executive network activation

z = motor-reinforcement network activation

c = stimulus amplitude, or, equivalently, executive network stimulus sensitivity

δ = damping parameter of executive network (time decay of activation)

r = functional reward motor reinforcement

s = functional intrinsic motor reinforcement

f = functional executive control.

ω, c, and δ are exogenous parameters; r, s, and f will be empirically derived from RRB-severity

category subgroup average values for the relevant connections, and for individual subject values for

the same connections in the subject-level model implementation. An additional exogenous parameter

j in the model script in MATLAB represents the stimulus function initial conditions. In the first model

realization, ω will be held at 0 so that the trajectories of model output can be trivially evaluated in

terms of their spatiotemporal dynamics via inspection of phase portraits associated with parameter

sets of interest. As a first assessment, an additional value mact will be used to expediently modulate

whole-motor-network activity in the a priori assessment of the model’s dynamical utility and clarity

in putatively abstracting and representing RRB-associated functional network behavior in terms of

differential brain activation across functionally specific subnetworks.

Fundamentally, the variable z represents the time-dependent fraction of activation in motor cor-

tex due to putative reward (striatal) reinforcement and intrinsic (within motor cortex) reinforcement

within the motor subnetwork in excess of motoric cortical activity initiated by executive, salience,

and attention, including default mode, subnetwork influence. In this way, the sum of the two self-

reinforcing (with positive values of r and s) motoric influences putatively represents motor cortex

lability while at rest, and, in naturalistic extrapolation, movements of repetitive and compulsive

behavioral valence, i.e., RRB-like behaviors. Because motor cortical, and other brain activation is

to be abstracted from functional connectivity (Pearson correlation) values and a simple numerical

stimulus input drive, no cogent metric encapsulating “total motor cortex activation” can be at-

tributed to the model’s output. Therefore, the sources of motor cortex drive of putatively distinctly

intentional valence will be subtracted from those of putatively reinforcing valence to yield an ab-

stracted measure of “excess motor activity,” or that which is the dominant component, i.e., when
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the calculated difference is positive, of modeled motor cortical activity.

3.7.1 Dynamical model interpretation and application

The sign of the fy in equation 3.2 indicates that the proxy of interest for RRB-associated motor

behavior, ż, is the proportion of motor cortical activation independent and in excess of executive and

salience network-mediated effects. That is, rather than overall or absolute motor cortical activation,

only such activation as is caused by intrinsic (between motor areas) and reward (arising via nucleus

accumbens connectivity) reinforcement, less that which arises due to sensory, salience, and executive

subnetwork influences, is encapsulated in ż; the postulated relevance is that repetitive motor behavior

arises from other than executively mediated motor activation, and hence, the components must be

separable to make predictions of proposed functional validity to RRBs. Especially given the lack of

straightforward behavioral and environmental relevance of the precipitating fMRI environment, the

model form importantly does not seek to model “activity, period” within the motor cortex; there is

no plausible neurophysiological—RRB behavioral mechanism to be identified via subject behavior

while being scanned in a resting state. Indeed, “[o]nly a single study has reported findings of

individuals actively engaging in RRB (skin picking in PWS) during neuroimaging (Klabunde et al.,

2015) [47, p. 156].” Rather, the Pearson correlation values between functionally distinct ROIs and

the putative subnetworks comprising them are taken to indicate, as discussed in the Background, the

intrinsic network connectivity that might underlie severe RRB presentation. Similarly, the absolute

value is taken of the z factor in the rz term in ż to represent the conjectured reward-reinforcement

of repetitive motor behavior; this represents a putative desired “baseline” of (putatively repetitive)

motor activity represented by the always-additive effect of this term: Motor cortical activation results

in reward-reinforcement (further increase in activation), and sub-baseline motor cortical activation

results in reward-driven increase towards baseline activation. Contrast with the term sz in which

intrinsic (between-motor) reinforcement is dependent on the sign of modeled motor activation, that

is, whether it is above or below baseline. The physiological plausibility of the specific model form is

validated at the end of this section, after the results of the testing of the model with arbitrary and

group- and subject-derived parameter values.

The first analytical step in assessing model performance is establishing its potential to generate

biologically plausible and varied dynamical behavior of straightforward cognitive and behavioral in-

terpretation in RRBs in autism. Preliminary viability will be determined by assignment of arbitrary

parameter values in an attempt to generate various regimes of dynamical behavior. This is achieved

in figures 3.29 and 3.31. Next, the analytical forms of the functionally-derived parameters will be
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determined based on the hypothesized network defined in section 3.6, also shown in figure 3.33.

Particularly, based on the node labels show in figure 3.33, the connectivity values summarized in

tables 3.14 and 3.15 will be used to calculate the functional parameters as shown in equations 3.3

and 3.4. Doing so produces the parameter values summarized in table 3.16.

Next, model behavior must be evaluated in light of the calculated connectivity values for RRB-

severity category groups and individual subjects. The posited canonical behavior of the dynamical

model with respect to RRB severity using empirically derived parameter values is demonstrated

in figure 3.36. Demonstration that perturbations of the model dynamical behavior in the form

of increases in the magnitude of the stimulus input produces regimes of trajectories of executive,

salience, and motor-reinforcement subnetworks of the brain that are of clear and straightforward

relevance to RRBs in ASD, and in an exactly predictable manner, are given in figures 3.37 and 3.38.

Subject-level model behavior is given in figures 3.39, 3.40, and 3.41, and in table 3.17.

The preliminary stage of validation of the model to this point will be established by comparison

of its utility to two näıve formulations of the same general system type, but which explicitly do

not include the postulated functional relationship between the putative network and RRB severity.

Identical analysis as above results in ostensibly variable dynamic behavior of the model across

subjects (figures 3.43 and 3.44), but its explicit form makes any correlation with subject RBS-

R CSS as observed in the original model form impossible (figure 3.42 and table 3.18). However,

restricting the same näıve form of the model to only quadrant I (positive values of y and z only)

does allow such correlations, and indeed, there is a significant relationship between model output

in this case and subject RBS-R CSS. However, to five significant figures, the predictions of the

original model significantly improve the restricted näıve model predictions, but the latter does not

significantly improve the former. These results are summarized in figures 3.45 and 3.46, and in table

3.19.

Potential avenues for further testing and development of the model are investigated via mod-

ulation and perturbation of modeled dynamical behaviors in the form of increasing complexity of

the stimulus input and incorporation of nonlinear reactivity of the excess motor activation in order

to constrain model spatiotemporal trajectories and prevent unbounded end behavior. Variation of

the stimulus function through time is introduced and explained in figure 3.49. Modeling of puta-

tive “mid-RRB” behavior in the model is effected by averaging parameter values for the high- and

low-RRB subject subgroups to qualitatively assess the model’s capacity to generate interprable in-

terpolations of behaviorally relevant abstractions. Then, the three regimes (true high- and low-RRB

derived parameters and the averaged parameters) are analyzed with respect to various modeled stim-
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ulus conditions, shown in figure 3.50. After assessment of interpolative capacity, the extrapolative

analogy is similarly conducted and summarized in figure 3.52. As a final analysis of the potential

utility of the linear implementation of the dynamical model, individual network hub connectivity is

modulated based on the variations in functional connectivity between the high- and low-RRB sub-

ject subgroups. Varying stimulus conditions are again applied, and the resulting dynamical behavior

is shown in figure 3.54. Next, nonlinear reactivity of modeled brain function is introduced in the

model extension given in equation 3.11 and illustrated beginning in figure 3.57, followed by statis-

tical analysis. This is followed by introduction of a stochastic component per the model extension

given in equation 3.12, likewise followed by similar graphical depictions of dynamical behavior allow

qualitative assessment of spatiotemporal patterns, and explicit statistical analysis.

3.7.2 Initial analysis of dynamical model behavior

The dynamical behavior of the initial base model form will be assessed in three contexts:

1. Arbitrary assignment of trivial parameter values to investigate general dynamical behavior

2. Empirical parameter values determined by RRB-severity category subgroup connectivity values

3. Empirical parameter values determined by individual subject connectivity values

Additionally, a näıve formulation of the base model that ignores the postulated physiologi-

cal—functional significance of the subnetworks to RRBs and instead calculates only total abstracted

activation predictions is tested using subject-level data and compared with the hypothesized physi-

ologically—functionally valid model form used in this section until that point.

Arbitrary assignment of trivial parameter values

Arbitrary parameter value assignment using trivial values (typically integers or round decimal values)

was used to identify dynamical patterns that emerge based on the model form. In figure 3.29, slight

variations of two gross patterns are depicted: substantial executive/salience subnetwork influence,

and substantial motor-reinforcement subnetwork influence. In figure 3.31, two more substantial

variations of model parameters are used to depict unstable dynamical behavior with clear bifurcations

based on initial conditions due to more asymmetry between executive/salience, intrinsic-motor,

and reward-motor subnetworks. For these and all other phase portraits, graph parameters and

interpretation is given in 3.7.2. Each aggregation of phase portraits is followed by the parameter

values assigned. Stimulus function angular frequency is set to zero in these calculations, effectively

yielding a constant stimulus drive at the initial value of x.
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Parameter values chosen are listed on the following page after the figures in the form of the raw

MATLAB code assigning the parameter values. Increasing r is expected to increase motor-reinforcement

activation across the entire coordinate space. Increasing s will likewise increase ż when z is positive

but decrease it when it is negative. Increasing f will decrease excess (that is, reinforcement) motor

activation on the right half (y > 0) of the graph (quadrants I and IV) and decrease it on the left

half (quadrants II and III).

These patterns are confirmed in the phase portraits in figures 3.29 and 3.31. 3.29(a) shows a sign

change in the ż component of the vectors approximately along the diagonal of the graph, showing

a balance between sensory/salience/executive control and motor-reinforcement effects. Increasing f

as in 3.29(b) results in the dividing line being rotated so that it is along the vertical (z) axis. In

3.29(c), with high r, ż is large and positive everywhere except when y is large and z is small. In

3.29(d), it is instead s that is large, again resulting in division in the sign of ż, this time along the

horizontal (y) axis; this results from the fact that the sign of z in the first place is now the most

substantial component determining the sign and magnitude of ż.

More extreme patterns are demonstrated in figure 3.31. 3.31(a) shows high reward- and intrinsic-

motor reinforcement (r and s, respectively), with somewhat increased f . The large intrinsic rein-

forcement parameter results in the large negative values of ż in quadrant IV, but large positive

values everywhere else; this shows the interaction between the reward and intrinsic components of

motor reinforcement with meaningful, but less substantial sensory/executive/salience control (f).

3.31(b) shows a vertical bifurcation as in 3.29(b), except f is increased even more substantially,

resulting in larger absolute values for ż and the “fingerprint” pattern caused by the predominance

of the executive (f) parameter over the model’s dynamics in time. 3.31(c) shows constant positive

stimulus input (setting ω = 1 results in no change to the initial value over time). Under these

conditions, executive influence is increased even though f is not altered from 3.31(a). 3.31(d) shows

that high reward-reinforcement (r) results in a “buffering” effect wherein the potential for sen-

sory/executive/salience influences to tamp down relative reinforcement-motor activation is limited,

preventing the deep groove represented by negative ż shown in the dynamics of 3.31(c).

136



Note on phase portraits: In all phase portraits representing the dynamical behavior of the model,

the horizontal axis is y, the vertical axis is z, and vectors representing ẏ and ż, where shown, point in

the appropriate direction for each combination of initial conditions in y and z and are color mapped

with low values of ż cyan (#00ffff) and high ones red (#ff0000). Until section 3.7.5, when vector fields

are absent, the plotted phase trajectories will be color mapped according to the same scheme. The

scale/bounds of the axes are arbitrary and unitless, but each axis can be considered to correspond

to putative baseline activity within the relevant subnetworks. To most simply represent general

dynamical tendencies, graphs with neither phase trajectories nor vectors, but instead color mapping

of the coordinate grid itself according to the scheme above, are shown as adjunct representations

to the phase portraits in the subject-level and model modulation analyses. Revision of the color

mapping parameters for the nonlinear model extension in section 3.7.5 is described in figure 3.7.5.

Figure 3.27: Explanation of phase portrait representations of dynamical model
behavior in arbitrary, and group- and subject-level diagrams.
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Figure 3.28: Phase portraits depict dynamical behavior of the model within the
arbitrary bounds of -20 to +20 of relative modeled cumulative cortical activation
for the horizontal (y) and vertical (z) axes, representing executive network and
excess motor reinforcement network activity, respectively.
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(a) BALANCE (b) EXECUTIVESUPREMACY

(c) MOTORCRUSH (d) INTRINSICDOMINANCE

Figure 3.29: Representative dynamical behaviors of the model. See figure 3.28
for a schematic summary of these and other phase portrait representations in
this section. (a) Gentle oscillations in y and z with modest stimulus input and
balanced reinforcement and executive inhibition. (b) Motor reinforcement one-
tenth of that in (a), leading to a bifurcation in behavior between negative y values
(executive reinforces motor) and positive ones (executive damps motor). (c)
Motor reward reinforcement is quadruple that in (a), leading to rapid escalation
of exuberant motor reinforcement with slight changes in initial motor activity.
(d) Similar to (c), except intrinsic (within-subnetwork) reinforcement, rather
than reward reinforcement, dominates the trajectory of z. See figure 3.30 for
the parameters used.
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BALANCE

r = 1; %motor reinforcement strength

s = 1; %intrinsic reward strength

EXECUTIVESUPREMACY

r = 0.1; %motor reinforcement strength

s = 0.1; %intrinsic reward strength

MOTORCRUSH

r = 4; %motor reinforcement strength

s = 1; %intrinsic reward strength

INTRINSICDOMINANCE

r = 1; %motor reinforcement strength

s = 4; %intrinsic reward strength

Common

c = 1 %executive network sensitivity (parameter)

n = 0.05 %stimulus-negative decay of executive activation

f = 2 %executive control

w = 0; %stimulus function angular frequency

mact = 0.1 %motoric activation

j = 0.5 %stimulus initial condition

Figure 3.30: Representative arbitrary parameter values
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(a) VOLATILE (b) EXECUTED

(c) DRIVEN (d) DRIVING

Figure 3.31: Dynamic reorientation and emergent patterns in the dynamical
model with more substantial alterations of the model parameters. (a) All param-
eter strengths are influenced, with intrinsic and reward motor reinforcement both
dominating executive inhibition of motor activity. There is a critical threshold
of motor activity clearly visible where executive effects become trivial. (b) The
reverse, intense dominance of executive network influences. The trajectory of z
is determined almost entirely by the value of y. (c) Constant strong stimulus
drive, rather than the cognitive/motor reciprocal influences, become apparent
with this set of parameters, as the term mact is multiplied by the entirety of
ż, reducing motor significance wholesale in this realization of the model. (d)
Driving stimulus influence can avert suprathreshold runaway motor activity to
an extent in comparison with figures 3.29 (c), but forceful motor reward rein-
forcement does still overcome it outside of the “valley” of stable and small ż in
quadrant IV of the phase portrait. See figure 3.32 for the parameters used.
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VOLATILE

r = 4; %motor reinforcement strength

f = 2

s = 4; %intrinsic reward strength

mact = 0.25 %motoric activation

EXECUTED

r = 1; %motor reinforcement strength

f = 6

s = 1; %intrinsic reward strength

mact = 0.1 %motoric activation

DRIVEN

r = 1; %motor reinforcement strength sn

f = 2

s = 1; %intrinsic reward strength st

mact = 0.05 %motoric activation

DRIVING

c = 1 %executive network sensitivity (parameter)

n = 0.05 %stimulus-negative decay of executive activation

r = 4; %motor reinforcement strength sn

f = 2

s = 1; %intrinsic reward strength st

mact = 0.1 %motoric activation

Common

c = 1 %executive network sensitivity (parameter)

n = 0.05 %stimulus-negative decay of executive activation

j = 0.5 %stimulus initial condition

w = 0; %stimulus function angular frequency

Figure 3.32: Potentiated arbitrary parameter values
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RRB-severity category subgroup derived parameters

Connectivity values for low- and high-RRB severity category subgroups for the relevant connec-

tions are given in tables 3.14 and 3.15. The connection labeling scheme is depicted in figure 3.33.

The connectivity values are used to calculate parameter values according to equations 3.3 and 3.4.

Calculated parameter values are given in table 3.16. The dynamics of the model with low- and

high-RRB connectivity derived empirical parameters and a default set of exogenous parameters is

given in figure 3.36. Model dynamical behavior for the subgroups under different modeled stimulus

conditions is given in figures 3.37 and 3.38.

Salient observations are:

1. There is a pattern of changes between the empirical parameter values for the two groups that

reflects possible aspects of the underlying network behavior associated with high-RRB severity.

2. 73.3% of initial conditions tested predicted increased reinforcement- and reward-motor activa-

tion, ż, using the high-RRB parameters versus 36.7% for the low.

3. There are clearly distinct dynamical patterns between the subgroup models consistent with

expectation.

4. There are clearly distinct changes associated with varying stimulus drive conditions between

the subgroup models consistent with expectation.
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Figure 3.33: Node labels as used in tables 3.14 and 3.15 showing connectivity
values between the nodes for low- and high-RRB subjects for use in calculating
the functionally-derived model parameters.
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Table 3.14: Connectivity values from low-RRB subjects identified by the la-

bels defined in figure 3.33 (connections in tables 3.4 and 3.13, “R” = right

hemisphere), truncated to three decimal places, to calculate the functionally

derived parameters in the model summarized in equation 3.2 according to the

definitions in equations 3.3 and 3.4.

F FR P PR A V VR O E C T S M MR N

F x - - - 0.080 - - - - 0.026 - - - - - F

FR - x - -0.021 - - - - - -0.118 - - - - - FR

P - - x - - 0.065 - - - 0.070 - - - - - P

PR 0.107 -0.021 - x - - - - - -0.141 - - - - - PR

A 0.080 - - - x - - - - -0.191 - - - - - A

V - - 0.065 - - x - - - - - - - - - V

VR - - - - - - x - -0.028 - - - - - - VR

O - - - - - - - x - -0.095 - - - - - O

E - - - - - - -0.028 - x - 0.073 - - - - E

C 0.026 -0.118 0.070 -0.141 -0.191 - - -0.095 - x - 0.118 0.127 0.082 - C

T - - - - - - - - 0.073 - x 0.237 - - - T

S - - - - - - - - - 0.118 0.237 x 0.174 - -0.069 S

M - - - - - - - - - 0.127 - 0.174 x - -0.051 M

MR - - - - - - - - - 0.082 - - - x - MR

N - - - - - - - - - - - -0.069 -0.051 - x N

F FR P PR A V VR O E C T S M MR N
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Table 3.15: Connectivity values from high-RRB subjects identified by the labels

defined in figure 3.33 (connections in tables 3.4 and 3.13), truncated to three

decimal places, to calculate the functionally derived parameters in the model

summarized in equation 3.2 according to the definitions in equations 3.3 and

3.4.

F FR P PR A V VR O E C T S M MR N

F x - - - -0.189 - - - - 0.122 - - - - - F

FR - x - -0.246 - - - - - - - - - - - FR

P - - x - - -0.225 - - - -0.107 - - - - - P

PR -0.162 -0.246 - x - - - - - -0.021 - - - - - PR

A -0.189 - - - x - - - - 0.010 - - - - - A

V - - -0.225 - - x - - - - - - - - - V

VR - - - - - - x - -0.241 - - - - - - VR

O - - - - - - - x - 0.054 - - - - - O

E - - - - - - -0.241 - x - 0.424 - - - - E

C 0.122 0.160 -0.107 -0.021 0.010 - - 0.054 - x - -0.026 -0.049 -0.066 - C

T - - - - - - - - 0.424 - x 0.526 - - - T

S - - - - - - - - - -0.026 0.526 x 0.510 - 0.180 S

M - - - - - - - - - -0.049 - 0.510 x - 0.226 M

MR - - - - - - - - - -0.066 - - - x - MR

N - - - - - - - - - - - 0.180 0.226 - x N

F FR P PR A V VR O E C T S M MR N
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Figure 3.34: Connectivity-based formula for calculating the value of the em-
pirical dynamical model parameters r and s, or the motor reward and intrinsic
motor reinforcement parameters. The terms and the interactions within them
follow every path possible from and between putative motor areas, counting all
possible interaction along the network edges between the relevant nodes within
the motor/reward subunit once. The variable names comprise the two node ends
according to the lettering scheme in figure 3.33, with subscripts representing the
second node forming the functional connection.

r ≈ SN +NM + SNMS +NMMS

s ≈ MS

(3.3)
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Figure 3.35: Connectivity-based formula for calculating the value of the empir-
ical dynamical model parameter f , or the executive network influence parame-
ter. The terms and the interactions within them follow every path possible from
sensory areas (here, V, VR, F, FR, O, T) to motor areas, including through
interactions between motor areas, counting every possible interaction along the
network edges between the relevant nodes once, except those passing between
cerebellum and anterior cingulate cortex, taken in this formulation to be func-
tionally separable modulatory hubs between subnetworks. The variable names
comprise the two node ends according to the lettering scheme in figure 3.33, with
subscripts representing the second node forming the functional connection.

f ≈

from sensory to frontal pole via cerebellum to motor/reward:

(PRF + PRFR)CPRSC + PV CPSC + (PRF + PRFR)CPRMC + PV CPMC

+(PRF + PRFR)CPRMRC + PV CPMRC + (PRF + PRFR)CPRSCMS

+PV CPSCMS + (PRF + PRFR)CPRMCMS + PV CPMCMS

+(PRF + PRFR)CPRSCSNNM + PV CPSCSNNM

+(PRF + PRFR)CPRMCNMSN + PV CPMCNMSN

from sensory (fusiform) to default mode via cerebellum to motor/reward:

+AFCASC +AFCAMC +AFCAMRC +AFCASCMS +AFCAMCMS

+AFCASCSNNM +AFCAMCNMSN

from sensory (fusiform) via cerebellum to motor/reward:

+CFSC + CFMC + CFMRC + CFSCMS + CFMCMS + CFSCSNNM

+CFMCNMSN + CFRSC + CFRMC + CFRMRC + CFRSCMS + CFRMCMS

+CFRSCSNNM + CFRMCNMSN

from sensory (visual) via anterior cingulate to planum temporale:

+EV RTEST + EV RTESTMS + EV RTESTSNNMMS

from sensory (orbitofrontal) via cerebellum to motor/reward:

+COSC + COMC + COMRC + COSCMS + COMCMS + COSCSNNM

+COMCNMSN

from sensory (planum temporale) to supplementary motor:

+ST + STMS + STSNNM

(3.4)
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Table 3.16: The calculated values for the empirical parameters r, s, and f ,
the motor reinforcement, intrinsic motor, and executive and salience network
influence, for low- and high-RRB category subjects.

Low-RRB average High-RRB average

r -0.1413 0.6150

s 0.1748 0.5106

f 0.2003 0.6667
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(a) Low-RRB-derived empirical parameters (b) High-RRB-derived empirical parameters

Figure 3.36: Phase portrait of the dynamical model, equation 3.2, using parameter values for r, s, and f according to equations
3.3 and 3.4. The arbitrary parameters are set at “default” values, with c = 1, δ = 0.1, w = 0, j = 0.5, and no scaling of motor
activity (mact used to demonstrate intrinsic model dynamics in figures 3.29 and 3.31). Using values for the relative influence of
motor reward, intrinsic motor, and executive influences derived from connectivity averages in the low- and high-RRB subgroups
based on summing all possible interactions across the three relevant subnetworks through the cerebellar or cingulate hubs, a clear
pattern is evident between the dynamical behavior of the two models. While there is strong motor reward reinforcement in the
high-RRB model (r = 0.6150) this effect is actually reversed in the low-RRB group. Potentially a relevant indicator of the nature
of cognitive control mechanisms in RRB presentations, coupling between executive and motor subnetworks is actually stronger in
the high-RRB subject subgroup. While this greater executive control may serve to balance intrinsically and reward-driven motor
behavior, the actual trajectories through the z direction show the bifurcated behavior evident in 3.31 (d). As in that case, motor
reinforcement can cause runaway activation of the motor network. While 3.31 (d) uses simple arbitrary values for the functional
parameters (r = 4, s = 1, f = 2), the functional parameters in (b) in this figure were obtained empirically using only, and all
of, the underlying connectivity data for the proposed subnetworks for the high-RRB group. The similar dynamic behavior of the
two phase portraits suggests the physiological plausibility of the dynamical model by showing it can successfully account for the
behavior of the putative real brain network by many fewer parameters than are represented by the actual Pearson correlation
values used to construct them.
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(a) Low-RRB model with more static stimulus

drive

(b) High-RRB model with increased stimulus

drive

(c) Increased stimulus amplitude compared to

(a) and (b) in the High-RRB model

(d) Even greater stimulus magnitude

Figure 3.37: Manipulation of static stimulus amplitude in the empirical dy-
namical model. As would be predicted in clinical ASD, high-RRB severity is
associated with a less robust modeled responsive to external stimulus drive in
the terms of alterations to ostensible prepotent activity patterns (represented
by excess reinforcement activation in motor areas in the model). While increas-
ing stimulus magnitude does tend to fill the unstable void in the phase portrait
trajectories by moderating motor reinforcement to an extent, even with much
greater stimulus input amplitude, the bifurcation between phase trajectories in
the high-RRB derived model is still evident.
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(a) High-RRB, double the stimulus

magnitude as in 3.37 (c)

(b) High-RRB, quintuple the stimu-

lus magnitude as in 3.37 (c)

(c) High-RRB, ten time the stimulus

magnitude as in 3.37 (c)

(d) Low-RRB, ten times the stimulus

magnitude as in 3.37 (c)

(e) High-RRB, 100 times the stimu-

lus magnitude as in 3.37 (c)

(f) Low-RRB, 100 times the stimulus

magnitude as in 3.37 (c)

Figure 3.38: Variation of stimulus drive magnitude across two orders of magni-
tude shows more substantial perturbations in the realization of the model using
the high-RRB empirical dynamical coefficients. (a), (b), (c), and (e) represent
the high-RRB case, (d) and (f), low. The motor-reward feedback loop reinforces
extreme motor reinforcement and creates instability in trajectories in the phase
portrait in the high-RRB cases. Again, apparent recovery of low-RRB cognitive
dynamic behavior is possible with increased stimulus drive, but even at extreme
stimulus amplitudes, 200 times higher than the default value of j = 0.5, the
low-RRB phase portrait maintains regularly patterned trajectories, while the
high-RRB case shows more abrupt transitions in the direction vectors in the yz

plane representing, respectively, executive network activation and motor rein-
forcement.
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Individual subject-level derived parameters

Subject-level connectivity statistics were extracted for the connections require to calculate the em-

pirical parameter values for model 3.2 according to equations 3.3 and 3.4.

Phase portraits for all subjects are shown in figure 3.39. Color maps using the same scale showing

the ż component at each combination of initial conditions, with low values in cool colors and high

values in hot colors, are shown in figure 3.40 for each subject. The values indicated by the color

map can be averaged for the ith subject according to

¯̇zi =

ymax
∑

j=ymin

zmax
∑

k=zmin

ri|k|+ sik − fij

jk
(3.5)

where the bounds of summation correspond to the coordinate boundaries represented by the color

map plots. Because the proxy measure ¯̇zi is scale-free, it can be more simply expressed as

ˆ̇zi =

ymax
∑

j=ymin

zmax
∑

k=zmin

ri|k|+ sik − fij. (3.6)

Given the unaltered value of f and the symmetrical bounds over which this statistic is calculated, the

statistic captures specifically intrinsic and reward reinforcement strength on motor cortex activation.

f significantly affects modeled neural dynamics as the phase portraits have shown so far, and ˆ̇z

isolates the hypothesized cognitive mechanism driving RRB-like motoric behavior.

The value of ˆ̇z across all of the depicted initial conditions for each subject is plotted versus

subject RBS-R CSS in figure 3.41. Regression analysis using RBS-R as the independent variable

and summed (or effectively, averaged) ż components is given in table 3.17. The proposed form of

the relationship between the variable of interest is thus

R = αˆ̇z + β + ϵ (3.7)

where R is RBS-R CSS, α is the regression coefficient, β is the intercept, and ϵ is the error term.

These results demonstrate that, at the subject level, the dynamical model successfully predicts

over half of the variance in the original subject RBS-R CSS with a p-value for the regressor coefficient

of 2.81× 10−6. Hence, the dynamical model, which takes only three empirical parameters as inputs,

is successful at predicting RRB intensity (as RBS-R CSS) at the subject level.
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Figure 3.39: Subject-level phase portraits.
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Figure 3.40: Subject-level dynamic color maps of z̄0.
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Figure 3.41: Graph of subject-level dynamical model prediction of excess mo-
tor reinforcement averaged across initial condition vs. subject RBS-R CSS. A
putative linear relationship would suggest that the model accurately captures
RRB intensity, and hence the putative network does; in the absence of the real
significance of the full network in figure 3.21 to RRB intensity, the variables
would be unrelated.
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Table 3.17: OLS regression model for subject-level dynamical model prediction
of motor reinforcement averaged across initial conditions on subject RBS-R CSS.
Multiple R2 = 0.591. Any significant regression coefficient, as well as the total
variance explained, indicates the plausibility of the proposed network’s subserv-
ing the dynamical process giving rise to RRBs, as determined by the model form
and empirical model parameters arising from subject-level connectivity values.

Estimate Std. error t-value Pr(> |t |)

Intercept -326.351 72.595 -4.495 0.000138***

rbsrtot 26.756 4.451 6.011 2.81e-06***
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3.7.3 Initial assessments of model validity

In order to establish preliminary model validity and plausibility, a näıve formulation of the base

model form was constructed as follows:

ẋ = −ω sin(ωt)

ẏ = cx− δy

ż = rz + s+ fy

(3.8)

The differences between this näıve model and the conjectured physiologically and functionally

valid model given in equation 3.2 is that the z factor in the rz term in ż is now the verbatim, rather

than absolute value of z, and the fy term is positive, hence yielding a value of z in the model that

instead represents the total modeled motor cortical activation, rather than that due exclusively to,

and in excess of, intrinsic- and reward-reinforcement influences. For this assessment, ω is again held

at 0.

First, regression modeling as in the previous section at the subject level is not possible; given

that symmetrical bounds were used for each axis (i.e., in equation 3.6, j = k), all three terms in ż

will cancel out when calculating ˆ̇zi, modifying equation 3.7 to

R = β + ϵ, (3.9)

which yields no relationship and an R2 = 0, as shown in figure 3.42 and the regression analysis

summary in table 3.18; only rounding-error values for ˆ̇zi result. This trivial result does, however,

show that the model form, and not the mere use of the subject connectivity values to calculate the

empirical model parameters, results in the observed correlation between the model output chosen

as the regressor in equation 3.6 and subject RBS-R CSS.

While the näıve model form cannot make predictions to be tested for correlations with subject

RBS-R CSS in the same way as the postulated dynamical model, it can still demonstrate varying

patterns of dynamical behavior: Compare figure 3.41 with figure 3.42, and figure 3.39 with figure

3.43. Note, however, that the dynamical behavior as represented by the subject color maps is

indeed always symmetrical across some line that divides the phase space exactly in half. Hence, the

initial dynamical model form is confirmed as of plausible physiological and functional significance

given näıve application of the same empirical model parameters alone cannot elicit the desired, or

any, given the analytical form of the chose regressor, behavior or correlation with subject RBS-R

CSS. A potentially meaningful qualitative observation can however be made regarding dynamical

158



behavior even in the näıve-form model: Figure 3.43 shows, as in several priorly observed metrics

(connectivity value sign, regression model significance with binary contrast, separability in figure

3.41 between the low- and high-groups into non-overlapping regions, discrete dynamical regimes in

the postulated relevant form of the model based on parameters derived from subgroup membership)

a consistent regime of dynamical behavior for the high-RRB (subplots 23-27) subjects that does not

continue in the very next subject (22) phase portrait. Hence, while the näıve-form model cannot

produce output in terms of predicted motor-reinforcement activation, the parameter values alone

still substantially enforce identifiably distinct regimes of dynamical behavior. Nevertheless, the

comparison summarized in table 3.18 show that it is the specific form of the dynamical model, and

not the use of calculated subject connectivity values to derive parameters alone, that yields the

observed correlation between model output and subject RBS CSS.

Beyond a minimal demonstration of the significance of the specific model system to its correlation

with a behavioral measure itself correlated with the functional connectivity values used to derive the

model parameters, the superior predictive ability, at least in the form of greater linear correlation, of

the chosen model system in contrast to a putative alternative that can also produce output that can

be regressed on, should be demonstrable if the model is to be accorded preliminary behavioral and

neurophysiological plausibility. The näıve model formulation can be modified such that summation

across the coordinate plane still does return variable results by subject if the analysis is restricted

so that ˆ̇zi is calculated only for quadrant I. Explicitly, this model form alters equation 3.6 to

ˆ̇zi =

ymax
∑

j=0

zmax
∑

k=0

rik + sik + fij; (3.10)

the differences are the absolute value is no longer taken of z, as in the näıve form so far used,

fij is added, again as in the näıve form so far used, and the bounds are restricted to quadrant

I (non-negative j and k) only. By so doing, it can be assessed if the previously observed corre-

lation in figure 3.41 and table 3.17 is actually due to the positive motor-reward-reinforcement in

below-baseline motor activation and the calculation of specifically motor activation not due to stim-

ulus/executive/salience network effects, and furthermore above and beyond them, or again, only

the per-subject derived parameter values. The scatter plot of this variation is shown in figure 3.45.

Model summaries for the original model with the postulated form, the näıve form restricted to

quadrant I, and a J-test between them is summarized in table 3.19. While the quadrant-I-only näıve

model is in fact of overall significance, the model as originally postulated improves its predictions

significantly according to the J-test to five decimal places, while it itself does not significantly im-

prove the model as originally postulated. Moreover, in this case, unlike in the original dynamical
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model-based regression, the 5 “high-”RRB subjects are unisolable within the coordinate plane from

the “low-”RRB subjects (there is overlap between these and “low-”RRB subjects on the vertical

axis), breaking the above-mentioned repeatedly observed pattern of such separability. This sepa-

rability is shown in figure 3.46. This further reduces the maximum plausibility of this “improved’

näıve model form in terms of the postulated network dynamical behavior it was contrived to en-

capsulate. Leave-one-out cross-validation was performed on both the original and näıve quadrant

I models. Summary statistics are given in table 3.20. As leave-one-out cross validation can both

inform regarding aspects relevant to the potential for generalization of tested models, and also aid

in making comparisons between models, the within-model difference in output between the left-out

estimates and the fill model predictions was compared, as shown in figure 3.47 , as were summary

statistical differences between models; the original model explains approximately five times as much

of the observed variance in the RBS-R CSSs than the näıve model, and both the root-mean-squared

and mean-absolute errors associated with estimating the excluded observations were notably lesser

in the original model.

These attributes of the original dynamical model form, as first conceived, verify it is not merely

the empirical derivation of the model parameters, nor the existence of specific (non-zero) variation

between the subjects in terms of model prediction based on those parameters, that result in the

model significance initially observed in table 3.17. Rather, it appears that the chosen model form

does in fact plausibly represent, at an absolute minimum in terms of statistical significance of the

relevant behavioral measure used in this study, specific functional properties of the putative brain

network that correlate with RRB severity in the form of subject RBS-R CSS.
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Figure 3.42: Graph of subject-level näıve dynamical model prediction of motor
activation averaged across initial condition vs. subject RBS-R CSS. Compare
the clear lack of correlation (variation in the independent variable is due only to
rounding errors in computation) with that shown in figure 3.41.
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Table 3.18: OLS regression model for (A) subject-level dynamical model and
(B) näıve dynamical model prediction of motor reinforcement (hypothesized
model) and absolute activation (näıve form) averaged across initial conditions
on subject RBS-R CSS; the intercept and RBS-R CSS coefficient are both sig-
nificant in (A) and both insignificant in (B). Again, the model in (B) strictly
has a zero-correlation. (C) Davidson-MacKinnon J-test of the models reveals a
significant p-value to six decimal places for the improvement of (A)’s predictions
of (B)’s model fit, and an insignificant one (over 0.5 one-sided, consistent with
the true lack of any correlation) for the improvement of (B)’s predictions of (A)’s
model fit.

(A) Regression model from dynamical model

Estimate Std. error t-value Pr(> |t |)

Intercept -326.351 72.595 -4.495 0.000138***

rbsrtot 26.756 4.451 6.011 2.81e-06***

R2 = 0.591, p = 2.809e-06

(B) Regression model from näıve dynamical model form

Estimate Std. error t-value Pr(> |t |)

Intercept 8.820e-15 7.595e-15 1.161 0.256

rbsrtot -6.404e-16 4.657e-16 -1.375 0.181

R2 = 0.07032, p = 0.1813

(C) J-test of the models

Model 1: rbsrtot ∼ subject

Model 2: rbsrtot ∼ naive

Estimate Std. error t-value Pr(> |t |)

M1 + fitted(M2) 0.34186 0.50144 0.6818 0.5019

M2 + fitted(M1) 0.97247 0.17296 5.6225 8.68e-06***
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Figure 3.43: Subject-level näıve-model phase portraits.
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Figure 3.44: Subject-level näıve dynamic color maps.
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Figure 3.45: Graph of subject-level näıve dynamical model prediction of motor
activation across initial condition, but restricted to quadrant I, vs. subject RBS-
R CSS. Here, the is some apparent correlation, which will be tested versus that
in figure 3.41.
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Table 3.19: OLS regression model for (A) subject-level dynamical model and
(B) näıve dynamical model prediction, restricted to quadrant I of motor rein-
forcement (hypothesized model) and absolute activation (näıve form) summed
across initial conditions on subject RBS-R CSS; the intercept and RBS-R CSS
coefficient are both significant in (A) and both significant in (B). (C) Davidson-
MacKinnon J-test of the models reveals a significant p-value to five decimal
places for the improvement of (A)’s predictions of (B)’s model fit, and an in-
significant one (0.3101) for the improvement of (B)’s predictions of (A)’s model
fit.

(A) Regression model from dynamical model

Estimate Std. error t-value Pr(> |t |)

Intercept -326.351 72.595 -4.495 0.000138***

rbsrtot 26.756 4.451 6.011 2.81e-06***

R2 = 0.591, p = 2.809e-06

(B) Regression model from näıve dynamical model form restricted to quadrant I

Estimate Std. error t-value Pr(> |t |)

Intercept -54.909 24.935 -2.202 0.0371*

rbsrtot 4.074 1.529 2.665 0.0133*

R2 = 0.2212, p = 0.0133

(C) J-test of the models

Model 1: rbsrtot ∼ subject

Model 2: rbsrtot ∼ positive

Estimate Std. error t-value Pr(> |t |)

M1 + fitted(M2) -0.41174 0.39706 -1.0370 0.3101

M2 + fitted(M1) 1.18377 0.24291 4.8734 5.731e-05***
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Figure 3.46: Graph of subject-level original form vs. näıve dynamical model
prediction, superimposed sans vertical scale; points plotted are identical as in
figs. 3.41 and 3.45. The horizontal lines indicate the lowest (on the vertical
axis) high-RRB subject prediction. For the original model, there is no overlap
in model prediction values (ˆ̇z) between high- and low-RRB category subjects,
whereas for the näıve quadrant I model, there is overlap among several (five) low-
RRB category subjects along the vertical axis, in fact covering approximately
the same vertical range of all except the third-highest subject CSS.
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Table 3.20: Root-mean-squared error, R2, and mean absolute error for (A)
the original dynamical model, (B) the näıve model restricted quadrant I. The
original model explains approximately five times the variance in the excluded
subjects than the näıve quadrant I model does. A graph of both final model
predictions and leave-one-out cross-validation predictions corresponding to this
statistical summary is provided in figure 3.47.

(A) Original dynamical model

RMSE R2 MAE

7.756117 0.5209921 6.187472

(B) Näıve quadrant I model

RMSE R2 MAE

10.6957 0.1018719 8.865538
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Figure 3.47: Graph of both the leave-one-out cross-validation step values predicted for
subject RBS-R CSS, and those predicted by the final dynamical form after the cross-validation
step. The subtle differences in the predictions do demonstrate that even the highly significant
correlation observed between the model output and the chosen behavioral measures is well
removed from a perfect one.
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3.7.4 Subnetwork-behavior and stimulus-input dependent model dynamics

In considering three observations—(i) the orderly symmetry in connectivity correlations with RRB

severity category on either side of the hypothetical network, with both cerebellum and anterior

cingulate cortex showing opposite polarity between network halves; (ii) the repeatedly invoked in-

terdependence between any brain structure and any other in terms of reciprocal functional influ-

ences; and (iii) the clear distinctiveness in empirically derived dynamical model parameters between

the low- and high-RRB subgroups—along with the particular applicability of a complex systems

approach to assessing the relationship between them, model characteristics will now be evaluated

under conditions other than arbitrary value imputation and empirical parameter assignment.

The first and most straightforward question regards the extent to which individual ROIs in the

hypothetical network influence overall behavior. A trivial way of addressing this is to create hybrid

parameter values that use true subject functional connectivity values, but not consistently according

to subject RRB severity category. Given the centrality between distinct subnetworks of the putative

cerebellar and cingulate network hubs, the demonstrated functional significance of the structures to

ASD-associated cognitive and behavioral domains, and the ease of altering major portions of the

“canonical” low- and high-RRB network variants by changing all connectivity values between one or

both of the hubs and all connected ROIs and observing the effects on dynamic model parameters,

the two distinct network variants were modified in this way. The resulting parameter values for f , a

putative measure executive—motor coupling and the relative executive influence on motor cortical

activation, were calculated. Results are given in table 3.21. While no particularly profound results

were observed in this calculation the notable alteration in the low-RRB subject subgroup-derived

value of parameter f , at least in the abstract, suggests a “theory of cerebellar involvement in,” if not

“the cerebellar theory of the origin of” RRBs in ASD. The results do suggest a method of assessing

the behavior of the dynamical model under biologically plausible conditions based on hybridization

(interpolation) or extrapolation of model parameters from the calculated connectivity values. Such

an analysis might also generate hypotheses for further testing of the methodological approach in this

thesis on similar data.

Preliminary validation of model plausibility and validity primarily establishes a rationale for

assessment of its applicability to extrinsic functional imaging data. Ideally, this would be done with

multiple and/or large analogous fMRI datasets. As the model is not itself a statistical tool, but

rather is posited to capture important aspects of RRB symptom manifestation in ASD, generation

of potential research questions in terms of the model behavior and postulated utility and relevance

should be undertaken following the preliminary statistical validation. To this end, assessment of
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model behavior under three novel applications of the present imaging data will be performed. All of

these conditions will involve dynamically varying stimulus input, as opposed to the static stimulus

drive that has been applied to the model so far, although the later condition will be one of those

assessed in each case. While static stimulus input facilitates ease of assessment and interpretation

of model behavior, the original model form given in equation 3.2 includes parameters for stimulus

dynamic behavior. Modification of previously discussed phase portraits by addition of stimulus time

variation is depicted in 3.49.

As described, the first modulation of the model implementation itself will be in terms of in-

terpolation of parameter values intermediate between those calculated for the high- and low-RRB

subject subgroups, as is done in the middle column of phase portraits in figure 3.50, with the

left and right columns comprising low- and high-RRB subgroup models, respectively. As with all

implementations in this section, dynamic stimulus input of varying magnitudes is applied to the

modeled brain activity. Qualitative hybridity of dynamical behavior between the subject subgroup

derived model realizations is observed in the interpolated “mid-RRB” realizations across stimulus

magnitudes. Perhaps of more direct significance, though, to the relationship between RRB symp-

tom manifestation associated with ASD and the dynamical model, is the even more clear difference

between the true empirical-value models under intense and dynamic stimulus conditions than under

conditions of lesser, static stimulus drive. In comparing the bottom left and bottom right figures,

the diversity of phase trajectories in terms of the evenness of coverage of phase space is categorically

distinct. The low-RRB derived model realization covers the majority of the plotted phase space

fairly evenly, with no particularly evident contrast between regions in the color mapping of the

trajectories; while a distinct chromatic distribution is evident, it is less vibrant, and thus activation

changes are more consistent between subnetworks. The high-RRB phase portrait is distinct on every

one of these points under intense dynamic stimulus input. Despite the large magnitude swings in

the actual quantitative input to the modeled sensory, executive, and salience subnetworks, clear,

distinct, stereotyped trajectories emerge, with sharp contrast between the dominate subnetwork ac-

tivation component per correspondence of the trajectories with the color mapped activation values.

Much less of the total phase space is evenly covered by phase trajectories. Of additional note in

this regard is the fact the bottom center phase portrait is inverted with respect to its densest areas

of coverage relative to the high-RRB (bottom right) portrait. A last preliminary qualitative obser-

vation is that the middle two rows show the clearest gradation between the phase portraits for the

low-, “mid-,” and high-RRB models. In both of the middle two rows, the low-RRB phase portraits

is continuous along the upper boundary with a narrow gap along the lower one, the ‘mid-’RRB por-
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traits have modest discontinuities along both the upper and lower boundaries with some trajectories

being driven somewhat into the bifurcation gap, and the high-RRB realizations have clear gaps at

the upper and lower boundaries with little more than incidental veering of phase trajectories into

the divide between the two contiguous agglomerations of trajectories.

The second modulation of model implementation entails a five-step gradation in network hub

(cerebellum and anterior cingulate cortex) connectivity, with results given in figure 3.52. The middle

column represents true high-RRB subject subgroup parameter values, with the “high-RRB-ness” of

network hub connectivity values increasing from left to right. This formulation tests to what extent

the central network hubs affect modeled brain dynamic behavior. As the role of motor cortex and

striatal reward circuitry is fundamental to the model, assessment of the most central functional and

anatomical divisions is the salient objective regarding potential real physiological significance of the

model. As increasingly “high-RRB” character of network hub connectivity results in decreasing

executive subnetwork influence (reduced f), the coordinate space color maps on the bottom row

correspondingly depict a rotation about the origin of the relative positions of the executive-dominated

and reinforcement-dominated divisions. With exaggerated executive influence (less “high-RRB”

character of the hub connections), the separation in the coordinate color map is primarily along

the horizontal (y or executive activity) axis, as shown on the bottom far left, whereas the bottom

far right, with negligible executive influence on motoric activity, shows dominance of the vertical,

or reinforcement axis, in the color mapped activation values across initial conditions. As well in

this collection of plots, the diminished influence of equivalent stimulus input can be seen from the

left to right as the modeled executive/salience response to powerful stimulus diminishes. Especially

in the fourth row, the relatively broad ripples in the left half of phase space in the far-left graph

transition smoothly to the “seashell” like pattern in the correspondingly flattened trajectories on

the left half of the phase space of the graph on the far right of the fourth row. For the same reason,

the reduced executive influence, which tamps down the trajectories that would otherwise fill the

gap along the bottom edge of the fourth-row portrait on the far left, allows the bridging between

the two separate contiguous collections of trajectories progressively towards the right, with another

rippled pattern opposed to the “seashell,” demonstrating modest dynamism when perturbed by

tempestuous stimulus input.

Lastly, under conditions of extreme amplitude dynamic stimulus input, behavior is modeled for

two contrasting network functional connectivity patterns—either low- or high-RRB connectivity val-

ues for connections within motor, executive, and sensory subnetworks, and variation of connectivity

values across the cerebellar and cingulate hubs across a spectrum of values within each of those
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conditions. Plots are given in figure 3.54. The first pattern is one that has already been manifested

in the previous model modulations by maintaining high-RRB associated functional connectivity val-

ues for all connections not to or from the central hubs, but modulating the connectivity values to

and from the hubs along a five-step gradation. That is, the leftmost column, for the top two rows,

depicts high-RRB functional connectivity between motor and sensory areas, but exaggerated low-

RRB functional connectivity across network hubs, with the rightmost column therefore depicting, in

the top two rows, high-RRB motor and sensory connectivity, with exaggerated high-RRB functional

connectivity values across hubs. Similarly, the bottom two rows effect the same pattern, except

with low-RRB connectivity values left for sensory and motor connections within subnetwork, and an

inversion of the order of the hub functional connectivity pattern. Cursory appraisal of qualitative

patterns exhibited by this extrapolation of modeled brain dynamical behavior associated with RRBs

reveals that, consistent with the inversion in the order of the subject-subgroup associated network

hub functional connectivity values between the top rows (high-RRB connectivity values outside hub

connections) and the bottom rows (low-RRB connectivity values outside hub connections), qualita-

tive similarities between phase trajectories are observed between opposite-end figures of the top and

bottom rows. Specifically, columns 1 and 5, 2 and 4, and 3 correspond in qualitative aspects of their

dynamical behavior.

But while qualitative patterns in phase trajectories correspond in this way, important differences

are noted when taking into account the coordinate-wise colormaps of values of ż across initial con-

ditions. The top left plots demonstrate reinforcement dominance in the upper left quadrant of their

coordinate planes, indicating below-baseline (perhaps lesser than intrinsic tonic neuronal activity)

executive activation contributes to reinforcement motor dominance of modeled brain dynamic behav-

ior regardless of the actual level of motor activation, consistent with the model formulation in which

negative executive network activity values actually contribute to reinforcement motoric behavior.

The top right plots show that intrinsic, rather than reward, reinforcement motoric activity predom-

inates, and executive activation level has negligible effects on the time course of modeled functional

brain activity. This is consistent with the diminished value of the parameter f in the upper right

compared to upper left plots. For the low-RRB sensory and motor connectivity model, from left to

right along the bottom, executive control is actually increasing, resulting in a coordinate activation

plot on the bottom right with an arrangement perpendicular to that of the plot in the top right,

that is, clear executive dominance, consistent with the lesser magnitudes of the other parameters in

the low-RRB connectivity-derived parameter values. However, the distribution of the color map in

coordinate space for the top left and bottom left plots actually appears similar despite the top left’s
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depicting exaggerated executive influence in modeled high-RRB brain activity and the bottom left’s

depicting diminished executive network influence on motor cortex of otherwise low-RRB-associated

network behavior. Thus, the “high-RRB, augmented executive” and “low-RRB, diminished execu-

tive” patterns present analogous regimes of dynamical behavior, whereas the “high-RRB, diminished

executive” and “low-RRB, augmented executive” realizations present with distinctly orthogonal pat-

terns of cortical influence relative to the same distribution of initial conditions. To formulate the

most behaviorally and neurophysiologically plausible model-based hypotheses for statistical testing,

a nonlinear term will be introduced into the expression for ż in the next section, such that model out-

put from behaviors across transitional and dynamic equilibrium states can constitute the input data

for the calculation of spatiotemporal metrics associated with modeled brain behavior of conceptual

significance, to the end that they can be evaluated in terms of statistical significance.
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Table 3.21: Considering the functional network fully developed from figure
3.33 and used to derive empirical parameter values for the dynamical model de-
scribed by the system in equation 3.2, the relative influence of connectivity values
between network hubs (cerebellum and anterior cingulate) and components in
either primary subnetwork, or within the sensory periphery, can be evaluated by
substituting connectivity values between the hubs and other nodes into the func-
tional network representing either low- or high-RRB severity category subject
subgroups. Doing so yields the values calculated below, along with the following
summary observations: within the low-RRB functional network, substituting
cingulate cortex connectivity values from the high-RRB network decreases ex-
ecutive—motor coupling, substituting cerebellum connectivity values from the
high-RRB network realization increases executive—motor coupling, and the net
effect of substituting the high-RRB connectivity values for both hubs is a negli-
gible decrease in executive—motor coupling. In the case of beginning with the
high-RRB network connectivity values, substitution of the connectivity values
associated with either hub from the low-RRB network results and tighter execu-
tive—motor coupling, with complete substitution of the hub connectivity values
resulting in the summation of both connectivity. With respect to the network
hubs, given the symmetrical, mirrored correlation signs with RBS-R CSS on ei-
ther side of each, one conceivable result would have been no apparent influences
of network hub connectivity pattern inversions. However, instead, the low-RRB
network demonstrates resistance to functional alteration with the substitution
of all connectivity values across hubs, as cingulate and cerebellar connectivity
value substitutions exhibit opposing effects, but the high-RRB network behavior
is notably altered, with increased effective executive control over motor activa-
tion upon complete substitution of hub connectivity values from the low-RRB
network connectivity values. To test high-RRB network functional lability, hub
connectivity values equal one-quarter and twice the actual high-RRB network
values were substituted, with the exaggerated high-RRB hub connectivity re-
sulting in dramatically reduced executive—motor coupling, and the strongly
attenuated connectivity values increasing it. Notably, then, both moderating
intrinsic hub connectivity, and substituting the low-RRB hub connectivity val-
ues, tighten executive—motor coupling in the otherwise high-RRB functional
network. The final row illustrates the mirror symmetry of cerebellar functional
connectivity in the derived network.

Primary Cingulate Cerebellar f

Low Low Low 0.2003

Low High Low 0.1724

Low Low High 0.2278

Low High High 0.1998

High High High 0.6667

High Low High 0.7477

High High Low 0.6833

High Low Low 0.7642

High 0.25× High 0.25× High 0.8073

High 2× High 2× High 0.2167

High −1× High −1× High 0.6667
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Figure 3.48: Comparison between the high-RRB associated network schematic,
as first demonstrated in figure 3.21, and the same functional arrangement but
with connectivity values between cerebellum or cingulate cortex and other nodes
substituted with those from the low-RRB functional network realization, result-
ing in a hybrid network. The direct relevance to the dynamical modeling, as
summarized in table 3.21, is that the calculate value for f , or executive control
of motoric activation, is increased due to the substitution from 0.6667 to 0.7642,
providing one potential hypothesis for the combined role of cerebellum and an-
terior cingulate cortex in the network.

(a) High-RRB network

(b) High-RRB network with low-RRB connectivity values be-

tween ACC or cerebellum and other nodes substituted
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(a) Low-RRB, static stimulus (b) High-RRB, static stimulus

(c) Low-RRB, stimulus frequency 0.25 (d) High-RRB, stimulus frequency 0.25

(e) Low-RRB, stimulus frequency 0.5 (f) High-RRB, stimulus frequency 0.5

Figure 3.49: Beginning with the same data as in figure 3.36, color mapping
the phase trajectories, and removing the color-mapped state vectors, the per-
turbations of trajectories due to a dynamically varying stimulus, as conceived in
the generic model formulation in equation 3.2, can be clearly represented. The
second row takes the original phase portraits and introduces periodicity into
the stimulus function (x) value that varies the value of the stimulus function at
each discrete time step according to a frequency of 0.25 per one time step. The
third row increases the frequency to 0.5. Of note, the greater magnitude across
parameters and associated tighter coupling between subnetwork behavior is re-
flected in the high-RRB phase portraits as more distributed undulations within
the grouped phase trajectories, compared with the low-RRB models with tight
ripples in individual phase trajectories.
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Figure 3.50: Left to right: low-, averaged, high-RRB empirical parameters.
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Color-mapped phase portraits are grouped into columns by RRB-severity category empirical param-

eter values, and into rows by stimulus function (x) magnitude. From left to right the columns contain

graphs for empirical parameter values for the low-RRB subject subgroup, averaged parameter values

between the two subgroups, and the high-RRB subject subgroup. From top to bottom the stimulus

magnitude (c) values are 0, 1, 2, 4, 16, and 32, with stimulus angular frequency ω remaining fixed

at π. Parameter values used, in each case for the left, middle, and right columns, corresponding

to low-, simulated mid-, and high-RRB severity-associated functional brain network behavior, were

f = {0.2003, 0.4335, 0.6667}, r = {−0.1413, 0.2369, 0.6150}, s = {0.1748, 0.3427, 0.5106}. Clear in-

termediacy of phase trajectories between the low- and high-RRB dynamical model realizations is

evident in the middle column portraits.

Figure 3.51: Description of figure 3.50 on the previous page.
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Figure 3.52: Left to right: increasing high-RRB-like hub connectivity.
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Color-mapped phase portraits are grouped into columns based on connectivity values to the pri-

mary trans-network hubs, cerebellum and anterior cingulate cortex. The columns contain portraits

corresponding to functional connectivity values between the hubs and other network structures that

are attenuated to the left of the center column and potentiated to the right of the center column.

Adjacent to the middle column, values for f are substituted from the two penultimate rows in table

3.21. For the outer two columns, a value of unity was assigned for f for the far left, and a value

of 0.1084, or half that of the adjacent column, was assigned. As Pearson correlation values with

magnitudes dramatically greater than one quickly appear if connectivity values are simply blanket

scaled upward, and it is the ensemble, or emergent, behavior of the dynamical model that is of

interest, the far left and right column values of f were chosen based on extreme bounds distant

from, but not categorically differing in magnitude, the actual high-RRB-associated functional net-

work connectivity values. The final row is a color mapped coordinate plot of the distribution of ˆ̇z in

initial conditions generated according to equation 3.6. From top to bottom the stimulus magnitude

(c) values for the first six rows are 0, 1, 2, 4, 16, 32, and 64.

Figure 3.53: Description of figure 3.52 on the previous page.
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Figure 3.54: Comparison of low- and high-RRB hub-modulation dynamics.
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The top row of color maps matches that from the bottom row of figure 3.52, and the second row of phase portraits

matches that from the sixth row of figure 3.52 The third and fourth rows are analogous representations using the

low-RRB subgroup derived connectivity values for sensory and motor reinforcement connections. Values of parameter

f for the top two rows are {1, 0.8073, 0.6667, 0.2167, 0.1084}, corresponding to attenuated high-RRB network hub

connectivity character to the right, and potentiated high-RRB network hub connectivity character to the left. Given

the lesser coupling between nodes in the low-RRB, rather than independently calculating parameter values for the

bottom to rows, the values {0.1084, 0.2167, 0.6667, 0.8073, 1} were used, creating contrast pattern in which exagger-

ated primary behavior is exhibited for each network from left to right. For the top two rows, intrinsic and reward

reinforcement effects dominate in the rightmost column, with a clear division along the horizontal axis of the color

mapped coordinate values. For the bottom two rows, executive influence dominates. Thus, the dynamics in each case

exaggerate the original empirically derived parameter value network behavior; greater moderation of excess motor

activation is seen in the modified low-RRB phase portrait and coordinate color map, and greater dominance of the

same excess motor activation is seen in the modified high-RRB network. In fact, the vertical cylinder-like grouping

of phase trajectories in each portrait in the far right demonstrates opposite behaviors in some respects: The grouping

is of dense trajectories with negative values of ż in quadrants III and IV in the modified high-RRB network portrait,

while it is instead sparse (and vertically divided in terms of the sign of ż in the modified low-RRB network portrait.

The trajectories are primarily horizontal in the latter portrait, and closer to 45-degrees in the former. Similarly, in

the far-left portraits, quadrants I and II have sparse, and III and IV dense, trajectory groupings in the modified

high-RRB portrait, whereas for the modified low-RRB network portrait, quadrants I and II have dense, and III and

IV sparse, trajectory groupings. The sign of ż is also largely exchanged, with mostly positive values in quadrants I

and II and negative ones in III and IV in the modified high-RRB network portrait, and mostly negative values in

quadrants I and II and positive ones in III and IV in the modified low-RRB network portrait. However, by another

measure, dispersion of trajectories in phase space increases to the right for the upper portraits, and the left for the

lower ones. Note that the approximate true value for the low-RRB network f parameter corresponds to the second

column from the left, while the middle column corresponds to the exact value of f for the high-RRB network.

Figure 3.55: Description of figure 3.54 on the previous page.
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3.7.5 Model extension: nonlinear dynamics

While the model described in equation 3.2 exhibits dynamical behavior plausibly relevant to that

corresponding within the brain during execution of RRBs, insofar as model output correlates with

subject RBS-R CSS, its linearity limits its ability to expediently generate nontrivial long-term eqilib-

rium states or those of posited behavioral or neurocognitive relevance. Even in the case of dynamic

stimulus input, the magnitude of z eventually increases without bound. Therefore, an extension of

the model, which will take the form

ẋ = −ω sin(ωt)

ẏ = cx− δy

ż = r|z|+ sz − fy −
ϕz3

|z|
,

(3.11)

where ϕ is a damping term, or, conceivably, a term representing neural accommodation and attenua-

tion of reinforcement motor circuit excitability due to recurrent excessive activation. Practically, this

term reduces all influences on z as its magnitude increases. In all model realizations incorporating

the nonlinear term, ϕ = 0.075, as this value tends to constrain phase trajectories to the axis bounds

of [−2020] used so far along with the empirically derived parameter values and dynamic stimulus

input similar to that in the preceding section.

This extension of the model allows meaningful interpretation of the time course of dynamic

equilibrium states in the modeled output from the already time-inhomogeneous (when the stimulus

function is dynamic rather than fixed drive) model. In the simplest formulation, that in equation 3.2

with ω = 0, model system is both linear and homogeneous. Dynamic stimulus input and modeled

neural circuit plasticity yield a nonlinear and inhomogeneous system that readily produces output

that can be evaluated analogously to the output generated in previous model realizations.

In section 3.7.4, dynamic stimulus input led to oscillations in y, and concomitant effects on

the time course of z, with apparently meaningful qualitative correlations with the set of empirical

parameters chosen, in those cases ones interpolated or extrapolated from subject group-level values.

In this section, stimulus input will be modeled similarly, with ω = π, j = 1, and c = 32, except

where noted. These and ϕ will be held fixed so that model behavior and output can be evaluated

and compared under conditions of group- and subject-level parameter value assignment, as well as

assignment of extrapolated and interpolated parameter values similar to those used in section 3.7.4.

Figure 3.7.5 introduces the phase portrait representation used in this section. Figure 3.57 com-

pares the current and prior phase portrait representations. Figures 3.58 3.59 are time series and

phase portrait representations, respectively, of actual subject subgroup and interpolated, as in table
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3.21, parameterizations of the nonlinear inhomogeneous model form. Figure 3.60 modulates net-

work hub connectivity values in a manner similar to figure 3.54. Figures 3.62, 3.64, 3.65, and 3.66

comprise subject individual phase portraits and time series, as well as aggregated time series und

the conditions of dynamic and static stimulus input.

Statistical test results are summarized in tables 3.22, 3.23, and 3.24, and in figures 3.67, 3.68, and

3.69, using both dynamical model output and prior model formulations for comparison, conducting

J tests and leave-one-out cross-validation analysis to assess relative model performance. In this

case, the two best single regressors for predicting subject RBS-R CSS were both from the nonlinear

dynamical model variation, although they were not significantly better than the previously tested

ˆ̇z regressor, despite one, the temporal correlation in z, showing insignificant J test results near the

threshold value with p = 0.06. Stepwise regression of subject RBS-R severity category, however,

identified the nonlinear dynamic model output as superior in terms of predictive power qualitatively,

as summarized in table 3.24.

The continued statistical significance, and even the improvement thereof, of the dynamical model

output with increasing complexity prompted further assessment of model behavior including the

nonlinear reactivity component effected in this section along with an additional stochastic component

added at each time step to the stimulus function, such that homeostatic circadian, infradian, or

ultradian rhythms can be conceived to comprise the sinusoidal component, and the environment to

comprise the stochastic component of modeled stimulus input. This extension is realized in section

3.7.6.
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Nonlinear model dynamic phase portrait and time series representations: In figures 3.57, 3.59, 3.60, and

3.64, phase portraits are shown in which trajectories are color mapped to t, with a gradient from green (≈“screamin

green,” #40ff40) to magenta (pure, #ff00ff) corresponding to increasing t. ode45 in MATLAB with 100 time steps,

broken into segments automatically or deliberately in the case of some graphic representations, was used to produce

the trajectories as well as the raw coordinate data depicted in these portraits, and both linear trajectories and

overlayed scatterplots of the discrete data are color coded so that t = 0 maps to green, whether continuously along

trajectories or discretely sample-wise, and t = 100 maps to magenta. In this way color-mapped phase portraits can

be used for, in addition to portraying the derivative, ż ,of z, of interest given that modeling change in neurocognitive

activity that might be associated with RRB manifestation is the aim in developing the dynamical model, representing

the value of both y and z as plotted along the horizontal and vertical axes of the phase portraits, respectively, while

also directly depicting the time course of model dynamical behavior. Now that color-mapped phase portraits in ż

on the yz axis have been extensively used, this intuitive alteration allows simultaneous spatiotemporal representation

of model behavior at the group, synthesized, and subject levels, maintaining the visual relationship between y and

z in the coordinate plane as in preceding phase portraits and implicitly representing the time series behavior of

both variables. Figure 3.57 on the proceeding page contrasts information in the z-mapped and t-mapped phase

portraits, representing the linear inhomogeneous and nonlinear inhomogeneous model manifestations, respectively.

The cyan—red ż-mapping emphasizes excess motoric reinforcement, hitherto the primary metric of interest. The

green—magenta t-mapping scheme is, as can be seen, useful for representing dynamic equilibrium regimes given

variable stimulus input. Compare the linear model dynamics in the inner two rows, in which phase trajectories in

the z direction are unbounded, rendering the portraits a window only into the ephemeral coordinate plane-bounded

portion of the overall ensemble of time-dependent phase trajectories. The addition of the damping term effortlessly

introduces practicable discrete equilibrium regimes the behaviors of which are themselves assessed and statistically

tested in this section. Explicit plots of z versus t (figs. 3.58, 3.60, 3.62, 3.65, 3.66) are also utilized, color mapped

based on either actual subject subgroup or RBS-R CSS rank, or the alterations to the executive control parameter

f network hub connectivity modulation evoked relative to the group-derived parameter values in section 3.7.4; in

each case blue (medium blue, #0000C0) corresponds to low-RRB subject subgroup membership or network hub

connectivity patterns (f increased relative to subgroup-derived value), and yellow (aureolin, #fdee00) corresponds to

the high-RRB subject subgroup membership or hub connectivity pattern (f decreased).

Figure 3.56: Summary of behavior of the dynamical model when extended to
accommodate nonlinear behavior.
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Figure 3.57: Contrast figs. 3.55, 3.60
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(a) Low-RRB-derived parameters (b) Interpolated parameters; 2/3 low-, 1/3 high-

(c) Interpolated parameters; 2/3 high-, 1/3 low- (d) High-RRB-derived parameters

Figure 3.58: Time series plot of z with model output taken from the extension

of the model with the nonlinear term −ϕz3

|z| appended to ż. This nonlinear

term, along with the time inhomogeneity added in the prior section in the form
of a positive ω, results in dynamic equilibrium behavior, represented by the
oscillations around a fixed z value past a certain t. Color mapping is blue for
low-RRB graph character and yellow for high.
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(a) Low-RRB-derived parameters (b) Interpolated parameters; 2/3 low-, 1/3 high-

(c) Interpolated parameters; 2/3 high-, 1/3 low- (d) High-RRB-derived parameters

Figure 3.59: Extension of the model with the nonlinear term −ϕz3

|z| appended

to ż. This nonlinear term, along with the time inhomogeneity added in the prior
section in the form of a positive ω, results in dynamic equilibrium behavior,
represented by green—magenta color mapping of t of phase trajectories and
point plots.
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Figure 3.60: Comparison of hub nonlinear dynamics.
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The top two and bottom two rows of figure 3.60 are paired as in figure 3.54. The top two rows

depict, first, z time series from a single initial condition with the same parameters and model sim-

ulation as the second row. In fact, the data used to construct the time series corresponding to

each of the two middle row phase portraits were also used to construct the phase portraits them-

selves. While the traditional time series representation allows facile recognition of oscillatory and

drift behaviors, the phase portraits summarize far more information by varying the initial con-

ditions and showing the eventual equilibrium state, given the regularly varying stimulus input,

reached by phase trajectories from multiple initial conditions. However, aspects of the graphs

can be usefully related. For example, when the apparent equilibrium state in the phase portrait

comprises elliptical trajectories, the greater the minor axis of the ellipse, the greater the ampli-

tude of the oscillation of z in the time series. This indeed shows the influence of the executive

subnetwork on the calculated z, as a higher f and stronger executive influence, in the form of ex-

ecutive—motor coupling, yield a greater effect of stimulus input on z. However, as the empirical

parameter values (table 3.16) and previous model output show, the executive influence increase is

lesser in the high-RRB derived model realization than the corresponding increase in motor reinforce-

ment strength. Hence, the true high-RRB subject subcategory model (top two rows, middle column)

shows both a higher average z and higher amplitude oscillations in z than the approximate low-RRB

counterpart (bottom two rows, second column approximates actual low-RRB subject subcategory

empirical parameter values, with f = {1, 0.8073, 0.6667, 0.2167, 0.1084} for the top two rows and

f = {0.1084, 0.2167, 0.6667, 0.8073, 1} for the bottom two, those being identical to the ones used

in figure 3.54. Values for r and s are the actual low- and high-RRB subject subcategory derived

empirical values for the bottom two and top two rows, respectively, with the second column, bottom-

two-row f -value of 0.2167 approximating the empirical one of 0.2003, with the present values derived

from manipulation of the network’s cerebellar and cingulate hubs’ connectivity values in constant

proportion (table 3.21)).

Figure 3.61: Explanation of figure 3.60 on the preceding page, showing t-color-
mapped phase portraits along with corresponding time series plots of the same
data and the relationship between the representations.
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Figure 3.62: Subject-level nonlinear time series.
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Subject time series representations in figure 3.62 are analogous to those described in figures 3.60 and

3.61. Color mapping is according to the scheme described in figure 3.7.5. Oscillation magnitude in

the z direction, apparent equilibrium z value around which model z fluctuates, and the impulse-like

behavior of z in t following simulation initiation, all could form aspects of model relevance, as will be

quantitatively tested in following figures. The phase portraits and their color mapping in figure 3.64 is

likewise that described in figure 3.7.5. As discussed in figure 3.60, correlations in qualitative aspects

between the time series and phase portrait representations can be made. Notice it is especially

clear in the nonlinear, dynamic stimulus, t-color-mapped phase portraits that the models based on

connectivity values from subjects 5 and 25 exhibit dynamical regimes consistent with the implication

as prediction outliers in regression modeling, both in, for example, figure 3.41, using the static

stimulus, linear model realization, and in figure 3.68(a) and (c), generated from the present dynamic

stimulus, nonlinear model extension While the present model, nor any variation, can account for such

subject-specific discrete differences, a more robust and inclusive underlying functional brain network

identified via large subject samples and repeated testing, though not by necessity a substantially more

complex nonlinear dynamical model of such a network, conceivably could resolve regimes of patterned

brain activity at the subject level While machine learning classifiers promise seemingly limitless

pattern identification capabilities, pattern generation, from relatively more complex underlying data

into simpler discrete macro-scale arrangements that nevertheless correspond closely to the underlying

organic system behavior, facilitates human understanding of the relevant phenomena more directly,

and may well lead to an easing of the burden of our robot overlords, and electrical grid, should the

resulting models be, and they might be expected to be, relatively computationally efficient.

Figure 3.63: Explanation of figures 3.62 and 3.64 on the prior and following
pages, respectively.
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Figure 3.64: Subject-level nonlinear phase portraits, ordered as in fig. 3.62.

194



Figure 3.65: Composite graph of all subject time series with the nonlinear dy-
namical model modification and initial conditions {y, z} = {1, 1} Color mapping
is blue to yellow for subject id (RRB CSS rank) from 1 to 27. Amplitude of
dynamic stimulus input increased to 64 to emphasize differences in trajectories
in z (vertical axis) in time. Metrics based on this nonlinear dynamical model
variation produce metrics of z with superior correlation with subject RBS-R CSS
compared to those from the static nonlinear version in figure 3.66, as shown in
table 3.22 in the third row.
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Figure 3.66: Composite graph of all subject time series with the original dy-
namical model and initial conditions {y, z} = {1, 1} Color mapping is blue to
yellow for subject id (RRB CSS rank) from 1 to 27. Amplitude of static stimulus
input is 1, as in the prior static subject-level analyses. The static, equilibrium
measure of z this model yields correlates poorly with RBS-R CSS in comparison
to the dynamic version shown in the time series in figure 3.65, as shown in table
3.22 in the second row.
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Table 3.22: Comparison of single-regressor linear model fit between subject
RBS-R CSS and various instantaneous and averaged metrics based on z. ˆ̇z is
the metric devised and evaluated in section 3.7.3. While z̄ is a more successful
regressor when measured across the first 5 of 100 time steps (with model output
sampled every 0.01 time steps) across initial conditions, the difference is negli-
gible, as table 3.23 shows. While the correlation between t and z for the first
5 time steps is even more strongly correlated with subject RBS-R CSS, it falls
just short of significance in the J-test, also shown in table 3.23.

Measure Time step R2 p

ˆ̇z, linear static model t0 0.591 2.81e-06 ***

z̄, nonlinear static model tf 0.2395 0.009573 **

z̄, nonlinear dynamic model [t0, t0.05f ) 0.5927 2.67e-06 ***

z̄, nonlinear dynamic model (t0.95f , tf ] 0.5822 3.69e-06 ***

z̄, nonlinear dynamic model [t0, tf ] 0.5843 3.46e-06 ***

skew(z), nonlinear dynamic model [t0, t0.05f) 0.537 1.38e-05 ***

skew(z), nonlinear dynamic model (t0.95f , tf ] 0.004191 0.748

skew(z), nonlinear dynamic model [t0, tf ] 0.5238 1.99e-05 ***

corr(z, t), nonlinear dynamic model [t0, t0.05f ) 0.6328 7.08e-07 ***

corr(z, t), nonlinear dynamic model (t0.95f , tf ] 0.02653 0.417

corr(z, t), nonlinear dynamic model [t0, tf ] 0.5326 1.56e-05 ***
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(a) (b) (c)

Figure 3.67: Scatter plots of subject-level RBS-R CSS vs. the raw regressor data for linear models summarized in the (a) third, (b) sixth, and (c)

ninth rows of table 3.22. (a) The nonlinear dynamic average z̄ for t < 5 regressor yields a trivially higher R2 than the statistic ˆ̇z, but predicts the same

subject (ID no. 5) inaccurately. (b) Skewness is negatively correlated with subject RBS-R CSS, indicating a more top-heavy distribution of z with higher

RB manifestation, as would be expected. (c) The time-correlation of z through the first five time steps is the most strongly correlated regressor tested

with subject RBS-R CSS. This supports the further validity of the nonlinear model modification.
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Table 3.23: Comparison between the performance of three regressors: ˆ̇z (table
3.17 and figure 3.41), z̄ restricted to the first 5 discrete time steps (out of 100
in the dynamic stimulus nonlinear model instantiations), and corr(z, t), again
restricted to the first 5 discrete time steps. While the ˆ̇z regressor yielded the low-
ers R2 in terms of the full model, its performance was intermediate with respect
to its predictions of left out observations in leave-one-out cross-validation. The
corr(z, t) regressor was superior on every measure, but its predictions did not
significantly improve those of the ˆ̇z regressor model when included as additional
regressors (p = 0.06179).

Measure R2 (full) RMSE R2 (CV) MAE p (J test against ˆ̇z)

ˆ̇z 0.591 7.7561 0.5210 6.1875 N/A N/A

z̄|t < 0.05tf 0.5927 7.8197 0.5153 6.3530 0.6147 0.6902

corr(z, t)|t < 0.05tf 0.6328 7.3072 0.5732 6.1886 0.06719 . 0.3666
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Table 3.24: Regression of subject RRB-severity category (low = -1, high =
1) on regressors of differing provenience. Comparison of stepwise model per-
formance between power regression models (table 3.8), linear regression models
using the same connectivity data, and linear models using subject-wise nonlin-
ear dynamical model spatiotemporal summary statistics as regressors. The first
model row is for the linear regression of RBS-R CSS on ˆ̇z (table 3.17, figure
3.41). In every stepwise sequential replacement regression model, the regression
model using the dynamical model summary statistic regressors is superior by
every listed measure. Graphs of the first three model steps for the connectivity
linear regression models and the dynamical model output summary statistics
models are shown in figures 3.68 and 3.69.

Data type Form Step RMSE R2 MAE

Model output Linear N/A 0.2722 0.5146 0.2209

Connectivity Power I 0.5705 0.4636 0.4478

Connectivity Linear 0.6036 0.4048 0.4295

Model output Linear 0.5042 0.5812 0.4203

Connectivity Power II 0.4830 0.6154 0.4075

Connectivity Linear 0.4673 0.6412 0.3974

Model output Linear 0.3693 0.7765 0.2746

Connectivity Power III 0.4092 0.7273 0.3416

Connectivity Linear 0.5576 0.5062 0.4034

Model output Linear 0.3326 0.8181 0.2474

Connectivity Power IV 0.4002 0.7392 0.3226

Connectivity Linear 0.5519 0.5210 0.4164

Model output Linear 0.3135 0.8385 0.2276

Connectivity Power V 0.4116 0.7259 0.3251

Connectivity Linear 0.4318 0.7006 0.3384

Model output Linear 0.3127 0.8405 0.2200
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(a) Step I (b) Step II (c) Step III

Figure 3.68: Nonlinear dynamical model output regressor stepwise linear regression model predictions of subject RRB severity category for left-

out observations during leave-one-out cross-validation (red) and after full model construction (cyan) for the first three stepwise model iterations.

Only three iterations are shown as the multiple R2 and root-mean-square error are superior for the third iteration using nonlinear dynamical model

output statistic regressors compared with the fourth and fifth iterations of linear and power regression models using subject connectivity (Pearson

correlation) data. This supports the validity of the dynamical model overall and of the nonlinear extension. Regressors were (a) corr(z, t)|t < 0.05tf ;

(b) {z̄|t ≥ 0.99tf}+ {σ(z)|∀t ∈ [t0, tf ]} (c) {corr(z, t)|t < 0.05tf}+ {σ(z)|t > 0.95tf}+ {σ(z)|∀t ∈ [t0, tf ]}. The step I model final predictions have no

errors in sign (predictions are all negative for low- and positive for high-RRB subjects), whereas the predictions of left-out points have one sign error.

The step II and III models have no sign errors before or after cross-validation prediction and training, cf. fig 3.69.
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(a) Step I (b) Step II (c) Step III

Figure 3.69: Subject functional connectivity (Pearson correlation) regressor stepwise linear regression model predictions of subject RRB severity

category for left-out observations during leave-one-out cross-validation (red) and after full model construction (cyan) for the first three stepwise model

iterations. Regressors were (a) L PT —cingulate; (b) L PT —cingulate + L N acc—L SMA; (c) L PT—cingulate + L IFG—R occipital + Vis —L IFG.

The step I LOOCV predictions have two sign errors, as opposed to one in the pre-training step I model in figure 3.68, and the final predictions have

two sign errors as well, compared to zero for the dynamical model output regressor step I model. The step II model has no sign prediction errors. The

step III model pre- and post-training predictions both have two sign errors, the increase a result of the model selection algorithm not optimizing for this

metric. Notice the different order of inclusion of potential regressors in this linear model stepwise iteration compared to the power regression results of

table 3.7.
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3.7.6 Model extension: stochastic perturbation

The model system 3.11 abstracts two important features, one of the input to the nervous system

and one of the nervous system itself: time-varying stimulus activation of sensory subnetworks and

nonlinearity of the time dynamics of brain function in response to that external stimulus activation.

However, the modeling of stimulus input as the value of a sinusoidal function at each given t is, in

addition to being entirely deterministic, unrealistically trivial in its predictable (lack of) variation

across time. While restricting stimulus input to a measure in R is, even disregarding the trivial

functional form used in the prior model iterations, itself an oversimplification at the neurocognitive

level, modeling stimulus input at the level of individual sensory systems exceeds the hypothetical

functional network’s (from which the dynamical model in all iterations is substantially derived) the-

oretical resolution, since putative “sensory” ROIs are grouped together irrespective of their specific

sensory modality or modalities, and relatively few primary sensory areas were able to be implicated

in the network arrangement effected in section 3.6. However, the final dynamical model extension

in this section is posited to address both the temporal and neurocognitive oversimplification in prior

model iterations. The extended model is described by

ẋ = −ω sin(ωt) + RW(t)−

[

4
∑

l=1

(

(0.5l)RW(t− l)
)

]

ẏ = cx− δy

ż = r|z|+ sz − fy −
ϕz3

|z|
,

(3.12)

where

RW = the random walk function with RW(t) uniformly distributed across [-1, 1] and

l = a time lag.

Hence, modeled sensory subnetwork input now comprises a stochastic differential equation repre-

senting its time behavior; this straightforwardly addresses the temporal oversimplification. And,

because the model stimulus function is only an input to the model, whereas its output is activation

in executive and motor (non-sensory) networks, the stochastic input also resolves the neurocogni-

tive oversimplification within the model abstraction because stimulus function values are no longer

recoverable to the infinite past given known t and initial and current model conditions due to the in-

dependent stochastic component of the stimulus function value at every t. Because historical values

of the stimulus input function are unrecoverable and, therefore, unobservable, no claim can be made

within the model universe regarding their modal composition. Conversely, when the stimulus func-

tion is entirely deterministic and its values, therefore, recoverable to the arbitrary past, its temporal
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autocorrelation could be argued to indicate isolability to a single sensory subnetwork with discrete

neuromodulatory behavior in response to sensory input (of that single modality). The decoupling of

the modeled stimulus input (and therefore sensory subnetwork activation) with its past facilitates

the interpretation that the values are composites representing putative net effects on executive sub-

network activation via an unknown and unobserved functional relationship. Theoretical synthesis

the two disparate sources of modeled stimulus input is accomplished by considering the deterministic

component as internally generated stimulus input from genetically determined homeostatic rhythms

(e.g., circadian cycles), and the stochastic component as encapsulating all other stimulus factors.

The stochastic input likewise decouples model output even further from the statistical correlations

that, along with a priori conjecture as to relevant neurocognitive mechanisms, formed the basis for

the hypothetic network construction and subsequent dynamical model iterations.

While figure 3.64 shows prominent dynamic equilibrium behavior in phase space for most sub-

jects, the introduction of the stochastic component of stimulus input in this model extension ab-

rogates the possibility of discrete equilibrium regimes or other stable behaviors through time. For

comparison, analogous phase portraits to those in figure 3.64 are shown at the group level in figures

3.70 and 3.71; in this case, multiple model runs are depicted, with a given realization of the random

walk function compared between the high- (top) and low-RRB severity category model parame-

terizations in each pair. Again, as in the prior depictions, color mapping of phase trajectories and

overlaid point plots is from early t (mint green) to late t (magenta). Because the same 100 time steps

underlie every model run, the differences in the distribution of green and magenta in phase space

are as significant as the trajectories themselves in assessing modeled dynamical activity within the

functional brain subnetworks. Note spatiotemporal patterns do emerge within parameterizations,

and between parameterizations for a given random walk function realization, because the dynami-

cal properties of the executive and reinforcement motor subnetworks remains intact, and stochastic

stimulus input is constrained to within the magnitude range of the deterministic stimulus compo-

nent, yielding apparently aggregately quasi-stable stimulus- and subgroup-dependent spatiotemporal

regime genera.

At the subject level, 20 runs of the model were executed per subject. Figure 3.73 depicts time

series per-subject as in figure 3.62, with the same color mapping from low (medium blue) to high

(aureolin) RBS-R CSS rank. In this case, however, multiple time series iterations are plotted per-

subject corresponding to different values of the random walk function. Likewise, figure 3.75 depicts

per-subject phase portraits akin to figure 3.64. Again, discrete realizations (“runs”) of the model

for different randomizations of the random walk function values are depicted. In this case, however,
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because each of the 20 runs would have as many corresponding phase trajectories as each per-

subject plot in 3.64, the trajectories are omitted, and only discrete points from the model output

are plotted. Color mapping is as in the preceding nonlinear model extension phase portraits, however,

the background is black (#000000) to increase the contrast between the individual points plotted

and the coordinate plane.

Per-subject model output, specifically that as depicted in figures 3.73 and 3.75, was extracted, and

summary statistics were calculated. Specifically, the mean, standard deviation, skewness, kurtosis,

and correlation between z and t were calculated for each subject for each of the 20 runs, for the

entire run. All such values are listed starting in table A.5 in the appendix. The values are depicted

for each subject against that subject’s RBS-R CSS for each individual model run in line graphs, one

graph for each statistical measurement, in figures 3.76 and 3.77. The mean per subject across all

20 runs is overlayed on the same line graphs in figures 3.78 and 3.79. Only the averaged standard

deviation values seem to suggest a direct linear relationship between RBS-R CSS and the average

statistical measure. However, note that, for the mean, the divergence between the most extreme

runs, those with the maximum and minimum values across runs, seems to increase with increasing

RBS-R CSS. Hence, a statistic, the divergent mean product , was constructed as the product

of the means from the two most extreme model runs, that is, those with the global maximum and

minimum values for x̄. The relationship between this statistic and subject RBS-R CSS is shown in

figure 3.80, against the plot of all values of z̄ as in the upper left plot in figures 3.76 and 3.78, with

the most extreme runs plotted in white (#ffffff).

Regression statistics are summarized in table 3.25 for univariate regression models of RBS-R

CSS on the average values of each of the five summary statistics (mean, s.d., skewness, kurtosis,

cor(z, t)) calculated for each model run, as well as for on the divergent mean product statistic.

Both the mean(s.d.(z)) and divergent mean product statistic regressors were superior in univariate

regression to all regressors summarized in table 3.22, with the latter being the superior of the two.

Leave-one-out cross-validation analysis was performed for the divergent mean product regressor,

with results plotted in figure 3.81. Comparison of the resulting model with all of the next best

analogous univariate models, including that of the mean(s.d.(z)) statistic from the present model

extension, is summarized in table 3.26. It is notable both that the divergent mean product regression

model has a high R2 relative to the other univariate models, and also that it has a higher R2 than

the four-regressor model of RBS-R CSS on the four empirical connections identified and validated

in sections 3.2 and 3.3, respectively; thus, the stochastic model has produced at least one measure

that correlates more strongly with subject RBS-R CSS than do all of the connectivity values, in
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combination with individual coefficients, initially found to be themselves correlated with subject

RBS-R CSS.

Additionally, table 3.27 shows that, while decidedly lesser in statistical significance, one of the five

summary statistic regressors for each subscale score from the stochastic model output in this section

more strongly predicted subject ADOS-G social and communication scores than did the same four

empirical connectivity values, plus the a priori identified left nucleus accumbens—left supplementary

motor area connection. The analysis yielding these results was performed as a preliminary inquiry

into whether or not the current results suggest a “core autistic neurocognitive phenotype,” across

core deficit domains, might be suggested by the dynamically modeled brain activity to an extent

exceeding that intimated by the behavioral measure scores or connectivity values (associated with

RBS-R CSS) themselves. An encompassing test of each univariate regression model, ADOS-G social

subscale score on mean(kur(z)) and ADOS-G comm. subscale score on mean(cor(z, t)), against

the five-connection regression models suggested that the univariate models using the stochastic

dynamical model extension statistic was, in fact, superior to the five-connection model. While

the model p− values for the two relevant models in isolation are at the threshold of significance

given the multiple comparisons, their superiority to the five-regressor model is less ambiguous.

While there is no intrinsic reason beyond the aforementioned potential for the existence of a “core

autistic (neurocognitive) phenotype” to conjecture that the relevant ADOS-G subscale scores should

correlate with the subject connectivity values for the five connections, the salient point is that this is

no less true for the summary statistic regressors, and yet, in the case of both of the ADOS-G subscale

scores tested, one of the five summary statistic regressors explains more of the score variance by

itself than do all five of the (no more likely a priori to be uncorrelated) connectivity value regressors

in a single model. These observations together thus fail to rule out the possibility of an extended

core ASD neurocognitive phenotype.
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Figure 3.70: Paired high-/low-RRB stochastic portraits; ref. fig. 3.7.6.
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Figure 3.71: Paired stochastic portraits cont.; ref. fig. 3.7.6.
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Unlike in figure, e.g., 3.60, all of the phase portraits in figures 3.70 and 3.71 are actual RBS-

R severity-category derived model iterations, this time adding the random walk stochastic term.

Because of the addition of this term, each individual phase portrait represents one unique realization

of model behavior given the randomly determined stochastic portion of the stimulus input the

modeled sensory networks. High-RRB derived parameters are depicted in the top five phase portraits

of each pair of rows with five portraits in each row, the lower row depicting low-RRB-derived-

parameter model behavior under the same stochastic input. Thus, each pair of vertically matched

high- and low-realizations depict differences specific to the behavioral category model parameters

and the behavior they impart on the model given specific stochastic perturbation.

Figure 3.72: Group level stochastic-input model extension, description of phase
portraits with stochastic stimulus input (figs. 3.70 and 3.71.)
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Figure 3.73: Subject-level stochastic time series; ref. 3.74.
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Figures 3.73 and 3.75 are analogous to figures 3.62 and 3.62. The subject-level time series in this

case, rather than representing a dynamic equilibrium regime, depict distinct realizations across

20 runs of the model with independent generation of the stochastic stimulus input, across initial

conditions corresponding to those used for the phase portraits. The subject-level phase portraits,

color mapped as in figure 3.64, are depicted on a higher contrast coordinate plane background

because only individual model output data points are plotted rather than phase trajectories proper;

this allows resolution of detail while plotting many runs with different stochastic stimulus input.

Plotting all complete phase trajectories would result in excessive overlap given the 20 runs. While

the time series tend to diverge for all subjects, a behavior resulting from the random walk input

used to introduce stochasticity to the stimulus function, the phase portraits, conversely, again show

a qualitatively distinct spatiotemporal pattern for the five “high-RRB” category subjects. While

no static or dynamic equilibria are reached, trends can be observed in the data point distribution

consistent with the established theoretical framework used to interpret values of y and z through

time in phase space.

Figure 3.74: Explanation of figures 3.73 and 3.75 on the prior and following
pages, respectively.
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Figure 3.75: Subject-level stochastic phase portraits, ordered as in fig. 3.73;
ref. 3.74.
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Figure 3.76: Plots of subject RBS-R CSS and stochastic model statistics,
horizontal axis subject RBS-R CSS, vertical axis statistics calculated from model
output with the stochastic stimulus input. The twenty runs of the model with
unique random-walk function values, are identified by run number color mapping
from violet (pure, #7f00ff) to orange (pure, #ff7000) for comparison of runs
between plots.
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Figure 3.77: Plot of subject RBS-R CSS with stochastic model z—t Pearson
correlation. Run color mapping is as in figure 3.76.) for comparison of runs
between line graphs.
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Figure 3.78: The mean values of the 20 runs for each subject (in terms of
RBS-R CSS on the horizontal axis) from figure 3.76 in mint green (#00FFC0).
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Figure 3.79: The mean correlation of subject RBS-R CSS with stochastic
model extension z—t Pearson correlation across the twenty runs in mint green.
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Figure 3.80: Correlation of subject RBS-R CSS with z̄ peak difference across
all twenty runs, scaled and shifted to fit in the same window as the values of
z̄ as first shown in figure 3.76. The divergence, observed qualitatively, between
the highest and lowest mean values(white) across runs with increasing RBS-R
CSS motivated calculating this statistic.
The horizontal spacing due to increasing gaps in numerical scores at higher
measured RRB intensity understates the actual strength of the correlation of this
statistic with subject RBS-R CSS; The Spearman’s rank correlation ρ test’s of
the variables p-value = 8.265e-11, indicating extremely high consistency between
the ordering of the statistic and the behavioral score, and see also table 3.25 for
regression testing results.
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Table 3.25: (A) Various statistics used as regressors, all averaged across the
twenty runs of the stochastic model and depicted in the preceding figures, for
predicting subject RBS-R CSS. The divergent mean product regressor (z̄min ·
z̄max) is the best single regressor identified across all model forms, and notably, is
derived from model output with substantial stochastic influences on dynamical
behavior. (B) Power-regression probability model using the divergent mean
product regressor, cf. table 3.7.

(A) Linear regression of subject RBS-R CSS on averaged stochastic

dynamical model statistics

Measure Estimate Std. Error t-value p-model R2

mean(z̄) 0.5692 0.6990 0.814 0.423 0.02584

z̄min · z̄max -0.0066782 0.0007023 -9.509 8.77e-10 *** 0.7834

mean(σ(z)) 1.8555 0.2561 7.246 1.36e-07 *** 0.6774

mean(skew(z)) .004 8.222 0.244 0.809 0.00237

mean(kur(z)) -2.365 1.194 -1.981 0.05865 . 0.1357

mean(cor(z, t)) -59.256 38.556 -1.537 0.1369 0.08633

(B) Power regression of subject RRB severity category on z̄min · z̄max

Measure Estimate Std. Error t-value p-model R2

z̄min · z̄max 6.4357 0.9719 6.622 6.15e-07 *** 0.6226
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Figure 3.81: Using the product of the two most-diverging averaged values for
mean z through the 100 model time steps (evaluated at intervals of 0.01) in
regression prediction of RBS-R CSS provides dramatically better fit than any
other single regressor, and multiple other combinations of regressors: Using all
four empirically identified connections in linear regression prediction of RBS-
CSS yields an unadjusted R2 of 0.731. Only by including the a posteriori left
nucleus accumbens connection, and thus five total regressors, does the full linear
regression on subject connectivity values exceed the predictive power of the
product of the divergent average alone, albeit substantially (R2 = 0.9029).
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Table 3.26: J-tests of divergent mean product regressor against next best model. The divergent mean product regression model
is superior in terms of p-value and both unadjusted (given below), and even more so in terms of adjusted, R2. The divergent mean
product regression even significantly improves upon one including all four empirically identified connectivity values as regressors,
albeit that model likewise does so with the divergent mean product regression model mutually.

Model or regressor p R2 Improvement from divg. mod Improvement to divg. mod Orig. ref . table

Linear static ˆ̇z 2.809e-06 0.591 2.908e-5 *** 0.1128 3.17

corr(z, t)|t < 0.05tf 7.076e-07 0.6328 0.0001157 *** 0.1181717 3.22

mean(σ(z)) 1.361e-07 0.6774 0.001132 ** 0.267840

OLS(ptl.cing
+ ifgl.occr + visocc.ifgl 3.6 log-transformed
+ atfuscl.dmnlpr 4.834e-06 0.731 0.0001458 *** 0.0007532 *** power regression form given)

Divg. mod 8.773e-10 0.7834 — — 3.25
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Table 3.27: Correlations of ADOS-G social and comm scores with stochastic model statistics. Considering each ADOS-G
subscore separately and adjusting for five comparisons within each set of regression statistics, the mean(cor(z, t)) regression model
is significant after multiple comparisons correction for the communication subscore. (B) For both subscores, the best regression
model (M1) on single stochastic model output statistics is not significantly worse than the encompassing model (ME) including as
regressors the five connections used in the stepwise regression analysis in table 3.7 first identified in the initial whole-brain ROI-to-
ROI (section 3.2) and seed-based (section 3.3) connectivity analyses. Each five-connection model (M2), however, is significantly
worse than the encompassing model.

(A) Comparison of regression models for ADOS-G subscale scores.

Regressor: mean(z̄) mean(σ(z)) mean(skew(z)) mean(kur(z)) mean(cor(z, t)) 5 connections

ADOS-G social score

p-value (model) 0.7538 0.5816 0.2237 0.01752 0.9062 0.7373

R2 0.004007 0.01231 0.05863 0.2056 0.0005664 0.1156

ADOS-G comm score

p-value (model) 0.6456 0.3634 0.6840 0.8985 0.006264 0.2948

R2 0.008594 0.03315 0.006739 0.0006637 0.2627 0.2388

(B) Encompassing (ME) test [215] of best univariate (M1) and 5-connection (M2) models.

Social Comm

M1 vs. ME 0.59712 0.37501

M2 vs. ME 0.01967 * 0.01908 *
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CHAPTER 4

DISCUSSION AND CONCLUSION

4.1 RATIONALE AND ASSESSMENT OF METHODOLOGICAL APPROACH

The results of the present study demonstrate the viability of employing a hybrid approach to the

assessment of correlations between functional measures of resting-state brain activity and symp-

tom manifestation in a neuropsychological disorder when such measures are available in rs-fMRI

datasets. Particularly, the methodological approach incorporated traditional rs-fcMRI analysis with

exploratory seed-based surveyal of connectivity to and from putative nodes in a hypothesized brain

network of functional relevance to the particular symptom manifestation, the network itself being

iteratively constructed by observation of the functional connectivity values between the putative

nodes in the exploratory survey and successively guiding subsequent surveyal and search for further

connections and nodes resulting in a discrete and fully interconnected functional network topology,

with connectivity values from both the initial traditional analysis and the exploratory network con-

struction procedure ultimately manifesting in a model system of putative brain activity consisting of

differential equations with nonlinear, time-inhomogeneous, and stochastic member equations, which

was solved numerically via software implementation, and then evaluated in light of its own intrinsic

behavior as well as its correlation to the particular symptom manifestation measures. Individual,

discrete analyses comprising this approach in its entirety were thus:

(i) model-free whole-brain functional connectivity analysis

(ii) calculation of seed-based connectivity metrics on both the connections identified in

the previous step and those chosen a priori based on prior observations

(iii) regression-based analysis of the ensemble significance of the identified connections

in the prior two steps by comparison to homologously derived connectivity measures

based on randomization of the underlying data

(iv) iterative seed-based connectivity analysis considering effects sizes only (threshold-

free) guided by a priori hypotheses of the neurocognitive relevance to RRB mani-

festation in order to generate a hypothetical functional network to be used in
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(v) dynamical modeling of the hypothetical brain network’s behavior by a system of

differential equations representing the time derivatives of network subcomponent

activity with parameter values calculated from the real underlying functional con-

nectivity data in order to generate plausible hypotheses regarding

(vi) statistical correlation between model output and quantitative (categorical or ordi-

nal, in this case) measures of symptom manifestation within the neuropsychological

diagnosis (ASD).

Functional connections are therefore the objects of the original whole-brain search, and their

modeled behavior constitutes the raw data used to generate statistics for the final assessments in

each of the dynamical model realizations. Importantly, this study identified increasing statistical

correlation between the relevant behavioral measures contained in the subject data with model

output generated by successive model forms that were decreasingly analytically connected to that

subject data. Incorporating dynamic stimulus input, introducing nonlinear reactivity of a compo-

nent subnetwork, and perturbing model dynamical behavior with extrinsic stochastic influences all

tended to increase the explanatory power of statistics calculated from model output used as regres-

sors in attempted reconstruction of actual subject behavioral measures. Ultimately, by regressing

the primary measure of interest, the RBS-R composite scale score per subject, on a particular statis-

tic (the divergent mean product; page 205) generated from the full model with time inhomogeneous,

nonlinear, and stochastic behavior components, a greater unadjusted R2 was calculated for the re-

sulting linear regression with one independent variable than for an alternative regression model of

RBS-R CSS on all four connectivity values identified as significant in the initial model-free whole-

brain connectivity analysis that remained significant after the seed-based analysis step assessing the

same ROIs. This result is salient not only because the one-variable regression outperformed the

four-variable regression, but because all four of the regressors in the latter model were identified

specifically because they were correlated with the independent variable (RBS-R CSS) in both regres-

sion models. This permits formulation of a preliminary hypothesis with respect to the dynamical

modeling approach used: Dynamical modeling such as that effected in this thesis might potentially

be able to capture some relevant aspects of dynamic brain function in neuropsychological disorder

symptom manifestation. At worst, it captures relevant statistical correlations and, particularly if

such results can be substantially reproduced using further analogous data, such statistical corre-

lations imply the greater plausibility of real biological significance of modeled output than of an

essential lack thereof. Of the most direct relevance to the central theoretical question developed

in chapter 1, that of the fundamental nature of ASD as a disorder and diagnosis, particular model
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output from the most complex model form outperformed five-regressor models for the prediction of

symptom severity measures in the other two core deficit domains of ASD. While neither any of the

five connections nor the model output presents with a priori rationale for conjectural proposition

of any relationship to measures of symptom severity outside the RRB domain, the connections and

model output equally lack such rationale, and hence, as with the case of modeling RBS-R CSS via

regression on the divergent mean product and other statistical measures from model output, the

modeled dynamical behavior of the brain realized via the chosen approach facially demonstrates

at least the possibility of capturing substantially brain-wide (including cerebrum and cerebellum)

spatiotemporal patterns of neural activity significantly associated with, and statistically accounting

for the majority of the variance in, the available measure of symptom manifestation within one ASD

core deficit domain (RRBs), and less substantially, but still significantly, aspects of such brain-wide

activity correlated with manifestation of symptoms from the other two core deficit domains. While,

given the model construction process, there is little reason to doubt the existence of at least some

real relationship between at least some model output and actual subject behavioral inventory mea-

sures for RRBs, skepticism is warranted for the existence of any real relationship between model

output and behavioral inventory measures for the other core deficit domains; while it is true the

model output decisively outperformed much more extensive sets of regressors comprising the entirety

of the initially identified functional connectivity values in predicting behavioral inventory measures

in those two symptom categories, the model output regressors were themselves at the threshold of

significance depending on the adjustment to the p-values chosen. However, the results still strongly

encourage the tandem pursuit of further insight into whether (i) dynamical modeling such as in this

thesis truly encapsulates measures of brain activity of real biological significance to the precipitating

behavioral observations and (ii) whether such dynamical modeling can independently identify the

extent of the similarity and/or distinctiveness of the neurocognitive phenotype of individuals with

ASD diagnoses or analogous clinically-defined populations of persons.

4.2 BRIEF SUMMARY OF FINDINGS FROM EACH ANALYSIS STEP

In the initial ROI-level analysis, significantly RRB-associated connectivity values were found between

(i) left planum temporale and left supplementary motor area; (ii) left planum temporale and salience

anterior cingulate network; (iii) left pars triangularis and visual occipital network; (iv) right lateral

parietal default mode network (consisting primarily of right angular gyrus) and left anterior temporal

fusiform cortex. Seed-based assessment of these connections using standard statistical thresholding

settings eliminated the connection between the left planum temporale and left supplementary motor
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area as insignificant.

Subject-level connectivity values for each connection, taken as the Pearson correlation between

the time series of the selected seed and the central voxel in the most significantly connected cluster

for each seed for each subject, were extracted and visually inspected for qualitative patterns in the

data. Based on the observation that for all four of the empirically-derived connections, and an

additional connection identified a priori between the left nucleus accumbens and left Brodmann

area 6, exhibited predictable qualitative changes at the literature-derived threshold for high RRB

symptom severity, a linear probability (functional form) or power-regression probability (analytical

form) model was constructed in order to investigate whether or not RRB-severity class could be

predicted by either (i) an arbitrary combination of the connections as regressors, or (ii) specifically

the interaction effects between all of the empirically-derived connections (the most restrictive pre-

dictor that incorporates all of the information from all such connections). In each case, the empirical

model was a statistically significant improvement on the one derived from the initial spurious score

distribution.

Step-wise sequential replacement of individual regressors in the full power regression model,

including the four empirical and one a priori connections as possible regressors, indicated that the

connection value that best independently predicted subject RRB-severity class was the one between

right lateral parietal default mode network and left anterior temporal fusiform cortex, an empirically

derived seed. Hence, the strict superiority of the exclusively a priori seed-based approach to analysis

over the ROI-based empirical approach is rebutted. More integral to the research question, multiple

functionally identified roles for the ROIs forming the nodes of the putative network have plausible

associations with RRBs and/or other core ASD deficits, as discussed in section 4.3.

After confirmation of the statistical significance of the entire putative network comprising the

identified ROIs, exploratory seed-based connectivity metrics were conducted to identify nodes that

might integrate the whole network via functional and/or anatomical connectivity, with the resulting

network shown in section 3.6 as figure 3.21. The network consisted primarily of three functional sub-

network divisions: (i) a sensory/sensory association subnetwork comprising visual cortex, fusiform

cortex, planum temporale, and orbitofrontal cortex (categorized as sensory association given no iden-

tified functional connections to sensory cortex of lower hierarchical levels) (ii) an executive/salience

subnetwork comprising frontal pole, anterior cingulate cortex, and default mode network, and (iii)

a motor subnetwork comprising precentral gyrus and supplementary motor area. Additionally, the

network comprised two essential mediators of network-wide functional activity: nucleus accumbens,

underlying putative reward reinforcement of motoric behavior, and cerebellum, modulating acti-
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vation between subnetwork divisions. The network topology was used to inform composition of a

dynamical model, shown in figure 3.2, which produced output in iterations of increasing complexity

that was more and more statistically correlated with, but less and less analytically associated with,

subject RBS-R CSS, or, that is, subject RRB manifestation severity.

Dynamical model assessment qualitatively suggests that RRBs in part result from greater in-

trinsic and reward reinforcement of motor cortex activation separate from motor cortex activation

associated with executively-mediated goal-oriented responses to stimuli, and a stronger functional

coupling between all network subcomponents. Regression analysis of the final (stochastic) model

implementation suggests that RRBs might also correspond to greater standard deviation in the mea-

sure of excess motor activation, suggesting not only greater overall reinforcement of motor cortex

activation concomitant with more severe RRB manifestation, but greater variability and lability of

activity within motor cortex as well. Similarly, the composite divergent mean product statistic and

regressor suggested increasing divergence of trajectories in phase space, in terms of extrema with

greater absolute magnitudes, similarly correlates to RRB symptom severity. This measure obviously

bears some analogy to standard deviation, but considers only the most extreme trajectories in phase

space, rather than variability resulting from all trajectories. While other statistics generated from

final model iteration output were less successful in predicting RRB symptom severity, model output

statistics were of overall much greater predictive power across symptom domain inventory measure-

ments than the functional connectivity values identified originally as explicitly correlated with RRB

severity, thus precluding the rejection of a hypothesized core ASD neurocognitive phenotype in terms

of brain functional dynamics associated with symptom manifestation.

4.3 FUNCTIONAL SIGNIFICANCE OF CONNECTIONS IDENTIFIED

All of the identified functional connections from the primary connectivity analysis have function

potentially significant in RRB manifestation based on prior research, whether directly identifying

the specific connections and their valences in ASD RRB manifestation, or via functionally relevant

associations. First, given that the imaging data is of subjects at rest, the default mode network

observations should be considered. Within the set of identified connections, those to, from, or

wholly within parts of the default mode network tend to corroborate theories about altered DMN

connectivity in individuals with autism spectrum disorder. A significant increase in intra-DMN

connectivity has been identified in OCD-associated compulsive behavior [182]. The prior result

identified such connectivity between posterior cingulate and ventromedial prefrontal cortex, com-

pared to our finding of potentially comparable connectivity correlations between bilateral cingulate
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and paracingulate gyri (CG, PCG) and left planum temporale, the latter located near, though not

coterminous with, the temporoparietal junction, a proposed DMN-associated region. With appro-

priate caution due to the fact that the specific ROIs are not identical, only functionally related,

the identification of intra-DMN connectivity encompassing proximal and functionally related areas

of cingulate and left association cortex significantly positively correlated with repetitive behavior

severity in a distinct disorder, that is, ASD, to an analogous finding in the literature specific to

OCD affirms the broad role of extended DMN function in this class of behavioral pathology, and is

likewise consistent with previously identified increased within-DMN connectivity concomitant with

greater general ASD symptom severity [176].

Right angular gyrus comprises the other default mode network structure identified, and was

identified in the initial whole-brain search specifically as the lateral parietal default mode network

ROI. While left angular gyrus (see below) appears to have multiple higher-level language functions,

the functional role of left planum temporale (PT), plausibly DMN associated due to its proximity to

temporoparietal junction, is even more straightforward, forming the functionally defined Wernicke’s

area which is the core receptive language processing area that complements the productive-oriented

Broca’s area. The left PT—cingulate cortex connection (spanning multiple bilateral cingulate re-

gions) contains two regions associated with the perception of coherent motion [252]. As discussed

below, multiple other ROIs identified in significantly RRB-correlated connections also have associa-

tions with multimodal spatial perception, and, while not necessary motion perception, the execution

of coherent patterns of motion at a fundamental level (that is, not goal-oriented action plans).

The other, and most specific, identified connection involving the DMN, in this case the trans-

DMN left fusiform cortex to portions of right angular gyrus, is more novel, but nevertheless implicates

several plausible mechanisms for RRBs and has been functionally associated with them [124]. Most

generally, the dorsal stream, incorporating parietal and premotor cortex and including specifically

angular gyrus, effects cortical representation of object locations and calculates how potential courses

of action would interact spatially with those objects in those locations. It is contrasted with the

ventral stream, which incorporates medial temporal and limbic structures, and demonstrates a pref-

erence for object identity and function representation [238]. Fusiform and cingulate cortex, located

medially, are functionally involved in ventral stream cognitive processing. The fusiform face area

(FFA) is a well-established region in fusiform gyrus that shows preferential activation to human

face stimuli, and has been implicated in ASD social deficits. This region, however, typically shows

right lateralization, and is localized to the portion of the fusiform gyrus around the temporooccipital

junction [253], rather than in the anterior part of fusiform cortex, as found in the ROI-level search
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(section 3.2). However, before network-level thresholding of the ROI-level results, right posterior

temporal fusiform cortex was also identified as an ROI with significantly positively RRB-associated

connectivity, but to cerebellar regions, which were excluded from the initial analysis. Increased

FFA (right)—executive control network connectivity was found via fMRI in subjects viewing social

rewards in comparison with FFA—DMN connectivity [254], whereas the connection identified in the

present study suggested weaker left FG—right DMN and angular gyrus connectivity in individuals

with higher prevalence of RRBs. Right angular gyrus has been associated with the representation

of intended versus actual consequences of self-initiated actions [255], indicating potential signifi-

cance to the types of motor behaviors denoted as RRBs, but further research is warranted into the

potential association of the specific connection identified with RRBs more generally. Seed-based

connectivity analysis, before correction for multiple comparisons, did identify significantly nega-

tively RRB-correlated connectivity between right frontal pole (FP) and both left and right fusiform

cortex, although the voxel clusters were small in size. Nevertheless, the potential significance of FP

in immediate action execution [256] provides an at least cursory rationale for further investigation,

in addition to that pertaining to other frontal regions associated with physical action planning,

in the context of RRBs. Most substantially, perhaps, is that FP activity has been found to be

predictive of actions before subjects are consciously aware of their own intention to perform said

actions [257]; regardless of the many implications of this finding, it suggests that RRBs, which are

not deliberately planned to attain specific goals but rather apparently spontaneous, compulsive, and

purposeless, may well impute functional significance to a region with such a functionally identified

role. As might be noted in figure 3.6, table 3.13, equation 3.4, and, most explicitly, in table A.2, the

connectivity values at the subject and group levels between FG and FP were incorporated into the

model parameter derivation (and associated functional network specification).

Given the supervisory role of right AG, the functional connectivity between it and left FG, and

between FG and FP with the latter’s role in spontaneous action execution, the connections between

these regions offers rationale for further characterization in RRBs; differences in time-domain be-

havior of fusiform gyrus has been associated with RRBs in ASD, specifically, decreased variability

of temporal dynamics [124]. The specific connection identified (left FG - right AG) too is perhaps

more nebulous in light of the literature, but reduced FG connectivity in ASD rs-fcMRI has been

identified [178]. And indeed, there are again multiple plausible mechanisms that could associate the

differences in functional connectivity between the two structures with RRB manifestation. Left FG

itself, most intriguingly, has been found to be a highly specific trimodal sensory integration center in

object manipulation tasks [258], integrating visual, auditory, and haptic sensory information of ma-
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nipulable objects. ASD is associated with sensory abnormalities within and across modalities [259],

and hence, cortical processing centers that integrate information from multiple distinct modalities

are of interest regarding a putative ASD “core phenotype.” Structural plasticity in AG is associated

with motor learning that requires spatial coordination, for example, jogging [260], and hence, the

repeated performance of stereotyped motions too likely involves AG to some extent. AG, like FG, is

multimodal with respect to its sensory substrates. Therefore, connectivity between the two regions

doubly implicates multisensory processing, already well documented to frequently be aberrant in

ASD.

Hypoconnectivity in visual cortex in ASD has been identified via rs-fcMRI [178], consistent with

present results. Visual-specific processing centers associated with reading (Wernicke’s area/PT and

AG) and in coherent motion detection (CG and Wernicke’s area), multimodal visual areas (left FG)

associated with object perception all imply that RRBs may involve differences in perceptual process-

ing centers of cortex, a finding consistent with the fact that the visual occipital (VOcc) network itself

formed a significant ROI in one of the empirically identified connections, in this case to left inferior

frontal gyrus (IFG), specifically, when correcting for multiple comparisons, between left IFG—right

VOcc. Moreover, left IFG contains Broca’s area, constituting the third strongly language-associated

region identified in the present results after AG and PT. This connection in particular forms part of

the dorsal visual stream, which is associated with the execution of precision-requiring manual actions

[261]. As with the previously discussed connections, this provides a direct and specific rationale for

the investigation of these two areas and their interactions with respect to RRBs: Given their stereo-

typed nature, they are executed with a high degree of “precision” even if with no apparent utility or

purpose. Visual cortex exhibits functional significance spanning ASD core deficit categories; reduced

visual cortex—salience network connectivity, consistent with that identified as associated with RRB

severity in the present research results, has been observed to correlate with sensory abnormalities

in ASD. Furthermore, circumscribed restoration of function to specifically this set of connections

correlates with exacerbation of social deficits, additionally providing a mechanism of heterogeneous

presentation not inconsistent with the observed weak negative correlation between RRB severity

and communication deficit severity noted in the present results [262].

The a priori identified connection between left nucleus accumbens (NAcc) and left Brodmann

area 6 (BA6) further supports assignment of significance to motor coordination-specific brain areas in

RRB neurocognitive theories; BA6 overlaps with the supplementary motor area, which is involved in

the planning of coordinated movement. Recent advances in high-resolution DTI techniques applied

in human neuroimaging have revealed significant connections via corona radiata to the pyramidal
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tract. This directly facilitates functional involvement of BA6/SMA in the actual execution of co-

ordinated movements via anatomical connections, lending yet more theoretical justification for the

plausible conclusion that such mechanisms are significant to RRB manifestation. Furthermore, while

FP is functionally associated with spontaneous movements, BA6 has greater functional specificity

to planned movement, albeit also to coordinated movement generally, as in the case of FP, and also

the IFG—right VOcc connection. In the case of BA6, though, the other node of the connected pair

is part of the striatal reward circuit, of paramount significance to contemporary explanations of the

putative broader ASD cognitive and behavioral phenotype [263], and to specifically motoric behav-

iors. In view of the positive correlation between RRB severity and the strength of this connection,

this result has the most straightforward putative mechanism: RRBs are more strongly reinforcing to

individuals who demonstrate them more intensely. While the data in this study are of the task-free

state, as SMA is involved in not only the execution, but the planning of coordinated movements, this

is consistent with a hypothesis that high-RRB severity is at least in part dependent on a cognitive

mechanism that reinforces the intent to perform such actions, which itself would suggest activation

of reward pathways upon the actual execution of the actions. Functional and anatomical similar-

ities are shared in skin picking in Prader-Willi syndrome in increased connectivity between basal

nuclei (putamen) and sensorimotor cortex, and aberrant amygdalostriatal and hypothalamostriatal

functional connectivity [190].

The cerebellar hub identified in the hypothetical network in 3.6 has significant connectivity

to left fusiform cortex and right lateral parietal default mode network, which comprises parts of

right angular and right supramarginal gyri. The specific interest of this pattern of connectivity

with respect to ASD RRBs is that right angular gyrus has been associated with “out of body

experiences [264]” through a mechanism thought to involve anomalous integration of vestibular

and somatosensory information. The putative circuit comprising cerebellum, fusiform cortex, and

angular gyrus substantially overlaps functionally with these roles, and hence the presence of this

circuit within the larger network likewise implicates changes in the self-perception of the body in

sensory terms, an association that could conceivably subserve an impulse to engage in RRBs as they

result in somatosensory and vestibular feedback to the one initiating them, which may consequently

result in reward pathway activation, or suppress anxiogenic influences or feelings of restlessness.

Further evidence for the significance of cerebellum as a mediator comes in the fact that it, along

with other sensorimotor areas identified here, is implicated in differential activation between real and

imagined movement, in which cerebellum itself does not seem to participate in imagined movement,

while sensorimotor cortical areas do [265]. Given the fact that motor planning, spatial perception,
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haptic feedback, and self-awareness of bodily motion have been functionally encompassed by the

ROIs identified, as noted above, overlap with a functional network that differentiates between the

imagining and execution of coordinated movements, perhaps especially in the context of an MRI

scanner in which subjects are told not to move, and yet some of those who graciously volunteered

to lend their brains for this present study have a particular proclivity for doing so, is a potentiality

that further reinforces conjectures of the fundamental significance of the network nodes identified in

subserving ASD RRB manifestation in some capacity.

Functional brain connections identified in this research correspond also to many identified in ASD

neurocognitive research more generally. Results of a single study particularly consistent with the

present ones are those identifying the dynamic functional connectivity associations between left pars

triangularis, left middle occipital gyrus, left middle orbitofrontal cortex, right supramarginal gyrus,

left cerebellum VIII, and cerebellum X, and autism spectrum disorder diagnosis. The listed ROIs

correspond to, from this study, left pars triangularis (identical), visual occipital cortex (overlap-

ping), orbitofrontal cortex (overlapping), right lateral parietal default mode network (overlapping),

left cerebellum VIII (identical), and cerebellum X (identical). In addition to these six areas of

consistent findings, the study also identified left postcentral gyrus and left supramarginal gyrus.

Thus, the present study mutually identified six of the eight ROIs functionally implicated in ASD

in the comparison study. Importantly, the ROIs in the study were identified in terms of dynamical

functional behavior [266]. However, the association was with ASD diagnosis, as noted, not RRBs

specifically. Nevertheless, the present results and those of this source do encourage further investiga-

tion of functional and dynamic connectivity associations between these ROIs, both in ASD generally

and in RRB presentation in the disorder.

From these cumulated patterns, summarized in figure 4.1, emerges a coherent constellation of

functional relationships between the relevant ROIs that has multiple identified physiological mech-

anisms which facilitate its correlation with RRB manifestation in ASD. Moreover, in one important

respect, they are compatible with the existence of a “core phenotype” in ASD, although not one

that is necessarily clear or straightforward. The fact that the majority of major language areas

were implicated in the present results (figure 4.2) accords with the observation that there was, it

was determined, a statistically significant relationship between subject RBS-R CSS and ADOS-G

communication score in the present results. Furthermore, the lack of such an association between

RBS-R CSS and ADOS-G social score is likewise consistent with this formulation: few areas directly

related to social interactions were explicitly identified, although the potential significance of the

fusiform face area cannot be entirely dismissed given its pre-network-thresholding identification in
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the initial ROI-level analysis (section 3.2). However, the relationship between symptom severity in

the communication and repetitive behavior domains was a negative one; the connectivity results

do not suggest in any substantive way that they represent a compensatory mechanism between

the two deficits, neither a coextensive one, but the preservation of, or even excellence in, cognitive

and behavioral capacities with adaptive utility despite some general pattern of neurocognitive traits

typically construed as deficits is consistent with adaptive accounts of aspects of ASD evolutionary

etiology, the notion of which is discussed under assortative mating theories of ASD in section 1.2.2.

These results therefore permit a coherent narrative account of a putative brain network that

presents with significant alterations within a subject population of those diagnosed with ASD as RRB

severity increases, and in turn, an account of a plausible behavioral and cognitive ASD phenotype

that comprises co-varying (but not linearly co-varying) measures of symptom severity. While the

results are not tantamount to the isolation of a consistent and discrete pattern in which all three ASD

core deficits reliably co-vary with one another, they are nevertheless not entirely inconsistent with the

possible existences of such a cohesive, albeit frequently apparently idiosyncratic, varied phenotype.

In a sense, that is, ASD neurocognitive diversity may well, given the size of the relevant population,

correspond in at least qualitative respects with that of the population exhibiting putatively typical

neurocognitive characteristics. Thus, we can neither rule in, nor rule out, a “unitary” pattern of

connectivity alterations that correlates strongly with inclusive ASD symptom severity measures,

but we can posit that at least one network discretely associated with two of the core deficits, if

in an unexpected way for at least one of the deficits, manifests in these results. The negative

correlation between the two behavioral measures actually, especially in light of the multiple language-

associated ROIs identified when calculating connectivity metrics associated with a distinct symptom

category, arouse novel inference as to the potential functional, if not behavioral in the expected

manner, significance of the identified network in aspects of both RRB and communication deficit

manifestation in ASD, although, as yet, no explication of such significance can be forthcoming.

4.3.1 Evaluation of identified connections in the context of ASD RRB FC research

Tables 1.5 and 1.6 summarize some of the connectivity results observed in past studies of their corre-

lations with ASD and RRBs, respectively. Table 1.5, capitulating intrinsic grey matter connectivity,

exhibits overlap with multiple of the ROIs comprising nodes of the identified network: precentral

gyrus, posterior parietal cortex, temporoparietal junction (that is, at the boundary of planum tem-

porale), and orbitofrontal cortex. While there is no direct comparison possible given the specific

connectivity metrics in each case, plausible accounts can be given. For example, decreased mean
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separation distance among motor areas, as identified in the summaries above, is not inconsistent with

the present results, as such would facilitate intrinsic motoric correlations in activation of relevant

cortex. Additionally, as multiple RRB-associated intrinsic grey matter connectivity differences were

identified, they will be covered in turn.

Orbitofrontal cortex, temporoparietal junction (that is, the border of planum temporale), poste-

rior parietal cortex, and precentral gyrus reflect RRB-associated differences in intrinsic grey matter

connectivity and also in corticocortical or corticostriatal functional connectivity as assessed here.

More extensive contextualization of functional connectivity results can proceed in light of table

1.6; given the numerous regions identified across methodologies, substantial overlap exists with the

connections herein identified. All primary dorsolateral frontal areas, salience/anterior cingulate,

inferior frontal gyrus, angular gyrus, cerebellar divisions, caudate nucleus and putamen of striatum,

Wernicke’s area, fusiform gyrus, precentral gyrus (primary motor cortex), and medial prefrontal

cortex (coextensive with paracingulate gyrus) appear both in the present results as either originally

identified nodes of significant connections or in the hypothetical network, and in table 1.6’s summary

of RRB-associated connectivity changes. While the results in the table are not all for ASD, both the

ASD-specific and common features of RRBs in the multiple disorders presenting some manifestation

of them are of interest, and the whole of the results summarized are hence considered. Connection

valence will next be compared between the summary table and present results.

The extent of non-analogy of many of the connections described and connectivity analysis meth-

ods employed in the full summary constrains the mutuality of interpretation with some aspects of

the findings in this thesis, but some observations and patterns correspond rather directly to both

other relevant research findings and specifically those in this thesis. First, decreased functional con-

nectivity between posterior cingulate and lateral parietal default mode network (angular and part

of supramarginal gyri) was observed in the qualitative network seed-based search and is depicted

in figure 3.18 and is exactly identical to the pattern in the summary table, also using RBS-R as

the behavioral measure. Partial overlap with increased salience network resting state functional

connectivity with higher RRB severity was seen specifically between anterior cingulate and planum

temporale. Likewise, the inverse pattern has also been observed, and is represented in the anterior

cingulate connectivity to visual cortex in these results. The table summarizes many more results in

the basal ganglia than were observed in this analysis, but the connected node in some cases is an

ROI identified here: fusiform gyrus (albeit right) and primary motor cortex are noted to have altered

functional connectivity with basal nuclei with RRB severity. The present results thus do tend to

corroborate, in light of all of the above, important aspects of connectivity priorly identified to covary
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with RRB severity. Full incorporation of the spectrum of the RRB-relevant connectivity findings

informing this thesis generally into an incipient, to the field, but specifically to this researcher, the-

oretical framework that relates current and, to the greatest extent possible, prior findings bearing

on the research question writ large, commences section 4.5.

234



• Left planum temporale—cingulate cortex: Positive correlation between connectivity and both

ASD severity, and specifically RRB severity consistent with prior research regarding compulsive

behavior in OCD that also identified increased within-DMN connectivity strength for greater

symptom severity; perception of coherent motion and language; consistent with within-

DMN hyperconnectivity

• Left inferior frontal gyrus—right visual occipital network: Functionally associated with pre-

cision manual movements, of which RRBs are plausibly an aberrant subtype; execution of

precise motions; language and visual processing; indicative of long-range hypocon-

nectivity

• Left fusiform cortex—right angular gyrus; bilateral fusiform cortex—right frontal pole: Func-

tionally associated with spontaneous motor behavior, sensory integration in object manipula-

tion, comparison of intended and actual results of actions; execution and monitoring of

motor behaviors; language, visual, and multimodal sensory integration; DMN to

extra-DMN connectivity; indicative of long-range hypoconnectivity

• Left nucleus accumbens—left Brodmann area 6: Reinforcement and reward pathway, planning

as well as execution of coordinated movement, direct connection to descending motor pathway;

reward/reinforcement and motor planning/execution

Figure 4.1: Summary of plausible relations of empirically and a priori identified
connections to RRB severity
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• Spontaneous actions and coordinated movement: Brodmann area 6 (supplemental motor area),

inferior frontal gyrus-to-occipital cortex connection, right angular gyrus, frontal pole

• Vestibular and somatosensory processing/out-of-body experiences: Right angular gyrus, cere-

bellum, fusiform cortex

• Multimodal sensory integration: Angular gyrus, fusiform gyrus, cingulate gyrus

• Reward processing: Nucleus accumbens

• Visual processing: Visual occipital network, angular gyrus, fusiform gyrus, Wernicke’s

area/planum temporale

• Language areas: Broca’s area/inferior frontal gyrus, Wernicke’s area/planum temporale, an-

gular gyrus

Figure 4.2: Summary of functional cognitive/behavioral processing roles of
identified connections and ROIs of plausible significance to RRB severity.
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4.4 CLEAR IMPLICATIONS OF ALTERED BRAIN NETWORK DYNAMICS IN

ASD RRBS

The substantial alterations in the dynamic behavior within the proffered model when using no precise

parameters except those derived directly from the connectivity analysis were furthermore found to

pertain to the known manifestation of RRBs in ASD via quantitative abstraction in the model. That

is, functional activation in salience, executive, and motor-reinforcement subnetworks based on the

calculated network connection strengths and a simple, time-varying stimulus input function, both

in the simple linear system and in the nonlinear model system, corresponds to subject behavioral

measures of relevance (RBS-R CSS or subgroup). The relative simplicity of the model definition

(though not all of its parameter derivations) in comparison with the visually busy schematic rep-

resentation of the network, despite the fact that the latter actually implicates relatively few total

brain areas, shows that there are plausibly large-scale, self-organizing principles that underlie the

manifestation of RRBs in ASD under various conditions, to various extents, and in various manners.

This comports to expectation, as such dynamics are now thought to underlie in the brain essentially

every behavioral function of recognizable specificity. Physiological plausibility is further enhanced

by the fact that RRB-associated differences in dynamical behavior of several of the identified cortical

areas in the network topology have been recently observed [124].

Furthermore, the dynamical model successfully predicted subject-level RRB severity, in the form

of subject RBS-R CSS, with increasing success in concert with increasing model complexity and in-

corporation of more substantial extrinsic sources of influence on its spatiotemporal behavior. Beyond

this incipient success, functional model parameters, such as a putative measure of executive/salience

network influence on behavior, correspond straightforwardly to electrophysiological measures consis-

tent with response inhibition deficits in daily life among individuals who have been diagnosed with

ASD [267]. That is, while model behavior from a system intentionally contrived to minimize the

dimensionality of its inputs and outputs is of absolutely no analogy to electrophysiological (or other)

recordings of actual humans, these recordings yield, at present, values, sometimes many, stored as

binary computer data. It is the valence of the computational effort—human and machine, abstract

data representation, concrete data representation—on charts at conferences, and correlation with

real neurocognitive systems that is (it is hoped) shared. At present, the interest is in establishing

extrinsic model validity, or the lack of it, and further refining its analytical form, the latter generally

construed as comprising as great an increase in power and utility with as little an increase in com-

plexity as possible (it is the modeled system, not the model system, that is complex). Because such
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a goal rests on at least cursory success of the approach, the remainder of the discussion turns first

toward the neurocognitive, given such is the field of this research, next toward potential epidemiolog-

ical and nosological, and, at last, to conceivable eventual clinical applications of the implementation

of said approach.

In summary, whole-brain connectivity analysis apparently successfully identified multiple func-

tionally related and interconnected brain regions. Then, after various efforts were directed towards

ensuring, and then increasing, statistical confidence in the results, incorporation into a model neu-

rocognitive network of conjectured significance to the category of deficits, RRBs, as diagnostically

defined in the disorder, ASD, was achieved. Along with a priori -identified nodes, and those iden-

tified in functionally and anatomically guided seed-based searches across cortex and cerebellum to

identify overlapping functional divisions, whole-brain, hypothesis-free connectivity analysis yielded

the constituent network nodes. The network, identified in the first place in terms of the functional

relationships between its components, was topologically organized such that the interactions be-

tween discrete smaller-scale aggregates of a few functional units within it could be modeled in terms

of the reciprocal dynamical influences between them. A dynamical model followed from this, with

parameter values derived from the connectivity metrics used originally to construct the network,

between ROIs and along all paths between functional subnetworks for low- and high-RRB subject

subgroups, yielding a system of differential equations that intuitively calculated output conceived as

an abstracted extrinsic physiological correlate of motor RRB propensity and motoric behavioral la-

bility. Such output correlated with real subject behavioral measures, confirmed via cross-validation

analysis, in both linear, and nonlinear system variations. Given the wide anatomical distribution of

the hypothesized network across cortical, subcortical, and cerebellar areas in the brain, this compels

hypotheses such as that ASD symptoms are in the aggregate contingent on influences arising out

of the whole complexity of the brain, a system that intrinsically dynamically reorganizes itself into

transient equilibrium states based on cognitive and behavioral needs and conditions, and therefore

ASD symptoms can, like the gross dynamical behavior of the whole brain, be conceptualized and

explained as arising from particular transitions between qualitative regimes of dynamical behavior in

a time-dependent system (the extended functional network, specifically the actual brain functional

behavioral from which it is putatively abstracted, the latter itself also within the universe) realized

follow appropriate perturbations within multiple functionally interdependent subsystems (individ-

ual functional connections) that collectively spontaneously shift the system from one metastable

configuration into another upon reaching a critical threshold. In a simplistic, but not inappropri-

ate conception, the observation that 35% and 70% of the model’s time derivatives’ mere initial
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values across phase space correlated to net motor cortex excitation for the aggregated low- and

high-RRB-severity subject subgroup-derived model implementations suggests the potential for an

equilibrium-shift etiology dependent on the complexity of the neurocognitive agent from whom it

arises. Furthermore, and more specifically, graphical depictions of the data suggested that especially

severe restrictive and repetitive behavior extent might be an emergent phenomenon in which a trend

towards a certain pattern of functional connectivity in the brain eventually reaches a critical point

where the typical network is substituted with an equivalent antinetwork. Most importantly, without

the high-RRB subgroup, little could be said about the connectivity pattern associated with RRBs in

this dataset, because the present data are consistent with a (relatively) distinct phase transition in

putative network dynamics rather than a linear or other gradual change. The fact that intrinsic brain

activity is theorized to be related to task-specific activity through various mechanisms, and itself is

postulated to represent a large portion of the brain’s overall metabolic activity, the identification of

networks associated with disease states in this way provides a plausible method for elucidating real

changes in intrinsic brain dynamics that lead to observed symptoms in clinical and real-life contexts

[163]. The plausibility of this idealization is more consistent with the known temporal dynamics

of the brain as a system with distributed interdependent subcomponents than those that implicate

functional or anatomical changes in one or a few cortical areas as underlying ASD pathophysiol-

ogy: Even if ASD did arise from such a mechanism, the functional implications of the mechanism

would not be constrained to the affected structures. An intrinsic organismal bias towards homeo-

static regimes would engage multiple compensatory physiological responses resulting in widespread

downstream alterations to overall brain structure and function. This is consistent with, though not

proven by, a decreased threshold for reinforcement motor activation combined with increased exec-

utive network influence in the dynamical model. For RRBs to arise as a result of multiple discrete

anatomical differences in circumscribed brain areas would imply the separability of the ensemble of

changes to the motor reward, intrinsic motor, and executive control functional circuits, but this is

inconsistent with the mere fact that to these circuits are functionally interconnected with both each

other and themselves, as exemplified by the possibility of multifold reciprocity between subnetworks

functionally mediated by cerebellum in the proposed network functional connection topology.

As promised, the full neurocognitive assessment is now turned to, albeit by synthesizing the

posited analytical approach with brain metrics with particularly analogous attributes. Diminished

frequency-dependent higher-level cortical feedback modulation of distinct feedforward somatosen-

sory streams was observed to potentiate the feedforward output directed from primary to secondary

somatosensory cortex, resulting in exaggerated measured MEG response following a carefully de-
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signed tactile stimulus with specific temporal structure in children and young adults diagnosed with

ASD [268]. This corresponds in the spatial (between brain regions) domain to the modeled asso-

ciation between executive network influence on motor network (model parameter f) with damping

of intrinsic motor activity under appropriate stimulus input conditions, but a concomitant greater

activation lability of motor cortex with respect to stimulus magnitude necessarily follows, thus

yielding, paradoxically, values for “executive control” generally much lower for the low-RRB subject

subgroup. This indeed fits the general mechanistic principle in that, though the model considers

positive executive and salience activation due to positive stimulus input to represent an increase in

executive control over motoric output from cortex, a tighter coupling of sensory and association cor-

tex with motor cortex, consistent with this construal of “increased executive control,” could equally

be interpreted as “exaggerated stimulus responsivity,” as actual observations show to be possible

in fairly exact terms. And thus, in light of the face validity of the model established vis-à-vis the

contained preliminary evaluation spanning several quantitative and qualitative milieux, section 4.5

below reorients finally the discussion of results towards the brain and ASD-associated cognitive

theories relatively exclusively.

4.5 AN “RRB NETWORK?”

The present results suggest a pattern of altered cortical connectivity associated with high RRB

trait presence. Specifically, a fairly consistent pattern of connectivity value sign inversion above the

threshold RRB trait level, fostering ambitions towards further characterization of such a pattern in

terms of the brain functional connections encompassed by it. This ensued after initial consideration

and testing of the independent statistical significance of the observed connectivity correlations in

light of the iterative and numerical approach taken in preliminary analysis. Of note, divisions of

cerebellum were identified as forming a functional hub between network subdivisions as conceived

in the posited topological functional relationship in the hypothetical network, consistent with recent

lines of evidence; in addition to anatomical differences and intrinsic connectivity differences within

cerebellum, incipient evidence has reinforced confidence in a pattern of consistent alterations of

corticocerebellar connectivity in ASD [269].

The network identified comprises nodes with functional significance previously identified in the

literature with respect to RRB-like behavior in other disorders, as well to relatively specific plausible

neurocognitive mechanisms that might underlie RRBs. Furthermore, none of the nodes or connec-

tions identified were inconsistent with the proposed general pattern of motor-, reward-, and sensory

integration-associated cortical areas forming the functional cognitive basis high RRB symptom pres-
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ence. While currently, these results in concert are subject to many limitations, including appropriate

caution in interpretation in addition to, for the time being, no validation of the results using external

data, statistical modeling and testing results necessitate that the more reckless interpretation is that

there is no significant association between RRB severity and the identified brain connections and

the network which they are proposed to form.

The inherent advantage of the network search and formation process, informed to the extent

possible by anatomical, physiological, and cognitive factors bearing on its plausibility, is that, since

the largest functional connectivity effect sizes between candidate ROIs considered for inclusion as

network nodes guide the search, along with connectivity overlap with prior nodes, rather than

“significance” construed and operationalized however, the resultant network should accompany surer

assertions of neurocognitive relevance than one elucidated via block box techniques. Moreover, since

the ensemble connectivity patterns in subnetworks are extracted, abstracted, and dimensionally

reduced, significance can be evaluated in terms of functional behavior independent of the network

search. Hence, to satisfy the criterion of surer assertions of neurocognitive relevance, they follow.

4.5.1 Implications of network-level findings on “theories of autism”

With alterations within the default mode network, between the default mode network and other

nodes, and between nodes entirely outside the default mode network all identified, several patterns

of which correspond to prior findings, the most plausible interpretation of these results in the ag-

gregate is that changes in the connection dynamics between nodes in an underlying brain network,

of which at least some of the identified ROIs comprise at least a part, form the neurocognitive basis

of RRB manifestation and presentation in ASD, and furthermore, that these changes in connection

dynamics are likely to be associated with, if not causally bound to, symptom presentation in the

other core deficit categories. This tends to be confirmatory of putative “connectivity theories of

autism,” themselves consistent with an etiopathogenesis of synaptogenetic origin. The individual

connections identified in the initial whole-brain ROI-level functional connectivity analysis have been

discussed in terms of functional significance in section 4.3.1, but the entire-network functional ar-

rangement, especially given the findings of significance from the modeling derived from it, merits

further targeted commentary as to its theoretical implications on autism neurocognitive heterogene-

ity and manifestation, and therefore, on putative theories of autism. The most salient feature of

the proposed functional network is the centrality, in terms of node degree (functionally significant

connections to other network nodes) of the putative cerebellum hub. As cerebellum has been re-

peatedly implicated in psychopathology across diagnoses and symptoms, its functional significance,
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in ASD in general, and in RRBs both in ASD and other neurocognitive disorders, will be discussed

in some detail.

Cerebellum’s centrality in the hypothetical network is unsurprising given its multiple roles across

cognitive domains. These include ones related to symptoms that have been clinically associated with

cerebellar lesions, which include, quoted here at length:

. . . hyperactivity, impulsiveness, disinhibition, anxiety, ritualistic and stereotypi-

cal behaviors, illogical thought and lack of empathy, . . . aggression . . . irritability

. . . ruminative and obsessive behaviors, dysphoria and depression, tactile defensive-

ness and sensory overload, apathy, childlike behavior, and inability to comprehend social

boundaries and assign ulterior motives [270, p. 253] (emphasis added).

It hence seems improbable for cerebellum to lack a major role in ASD deficit manifestation and

its neural substrate. While RRB-related deficits are emboldened, the list also includes symptoms

similar to those in the other two core deficits of ASD, suggesting that the putative “cerebellar theory

of autism” possesses substantial functional neurocognitive explanatory power. Most substantially

confirming this putative cerebellar role is the fact that conditional knockout models in mice inacti-

vating PTEN within only cerebellar Purkinje neurons, the output cells of cerebellar cortex to deep

cerebellar nuclei with a morphology characterized by effusive dendritic arborization and consequent

diversiform enmeshment with afferents of cells (parallel and climbing fiber neurons) themselves trans-

ducing afferents of cerebellar cortex, resulted in substantial presence of ASD-analogous behaviors

across ASD core deficit domains [88]. Similarly, deficits in only the RRB core deficit domain were

observed in Purkinje neuron Shank2 knockout mice [89]. Comparison between mice genetic lines

with high or low social behavior administered buthionine sulfoximine to reduce antioxidant activity

and induce oxidative stress presented with lesser presence of antioxidant species and increased oxida-

tion of fat and protein in cerebellum in the low-sociality mice concurrent with exaggerated RRB-like

behavior, in comparison to increased compensatory antioxidant activity in cerebellum in the high-

sociality mice [91]. Increased Purkinje cell ablation, up to and including total postnatal loss of all

Purkinje neurons, was likewise associated with less exploratory and greater repetitive motor behav-

ior in mice models [90]. Further reinforcing an RRB-specific, beyond general ASD-associated, role of

cerebellum in humans is the correlation between vermis VI-VII hypoplasia observed via sMRI and

restricted interest inferred through exploratory behavior in an environment designed for explorative

play [271]. These vermal loci specifically, as discussed in section 3.6.1, were first associated with

hypoplasia in ASD four decades ago [87]. An additional finding that adds particular significance
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to findings regarding these lobules (VI and VII) is that lobules VIII through X, but not lobules VI

through VII, presented with hypoplasia in sMRI analysis of boys with ADHD [272]. While this al-

lows no conclusions so specific, it is consistent with the possibility that gross cerebellar dysfunction,

arising out of disrupted neural ontogeny, underlies features of both ASD and ADHD, and that the

boundary between the disorders, at the very least, in vermal hypoplasia, but also likely in symptom

manifestation, is mediated by the specific pattern of gross alterations that proceed from the initial

disruption, whatever its ultimate etiology; such a possibility tends to account for both the distinc-

tive and overlapping features between the two neurodevelopmental disorders. Further establishing

the substantial functional relationships across sensory and cognitive modalities between cerebrum

and cerebellum, hemispheric and vermal lobes VIII of cerebellum were found to demonstrate resting

state functional connectivity to distributed neocortical functional divisions, including from vermal

to visual cortex, from hemispheric to auditory cortex and task-positive and salience networks, and

from lobule to sensorimotor and default mode networks. Broadly, significant portions of these corti-

coneocerebellar functional relationships are recapitulated here, with connectivity of cerebellum VIII

L/R to default mode and salience networks, motor cortex, and motor association areas [273].

Further findings of significance to the results, and in combination with them significant to ASD

heterogeneity and its potential explanations, are numerous. Cerebellar injury is known to be associ-

ated with language deficits, which manifest in ASD as deficits in sociocommunication, but isolation

of response-time and accuracy components in a language task involving patients with cerebellar

injury and putatively typical controls demonstrated that executive function integrity, and not just

disruption of motor function, must underlie aspects of cerebellum-related language deficits [274]; this

comports with the implication of both language areas and cerebellum broadly in association with a

particular discrete ASD deficit, RRB, found in this thesis. While the relationship between language

and RRB scores on behavioral inventories was not the expected one, being weak and negative, the

functional significance of frontal executive areas and their mediating influence on more specifically

motor areas of frontal cortex accords with the generally broad significance of cerebellar pathology

to deficits across cognitive domains. Even if cerebellum does not fully synthesize all outstanding

issues of ASD heterogeneity (a tall order, to be sure), the increasingly broad swathe of symptoms

associated with damage to it, and the increasing understanding of its multiple roles in cognition, be-

havior, and memory [275], these three inextricably linked in contending with most environmentally

relevant challenges, suggests at the very least that no such eventuality is conceivable with respect to

a synthetic theory of ASD without further elucidation and contextualization of cerebellum’s role in

the disorder. Sources of inertia detrimental to this task still exist, however. While cerebellum does
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have functionally and anatomically segregated motor-specific roles, also inferred through cerebel-

lar anatomical pathology [276], this fact in itself is not an impediment. Rather, it is the continued

popular conception, not entirely absent in academic neuroscience, that cerebellum is “a motor struc-

ture.” For example, though explicitly with commentary on absolutely no other matter concerning

the specific text, cerebellum has very recently (2020) been assigned to the chapter on motor systems

in a textbook on structural and functional neuroanatomy [277], consistent with earlier editions of

the same text. The cerebellum does indeed have many conveniently orderly relationships between

structure and function, making such a notion as its “motorness” convenient, at a minimum, pedagog-

ically. But it is a structure, as ASD is a neurodevelopmental disorder, of contrasts, and in both cases,

the same heuristic arguments for the simultaneous broadening and deepening, as well as synthetic

aggregating, of existing research exist. Further research on ASD-cerebellum associations, in sum,

seems to decorate every potential avenue of ASD heterogeneity related discovery with the further

promise of both a more detailed understanding of the extent, and a more coherent understanding of

the core implications, of ASD heterogeneity. In this way, while a “cerebellar theory of autism” may

seem facially suspect, as any and all putative theories of autism, to some extent, must, it, along with

a better understanding of the self-organizing dynamical features of brains (in ASD and in general) is,

in fact, like the neural circuit and connectivity theories with which it forms overlapping explanatory

frameworks for interpretation of ASD neurocognitive research, and indispensable theoretical tool.

Contextualizing the specific cerebellar ROIs and connections identified in the present study,

cerebellar vermal lobules VIII-X were found to be reduced in area in children with ASD compared

to controls of putatively typical neurocognition, with IQ scores as a noted confound [278]. This

dysplasial pattern is of potential relevance to gait alterations seen in ASD and other conditions,

and gait abnormalities may bridge cerebellar and basal ganglial dysplasia and dysfunction in ASD,

with differences in gait of subjects diagnosed with ASD compared to that of controls of putatively

typical neurocognition being well-studied [279–282]. Additionally, vermal functional connectivity to

sensorimotor cortex has been correlated with multiple gait-specific outcomes in Parkinson disease

[283]. Given the repeated implication of vermal dysplasia in ASD, this enhances the preference for

inclusion of cerebellar dysfunction in accounts of gait differences in subjects with ASD.

The RRB-cerebellum relationship identified tends to at a minimum intimate essential compatibil-

ity with the connectivity and neural circuit, and hyper-systemizing and assortative mating, theories

of autism. However, importantly, the functional diversity of cerebellum renders the putative cerebel-

lar theory of autism specifically no less compatible with other at least nominally plausible theories.

For example, cerebellum—amygdala connectivity has been identified as positively associated with
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ASD [38], and while the relationship identified in this thesis was a negative relationship between

RRB intensity and the same connection, the near necessity of at least a cerebellar theory of autism,

that is, a theory synthesizing the role of cerebellum in ASD deficits, along with connectivity observed

between cerebellum and another structure which underlies a storied theory of autism, suggests the

latter, that is, the amygdala theory of autism, is less “incorrect” than it is incomplete. One se-

mantic adjustment would be to render such theories instead as, for example, “autism theory of the

amygdala,” “autism theory of the cerebellum,” and, despite the marginality of the theory in this

case, “autism theory of mirror neurons.” A putative “autism theory” or “ASD theory,” rather than

one (or many) “of autism,” might be conceived as an analytical framework from which anatomical,

functional, and physiological variation in human nervous systems can be apprehended in terms of

correlations with the general “autistic phenotype,” comprising the whole of the clinical heterogene-

ity of the formally defined disorder, as well as the body of established and more-or-less plausible

narratives incorporating aspects of the formal disorder into the broader context of human social be-

havior and organization, Western and other systems of medicine, and human biological and cultural

evolution.

Such an analytical framework as ASD theory need not be so constrained to Homo sapiens either,

as intraspecific variation in the relevant neuroanatomy and associated function can be productively

viewed through the same lens, and not only the sense of the translational neuroscience extensively

discussed so far. As extensive as the RRB-cerebellum association is, and as fruitful as research on

its function and role in ASD is therefore likely to remain, further motivation to study the struc-

tures possible roles, again beyond the already substantial associations established in extant ASD

research, comes in the observation that the generalized cognitive functionality of cerebellum is at

this point, among the primates, a matter of “nearly complete consensus [99, abstract].” Cerebel-

lum’s role in cognition is also apparently an ancestral trait, at least among the mammals, given a

cognitive-cerebellar functional relationship across cognitive domains in rodents [99]. Thus, if the

structure is significantly implicated in ASD, it is also significantly implicated in putative evolution-

ary theories of autism, such as the assortative mating theory. Both the latter and significant clinical

evidence observed in cerebellar injury implicate RRB-like behavior. However, beyond the apparently

basal (though long-marginalized) broad cognitive function of cerebellum, telencephalization in the

great apes, especially humans, has been accompanied by corresponding expansion of neocerebellum

[284] in evolutionary time. Thus, in addition to containing the majority of neurons in the brain,

cerebellum in great apes demonstrates specialized structure and function corresponding to overall

cognitive needs. A further relevant contrast is proffered by birds, in whom relative mesencephaliza-
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tion and metencephalization has not seen concomitant expansion of the analog of neocortex through

evolutionary time [285], implying the driving force behind hominoid neocerebellarization was neo-

corticalization first and not vice versa. An analogy can be drawn, however, between the fundamental

behavioral relevance of the divergent courses of cerebellar evolution between the putative ancestors

of the extant great apes and those of the extant dinosaurs: rapid calculation needed for flight drove

mesencephalization and metencephalization without relative telencephalization, while the benefits

in heterogeneous and asymmetric processing inherent in telencephalization drove that pattern, and

a downstream effect of telencephalization has been neocerebellarization. Neocerebellum, in fact,

contains representations of every intrinsic functional cortical network [284]; this would be neces-

sary for the true functional ubiquity of cerebellum, and, given the tendency of selective pressure

to optimize tissue metabolic expense, putatively sufficient also, though functional neuroimaging has

independently demonstrated this as well. The inextricability of cerebral and cerebellar evolution,

and the latter’s extensive involvement so far observed with RRBs, seem to establish it securely as

an important target for research in the immediate to medium term.

As such a close relationship between the “big and little brains” might suggest, cerebellum has

been implicated broadly in aspects cognitive flexibility and attention to stimuli of environmental

and behavioral salience [286, 287]. More directly, there is behavioral evidence of correlation between

cerebellar function, the presence of ASD traits, and cognitive flexibility in terms of verbal set-

shifting ability in a non-clinical population [288]. Furthermore, and specific to RRB presentation,

subjects who underwent surgery to remove tumors in the posterior fossa, the region of the cranium

in which cerebellum resides, were later to found to exhibit impairments in rapid task switching [289],

consistent with perseveration in a given regime of motor behavior once it is started. A complication

of this paradigm restricts this task-switching deficiency associated with cerebellar insult to only tasks

requiring cognitive conflict resolution [290]; this observation links deficits in salience detection and

attention to those in task switching, highlighting a possible specific mechanism relating cerebellum

structure to its RRB-related function. The interrelationship between cerebellar and basal ganglia

function across cognitive domains contextualizes another observation relevant to task- and attention-

switching in ASD and other neurocognitive disorders: attention deficits associated with cerebellar

insult have been observed to be inseparable from action coordination components, while the same

is not true of those sustaining insult to basal ganglia [238, 291]. In schizophrenia, as well, another

candidate spectrum disorder [292], weaker corticoneocerebellar connectivity correlated with slower

processing speeds based on behavioral measures [246]. Of potential relevance to future treatment

modalities in ASD informed by cerebellar function is that, at least in the case of cerebellar focal
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lesions, rehabilitative therapy is at least somewhat effective in mitigating functional impairments

caused by cerebellar injury [293].

While accelerating research output on a particular neural structure within a research area does

imply the functional significance of that structure, as repeatedly noted, brain structures univer-

sally are not independent modules but rather to some extent arbitrary parcellations of a structure

whose fundamental function is utterly reciprocal and integrative. Hence, conclusions about the

significance of cerebellum are best contextualized in terms of their relationship to the rest of the

brain. Returning to the amygdala theory once more, the structure’s critical role in emotion, a cog-

nitive process of profound behavioral relevance, and therefore of profound relevance in research on

psychopathology, further instructing interpretation of results from ASD research in the context of

existing theories, including marginal ones. While its role has been left underdeveloped in the present

model, despite appearing in the functional network, amygdala has been implicated in the modulation

of stimulus—response information streams to anterior (motor) cerebellum, thereby modulating cere-

bellarly mediated motor learning [294, 295]. In other disorders of neurocognitive symptomatology,

comorbidity of mental disorders with ASD, like other facets of ASD, is heterogeneous, but sim-

ple anatomical correlations with amygdalar volume are predictive of comorbid psychopathology in

ASD [296]. Hence, this “rudimentary” neuroanatomical and functional theory of ASD encapsulates

explanatory power that has surely not yet been fully revealed.

With respect to heterogeneity writ large, perhaps the central consideration in assessing more-or-

less marginal or nominal theories of autism is that the ubiquity of the cognitive functions subserved

by most discrete neuroanatomical structures and most discrete functional networks invoked by such

theories necessarily will yield insight into heterogeneity because such structures and networks are

all but certainly associated with aspects of symptoms in other psychopathology as well. Again, for

its conceptual utility, amygdala, and for its ambiguous relation to ASD, schizophrenia, provide an

apt illustration of this. First, if not explicitly combined into a single disorder in the same way,

schizophrenia-like symptoms clearly present along a continuum of diagnostic intensity in separate

but related symptom domains [292] that includes schizoid and schizotypal personality disorders,

schizophreniform disorder, and schizoaffective disorder and schizophrenia [22]; one might also in-

clude other psychotic disorders (brief psychotic disorder and delusional disorder, and, though not in

the DSM-5, shared delusional disorder and paraphrenia [297–299]). Next, schizophrenia and ASD

have been posited to have varying relationships to one another. One view is that they are at least

to a certain extent at least crudely quantitative, genetic, and neuroanatomical “opposites” [300].

On the other hand, they have been conflated with one another, and, perhaps independent of this,
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viewed as related disorders, or forms of the same disorder [301], though the DSM-5 makes no such

possibility evident in its definitions of the disorders. Both disorders do share one qualitative fact

regarding brain connectivity. Whole-brain functional connectivity in schizophrenia comprises func-

tional connections that are weaker, more diverse, and more global than in TD [302], consistent with

long-range hypoconnectivity in ASD. Given both have affective components, amygdala differences

are unsurprisingly found in bother disorders; some of the functional differences are associated with

polygenic risk factors for ASD in subjects with schizophrenia [301]. Here, it can be seen that, at the

boundary of the symptomatological extent between these two disorders, both genetic and functional

brain differences in a mutually implicated structure are found in a pattern consistent with both

shared features and diagnostic distinctiveness.

Though amygdala theory can be construed in meaningful respects as a “marginal” theory of

autism, it is equally true that “disproving” is a notion of indefinite connotation, because there will

not come a point when ASD is determined to completely, and both as a disorder, and as all the

associated human experiences, totally unrelated in any way, shape, or form to structural or functional

variation in amygdala, and the putative theory can still inform research even of direct relevance to

potential therapeutic intervention. The mere implication of amygdala function in ASD means that

modulation of its behavior will effect corresponding modulation of aspects of neurocognition and of

associated ASD symptom domains when the two are related, as has been found in the case of oxytocin

administration as a therapeutic intervention in ASD inferred via rs-fcMRI between amygdala and

the cortical social brain [303]. While the amygdala theory is a basal phylogenetic radiation in ASD

neural theory evolution, nonapeptide pharmacotherapeutic intervention seems at this point likely

to be the first approved for treatment of ASD generally [10], establishing the true magnitude of

the clinical and societal impact such research involving amygdala may proffer, despite its placement

low in the chronological and conceptual hierarchy of autism neuroanatomical/functional theories.

Relevant, perhaps, is the ecological success of alligators today in terms of their popular conception

as being fundamentally unaltered across tens of millions of years of evolutionary time. The alligator

is not a candidate for some grandiose, exhaustive metric of anatomical, neural, and evolutionary

sophistication and ecological dominance, but also seem if anything to have persuasively solidified

their argument to success through perseveration.

Consideration of cerebellum and amygdala in turn with respect to the implications of the current

result on the theories of autism leads to the emergence of at least four general principles regarding the

relationship between psychopathology of any etiology and specific anatomical or functional divisions

of the brain:
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• Any anatomical structure with putative function qualitatively related to ASD deficits will be

associated, anatomically, or functionally through activation and/or connectivity, with ASD

deficits

• Any such structure will likely be implicated in analogous symptoms in other disorders

• Specific delineation, or overlap, along diagnostic boundaries between disorders with similar

symptoms can be better specified by studying differential neuroanatomy/function of such

structures

• Wider functional dispersion (e.g., cerebellum) of any such structure will implicate in a greater

variety of associations with a greater variety of symptoms within and between disorders

These principles emerge in part due to the fact that any anatomical or functional division of the

brain at this point extensive enough for significant measurement via fMRI, given its limitations, will

have a substantial enough impact on general cognition that a qualitative relationship between its

function and symptom presentation in a diagnosis comprising cognitive symptomatology renders an

actual functional relationship per functional neuroimaging analysis essentially inevitable at realistic

values for sample sizes. Hence, all theories of autism implicating functional or structural divisions

of the brain are nearly certain to be part, but only part, of pathophysiological explanation of autism

in its entirety; one need not concern themself with, in an effort to fully assimilate neurocognitive

research of ASD, the Brodmann area 1 theory of autism, the Brodmann area 2 theory of autism, the

Brodmann area 3 theory of autism, and so on, repeated say for the Harvard-Oxford atlas of brain

ROIs used in this thesis along with other parcellation schemes. Doing would, at some point, begin

to result in diminishing marginal returns, as the degrees of freed in putative autism theory space

would, rather than assist in consolidating theoretical effort, compound it.

Because cognitive functions implicated in ASD (metarepresentation, central coherence, social

motivation, systemizing, empathizing, theory of mind, sensory sensitivity, etc.) are likewise con-

ceived in terms general enough that they are unlikely to at some future point wholly escape any

association with ASD, these too can be viewed to comprise proper subsets of ASD symptomatologi-

cal heterogeneity. Ultimately, per the principles above, the precise relationships between the brain,

symptoms, and diagnoses will become clearer with further research, but these results, and the ones

that motivated the experimental design leading to them in the first place, do indicate the utility

of an approach contingent on questions, rather than theories, and an analytical scheme that incor-

porates both specific hypotheses and incorporation of a posterior results from initial exploratory

analyses to do so. Evidence directly urging consideration of the inter-theory relationships is readily
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identifiable as well, at least in those syntheses including “neural” components: Direct covariation

across (intrinsically manifoldly functionally interconnected) brain structures in the form of noted

differences in anatomical covariance within and between cerebrum, cerebellum, and amygdala in

sensory networks has been observed, confirming further that brain structure and function do not

vary in an itemized manner, nor do any brain areas at all behave atomically. [304].

4.6 LIMITATIONS

While there are multiple conceptual impeti encouraging of the use of both the resting state and

within-clinical-subject variation in carrying out functional connectivity analysis, the present anal-

ysis looked at only one of the three putative core deficits of ASD. Given that the relationships

between symptom severity within and across core deficit domains and the corresponding functional

brain differences are certain to not be totally independent, analyzing substantially only one, as was

the case with the present rs-fcMRI analysis, necessarily limits the maximum explanatory power of

the results in the larger context of ASD theoretical discourse. This conceptual issue has been specif-

ically and extensively addressed in recent literature [121], and this trend is likely to accelerate; the

noted reference is, in the view of this thesis and the extensive literature perusal conducted for it, at

least among those most significant in both total ASD heterogeneity incorporation explicitly into its

analysis, and likewise, therefore, correspondingly so in the plausibility of mechanisms explaining it so

derived. Additionally, as noted in the Background, “function,” in terms of specific role in cognition

and/or behavior, is not readily abstracted from rs-fcMRI; this necessitates extrinsic knowledge from

task-based paradigms, brain injury studies, animal lesion studies, and so on. But the significant

findings herein are discussed in terms of functional connectivity; this construal thus requires, and

not only due to the fact that no task-specific data was analyzed in this thesis for the subjects, at

least some level of conjecture as to the connectivity—function—neuroanatomy relationship above

and beyond what simulated dynamical behavior of the relevant ROIs and network, even if it reflected

only real effects, might reveal. Most importantly, these results urge validation on more and larger

sets of analogous subject data, deemphasizing functional network or dynamical model refinement

theretofore. The results of this experiment, particularly dynamical model output, rightly construed,

cannot be directly evaluated in light of their real or potential relationship to any of the etiopathogen-

esis of ASD, its epidemiology, presentation or heterogeneity, clinical intervention targeted towards

its symptom presentation, real human experience, and so on. Efforts at such syntheses, though,

have been made in light of brain connectivity analysis [46], and seem, as of now, to be the ultimate

basic science goal of research on ASD heterogeneity and its correlates. The tangent begun in this
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dissertation may evolve, though not in the manner of an alligator, towards viability for such holistic

application, but the probability that further pursuits informed by the current findings will signif-

icantly alter their preliminary hypotheses as they stood at the conclusion and submission of this

manuscript is 1, to any desired precision. Nevertheless, multiple avenues of particular promise for

refinement, including through contradiction, of the current results seem clear.

While the dynamical model developed in this thesis outputs perhaps one of the most concep-

tually simple abstraction of neural mass function, that is, changes in activation within functional

subnetworks over time, simulation of functionally diverse structures, in this case, cerebellum, ab-

stracting cognitively and environmentally relevant informational measures and transforming them,

has been proposed as a method of assessing brain function in light of modeled processing of plau-

sible information-theoretic inputs [305]. Thus, regarding the nature of the model abstraction itself,

further contextual validation of the model predictions is an important objective in determining the

extent to which the present findings can be generalized. Such refinement can consist of expand-

ing and improving the parameter generating data, that is, the underlying functional network and

associated connectivity, the parameter definitions themselves, the form of the system equations,

the interpretation of the model output, additional time or partial derivatives, and so on, though

again with the intent to simultaneously optimize conceptual utility and economy. For example, the

model, even in the final stochastic extension, remains relatively simple, if incorporating modestly

diverse abstracted forms of discrete aspects of dynamic neurocognitive functional behaviors, but so

too therefore does its calculated output with respect to the entire range of possible cognitive and

behavioral quantitative abstractions of potential relevance to the research question.

Neuroimaging of ASD specifically also has been frequently critiqued in terms of an apparent

lack of cohesive findings across similar studies. It is true that, given the substantial prior results

that provide a theoretically consistent contextualization of the present ones, the methods employed

do seem to have qualitative and quantitative indications of external validity, increasing confidence

in their real significance to the disorder and its manifestation, and therefore can too likewise be

construed to point towards potential further avenues of research using similar methods. Though,

while large and significant correlations were found between various model outputs and the relevant

behavioral metric, functional connectivity findings even within populations of individuals diagnosed

with ASD have been noted to be, in addition to proliferating, frequently inconsistent across studies

and imaging sites [306]. Hence, while the present results are sufficient to spur theoretical interest in,

and to provide experimental justification for, further research in the same vein, they do not explicitly

confirm, rebut, or significantly alter any other results or proposals derived from neurocognitive
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research on ASD or related research, not even in the case of strongly debatable ones with, in the

best case, significance at the threshold of identification. This, again, proceeds from the very nature

of nervous systems and their essentially innumerable degrees of freedom. This does not, however,

mean that no results, nor even that none which consist only of model-driven results, cannot so alter

the landscape of plausibility of ASD research and theory. Indeed, in the optimistic case, generalized,

extensive application of the framework minimally represented herein may accomplish this in small

measure, even better if the framework is concurrently dynamically altered as appropriate.

While such conclusory optimism might guide further efforts, it is simultaneously true that, even

beyond those already identified, some experimental issues of fundamental significance to analyses

such as this have been left totally unaddressed. For example, while Pearson correlation, the func-

tional connectivity measure used in this study is a well-validated measure as applied to fMRI data,

other metrics, for example, dynamic time warping, have been posited as superior, especially notably

in rs-fcMRI analysis of differences in ASD [307]. Dynamic time warping was found to be both more

sensitive and more specific to ASD deficit—functional connectivity associations, and, further discour-

aging its employment, Pearson correlation was found to correlate more strongly with confounding

physiological signals such as respiration. This emphasizes the potential “room for improvement”

that might be conceived, and without validation across both the relevant alternative connectivity

metrics and larger sample spaces, and each of these along with the other, can not be achieved; a

handful of even very significant p-values a significant finding does not make.

Nevertheless, it is asserted that the dynamical approach minimally represented here is not con-

strained by any particular systemic shortcomings related to neurocognitive research in ASD, and is

generalizable across neuroimaging, behavioral, and other underlying data types. In final evaluation,

the dynamical model chosen incorporates brain-wide functional connectivity values and behavioral

associations, for all connections with sufficiently large effect sizes that could be incorporated into a

working hypothetical network arrangement, that is, having at least one connection in common with

the rest of the entire functional network at the stage of analysis it is actually identified in. This

approach ameliorates, to an extent, issues with reduced statistical power, and potential idiosyncrasy,

of localized or a priori determined sets of functional or anatomical ROIs, because it produces, es-

sentially, via model output, new statistics, which may in turn be evaluated independently of any

individual connection p-values, although such metrics should correlate with model output fit for

models with straightforward interpretation.

Employing whole-brain fc analysis is also more physiologically plausible because alterations in

brain structure or function, given the fundamental manifold interconnectedness of brains, are never
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entirely spatially localized [308]. A direct application of this paradigm can be seen in its employment

in a data-driven approaches to whole-brain fc that has recently successfully been used to identify

neuromarkers and risk factors of ASD [309, 310]. Indeed, the application of whole-brain analytical

methods to large subject populations data sets, particularly, ones representative of the observed

heterogeneity in ASD, offers perhaps the greatest promise for cohering specifically the (heteroge-

neous) neurocognitive aspects of the disorder, as has increasingly been done within this domain

[311]. Further substantiating the potential of this approach to further illuminate the neurocognitive

component of ASD pathophysiology in humans is substantial converging evidence from multiple

mucine models implying discrete ASD connectotypes [312], not inconsistent with the various formu-

lations of discrete ASD subtypes discussed in the Background. And, as whole-brain, large-sample

rs-fcMRI experimental approaches will help generate the substrate from which conclusions about

the neurocognitive heterogeneity of ASD and its clinical and nosological implications can be made,

machine learning classification techniques provide a method of evaluating the significant search costs

exploratory data analysis of such massive quantities of information might otherwise impose. Com-

plicating this, though their statistical power and utility still render them an indispensable analytical

technique in future synthetic analyses of results such as those of this thesis, is the fact that ma-

chine learning classificatory algorithm performance is dependent on sample heterogeneity across the

dimensions of the data to be classified [313].

While much of this context does proffer support of the methods used in this thesis in general,

and of those used in specific to the extent practical given the criteria whose satisfaction was being

sought, improvements are conceivable across every relevant dimension, and if nothing else, the

analysis effected here should succeed in generating an improved one subsequently.

4.7 FUTURE DIRECTIONS

The results of this study, taken together, imply a functional brain network that underlies RRBs in

ASD and overlaps with known functional changes both in ASD and RRBs more generally. Specifi-

cally, its relevant measurement, the connection strengths (Pearson correlations in this case) between

its nodes (structural or functional ROIs), vary consistently with RRB severity. These measurements

can be parameterized, as was done, such that they can inform model implementations, increasing

neurocognitive plausibility, streamlining model development, and improving model output, where

parameterization is rationally executed. While not all canonical conclusions given the broad range of

realistic interpretations of the observed model behavior and features, general observations consisted

of, in potentially slightly modified forms in some cases, these observations:
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• Greater influence of reward pathways on excess motor cortex activation =⇒ increased rein-

forcement of repetitive motor behavior

• Greater intrinsic correlation between primary and supplementary motor cortex activation =⇒

greater descending motor lability and likelihood of spontaneous or exuberant motor behavior

• Reduced regulation, despite larger absolute modeled influence, of motor cortex activation by

incoming sensory streams =⇒ greater intractability and behavioral inertia in repetitive motor

patterns

• Increased executive network influence on motor structures inferred via functional relationship

mediated by cerebellar node =⇒ increased volitional cognitive resources directed towards motor

behavior

• Predominance of intrinsic motor correlation and reward reinforcement of motor behavior com-

pared to stronger executive—motor coupling in terms of effect sizes =⇒ synthetic result of

aggregate changes in network are increased spontaneous compared to planned motor behavior

despite the tighter executive coupling to motor areas

• Greatest subject behavioral measure correlation with abstracted model measure of time cor-

relation of motor cortex excess activation in the nonlinear dynamic case =⇒ Potential for

time-course specificity of repetitive motor cortex activation and behaviors

Figure 4.3: Hypothesized behavioral significance of findings.
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The network identified comprises regions most readily associable with RRBs in ASD, however,

it also included a large number of previously implicated functional language areas of cortex in ASD

communication deficits. Further assessment of the potential neurocognitive relationship between

language and RRB deficits in ASD merits effort, especially given the observed weak, but statistically

significant, negative correlation between RRB and communication impairment severity.

Finally, given that, when investigating functional connectivity associated with one core ASD

deficit (RRBs), multiple extensive regions associated with another core ASD deficit (communication)

were identified, but with fewer and more ambiguous social-emotional deficit-associated regions being

identified, these results tend to suggest the plausibility of the view that ASD as a whole cannot

be explained as an exclusively sociocognitive disorder, even if they do not directly contradict the

possibility that it is primarily one. That two deficits seem to cross-implicate one another in terms of

brain functional connectivity, but the third appears neither in strictly behavioral-measure regression

analysis, nor in the functional connectivity results, is most consistent with RRB and communication

deficits forming inextricable and unisolable components of any putative “core” ASD phenotype, as

predicted by theoretical approaches that view at least certain aspects of the disorder as adaptive, in

isolation.

Beyond functional relationships between brain regions known to be associated with specific cog-

nitive tasks from evidence in lesion studies, functional activation studies, and translational neu-

roscience research with model species, the complex time-dependent interrelationships within and

between functionally segregated areas of cortex characterizes the fundamental dynamical behavior

of brains as cognitive systems. In this study, a dynamical model that incorporated all, and only, the

significant results from the functional connectivity analysis, successfully predicted and characterized

the time-dependent changes in brain behavior within and between networks that associated with

increased motor behavior, taken to plausibly represent specifically repetitive behavior. While fMRI

suffers from being extremely sluggish with respect to the timescale of neurocognitive functioning,

a model such as the one proposed, constructed, and confirmed as valid, uses results from analyses

on (slow) fMRI time series, but is scale-free with respect to time because it is iterated arbitrar-

ily with respect to the related rates of change in functional behavior in component subnetworks,

though this does not correspond to any known physiological mechanism, rather being significant to

the abstraction itself barring specific independent validation.

Postulated clinical applications of rs-fcMRI research on ASD are already proliferating. Potential

targets for stimulotherapeutic intervention in treatment of ASD deficits have been identified [314].

Indeed, rs-fcMRI, combined with the herein and other methods of assessing dynamical behavior of
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interconnected brain functional subdivisions constitutes an avenue of direct possible relevance to

such therapies given any therapeutic stimulation will, rather than have temporally static and spa-

tially circumscribed activity, result in dynamic perturbations dependent on the intrinsic dynamical

properties of the target system, the human brain. This, in fact, is the explicit case when the converse

application is made use of: Rather than identification of target nodes for therapeutic stimulation, a

measure of functional connectivity, wavelet decomposition via synchronization likelihood, one met-

ric of time series interdependence, applied electrophysiological recordings, was used to assess the

success of virtual-reality based therapy, with significant correlations between clinical and functional

connectivity measures [315]. The approach has shown clinically significant therapeutic potential in

other disorders as well, such as in schizophrenia [316].

As ASD heterogeneity at this time remains substantially unexplained, further assessment of

brain connectivity, activation, and dynamics, effected through diverse approaches, though hopefully

trending generally towards larger sample sizes and greater ease of reproduction and validation, is

warranted more than ever. The still rapid pace of increases in computer power can enhance eval-

uation of large neuroimaging datasets relevant to the research question, novel connectivity metrics

may increase the physiological relevance of results, publicly accessible data sets, such as used in this

thesis, can enhance reproducibility and elucidate methodological differences where they arise, com-

plex systems methods can reduce the numerical complexity of observed brain (and other) behaviors

drastically without seriously degrading the fidelity of the patterns of interest (ideally), and further

incorporation of all of the above with ASD research on human behavior and genetics, and of animal

models of increasing sophistication and, it seems now, nearly arbitrary possibilities, will all likewise

continue to shed light on dimensions of human neurocognitive diversity. Inherent to ASD is a vast

range of such diversity, perhaps rivaling that seen in the population exhibiting putatively typical

cognition. The potential to foster understanding of human cognition generally, of nervous systems

generally, of evolution generally, of human neurocognitive difference generally, and all the other

innumerable virtues accumulated neurocognitive research on diverse manifestations of the human

mind will surely not soon cease manifesting, vindicate all the vast efforts directed thereunto. Even

if research on ASD neurocognitive heterogeneity repeatedly yielded insights barely more definite

than those that would be gleaned from identically researching human neurocognitive heterogeneity,

the merit of the enterprise is undiminished. In the worst case, effort directed to the former goal

contributes equally to the latter.

This is certainly not to say convergence across multiple lines of inquiry and evidence is not

strongly desired, as ground truth social benefit, whether through improved clinical intervention,
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facilitation of informed, substantive and practical empathy between neurocognitively diverse pop-

ulations and individuals, or demonstrable brass-tacks economic benefits from enhanced utilization

of unique human capabilities, is easier to correlate with such convergence, and so is government

research support. The present results encourage further research of similar type, as a few questions

remain without answers, but in no way do they encourage research of one type to the detriment of

any other addressed in the background, experimental design and results, and interpretation what-

soever. The heterogeneity of ASD can only reflect heterogeneity in biopsychosocial mechanisms, to

which no conceivable methodology is sufficient save “all of the above.”
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APPENDIX A

CODE EXAMPLES AND DATA TABLES

A.1 FUNCTIONAL CONNECTIVITY ANALYSIS CODE AND DATA

Spurious connectivity and regression model generation Spurious regression model generation

was effected via identical methods to actual regression modeling of connectivity data, as in section

3.5. Fundamental is that this approach provided a realistic “outgroup comparison” in terms of

statistical comparisons to known true-negative results. The randomization of subject behavioral

scores, calculation of FC, and formulation of mirroring regression models to increase confidence in

the initial connectivity results established the rationale for the further qualitative network search and

characterization as in section 3.6. Actual randomized subject RBS-R CSS assignment and calculated

connectivity values are given below, which can be used with the publicly available ABIDE II KUL

database to yield the spurious regression models in section 3.5.
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Subject ID Original RBS-R CSS Reassigned RBS-R CSS

1 1 3

2 1 6

3 2 4

4 3 5

5 3 6

6 3 1

7 4 25

8 4 19

9 4 4

10 4 2

11 4 1

12 5 7

13 6 10

14 6 3

15 7 29

16 8 33

17 10 8

18 14 4

19 16 3

20 17 4

21 19 19

22 19 14

23 25 17

24 29 36

25 33 38

26 36 4

27 38 16

Table A.1: Subject RBS-R CSS scores were randomly reassigned using ran-
dom.org, a source of random number generation based on atmospheric noise, as
shown.
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ID RBS-R p-c i-o v-i a-d r1 r2 r3 r4

1 1 -0.06 0.15 0.14 0.06 -0.37 -0.26 -0.32 -0.70

2 1 -0.09 0.02 -0.06 -0.01 -0.41 -0.57 -0.19 -0.26

3 2 -0.21 0.18 0.29 0.09 -0.53 -0.39 -0.31 -0.16

4 3 -0.09 -0.06 0.19 0.13 -0.36 -0.51 -0.02 -0.33

5 3 -0.08 -0.09 0.02 0.00 -0.31 -0.49 0.07 -0.13

6 3 -0.23 -0.01 0.17 0.16 -0.22 -0.47 -0.42 -0.27

7 4 -0.09 0.44 0.13 0.22 -0.10 -0.43 -0.40 -0.15

8 4 -0.01 0.31 0.31 0.34 -0.27 -0.18 -0.45 -0.19

9 4 -0.05 0.06 0.25 0.14 -0.05 -0.02 -0.06 -0.20

10 4 0.04 0.09 0.03 -0.05 -0.12 -0.34 -0.40 0.02

11 4 0.51 0.08 0.01 0.04 -0.32 -0.60 -0.13 -0.19

12 5 0.06 0.24 0.27 0.10 -0.20 -0.43 -0.30 -0.14

13 6 -0.11 -0.02 -0.03 0.15 -0.22 -0.78 -0.45 -0.27

14 6 -0.21 -0.08 0.04 0.01 -0.19 -0.30 -0.07 -0.17

15 7 0.04 -0.01 -0.04 0.22 -0.21 -0.67 -0.18 -0.42

16 8 0.09 0.13 0.19 0.03 0.08 -0.19 -0.23 -0.13

17 10 0.17 0.02 0.17 0.13 -0.14 -0.10 -0.11 -0.35

18 14 0.00 -0.06 -0.10 0.01 -0.01 -0.07 0.32 -0.12

19 16 0.05 0.03 -0.09 -0.11 -0.14 -0.37 0.02 0.07

20 17 -0.05 0.06 0.00 0.18 -0.19 -0.22 0.29 0.18

21 19 0.10 0.15 -0.17 -0.14 0.34 -0.22 0.31 -0.15

22 19 0.18 -0.07 -0.09 0.07 -0.08 -0.09 0.26 0.04

23 25 0.37 -0.15 -0.10 -0.19 0.06 0.19 0.17 0.06

24 29 0.40 -0.22 -0.06 -0.22 0.05 0.09 0.04 -0.01

25 33 0.17 -0.16 -0.06 -0.04 0.26 0.00 0.08 0.04

26 36 0.52 -0.50 -0.42 -0.23 0.34 0.11 0.39 0.21

27 38 0.60 -0.22 -0.28 -0.26 0.29 0.00 0.45 0.26

Table A.2: Functional connectivity values were calculated using the randomly reassigned
subject RBS-R CSSs in an identical manner as was used for the ROI-level functional connec-
tivity analysis. The results are given in this table, with connectivity values for every subject,
or, in the case of the randomized values, pseudo-subject, for the four most significant ROI-level
functional connections identified empirically. Subject functional connections left to right are
planum temporale-cingulate, IFG to occipital, visual to IFG, and fusiform to default mode.
In this table, the functional connectivity associated with the randomized RBS-R CSS reas-
signment is presented in the same order as the true data, that is, as opposed to the order in
table A.1 in which the new assignment of RBS-R CSS was presented in the order of the actual
subjects to whom it was spuriously assigned. Spurious connectivity values are derived from
the most significant connections depicted in figure 3.14.
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Long-transformed power regression model construction Log transformation of raw connectivity

values and RRB-severity contrast variable was performed as shown in R. This was done so that

traditional linear regression functions could be used to generate power regression models, deemed to

be more physiologically plausible than were linear regression models themselves. Log transformation

ensured ease of both analysis and representation of the models and associated data, although it must

be noted statistics on model performance are relative to the log-transformed variables and their

relationship in the model as implemented. Note that this method would fail if a Pearson correlation

coefficient for a particular connection were exactly -1, but this can be accounted for when necessary.

subj <- read.csv("subjectdata.csv")

logptl <- log(subj$ptl.cing + 1)

logifgl <- log(subj$ifgl.occr + 1)

logvisocc <- log(subj$visocc.ifgl + 1)

logatfuscl <- log(subj$atfuscl.dmnlpr + 1)

logaccl <- log(subj$accl.ba6l + 1)

loghi <- log(subj$hi + 2)

subj.log <- data.frame(loghi, logptl, logifgl, logvisocc, logatfuscl, logaccl)

model <- lm(loghi ~ logptl, data = subj.log)

sumamry(model)
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Leave-one-out cross-validation implementation LOOCV was effected using the R package Caret

(https://cran.r-project.org/web/packages/caret/index.html). In the case of the probability mod-

els in which subject RRB-severity category subgroup membership was predicted, for example,

the binary contrast hi was regressed on, in this case, the step I regression incorporating ptl,

or planum temporale connectivity, as the regressor. Plots were effected, and data extracted,

calling, in this case with the model results being assigned to step1, step1$pred$pred and

step1$finalModel$fitted.values.

ctrl <- trainControl(... "LOOCV", savePredictions = "all"...,

returnData = TRUE)

#training parameters

step1 <- caret::train(hi~ptl, data = ..., ..."lm", trControl = ctrl)

assignment of training model data to a variable

plot(stats$ID, stats$high, type="p", xlab = "RBS-R CSS rank",

ylab=..., pch=19, main = ..., cex=2, ylim=c(-1.1, 1.5), xlim=c(1,27) )

#plotting of actual subject RRB-severity category subgroup membership

against ID (RBS-R CSS rank)

points(stats$ID, step1$pred$pred, cex=2, pch=19, col=rgb(1,0,0))

#plotting of cross validation predictions

points(stats$ID, step1$finalModel$fitted.values, cex=2, pch=19, col=rgb(0,1,1))

#plotting of final model predictions
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A.2 DYNAMICAL MODEL CODE AND DATA

Dynamical model parameter definition and calculation The calculation of r and s was relatively

straightforward, as shown in equation 3.3, and the code snippets correspond to the equation.

r = sn + nm + sn*ms + nm*ms;

s = ms;

The calculation of f likewise mirrors the notation in equation 3.4. This calculation takes every

path from putative sensory areas to motor areas without backtracking (although continuing through

one motor area to the next is allowed). Because input from the putative sensory periphery passes

through executive, salience, default mode, and cerebellar hubs to reach the putative motor network,

there are multiple interaction values that represent the extrapolated Pearson correlation that would

result from all within-network one-way paths from “extra-motor,” where model input is in the form

of stimulus drive or function, to “motor” ROIs.

f = fg*(p2f+p2f2)*cp2*sc + v*pv*cp*sc + fg*(p2f+p2f2)*cp2*mc ...

+ v*pv*cp*mc + fg*(p2f+p2f2)*cp2*mc2 + v*pv*cp*mc2 ...

+ fg*(p2f+p2f2)*cp2*sc*ms + v*pv*cp*sc*ms + fg*(p2f+p2f2)*cp2*mc*ms ...

+ v*pv*cp*mc*ms + fg*(p2f+p2f2)*cp2*sc*sn*nm + v*pv*cp*sc*sn*nm ...

+ fg*(p2f+p2f2)*cp2*mc*nm*sn + v*pv*cp*mc*nm*sn ...

%from sensory to fp via cerebellum

+ fg*(af*ca*sc + af*ca*mc + af*ca*mc2 + af*ca*sc*ms + af*ca*mc*ms ...

+ af*ca*sc*sn*nm + af*ca*mc*nm*sn) ...

%from sensory (fus) to dmn via cerebellum

+ fg*(cf*sc + cf*mc + cf*mc2 + cf*sc*ms + cf*mc*ms + cf*sc*sn*nm + ...

+ cf*mc*nm*sn + cf2*sc + cf2*mc + cf2*mc2 + cf2*sc*ms + cf2*mc*ms ...

+ cf2*sc*sn*nm + cf2*mc*nm*sn) ... %from sensory (fus) via cerebellum

+ v*(ev2*et*st + ev2*et*st*ms + ev2*et*st*sn*nm*ms) ...

%from sensory (vis) via acc

+ o*(co*sc + co*mc + co*mc2 + co*sc*ms + co*mc*ms + co*sc*sn*nm ...

+ co*mc*nm*sn) ... % from sensory (ofc) via cerebellum

+ t*(st + st*ms + st*sn*nm); %from sensory (pt) direct

Visual examples of the parameter calculation procedure occur in figures A.2 and A.3. In the

latter example, not the functional relationship modeled is that input across cerebellar or cingulate
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hubs to motor cortex is calculated by including all possible stopping points, maximizing the effect

of external inputs, whatever that effect may be.
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Figure A.1: Node labels for the subsequent figures.
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Figure A.2: Parameter calculation example 1.
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Figure A.3: Parameter calculation example 2.
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Subject functional network connectivity values Connectivity values for all of the indicated vari-

able names corresponding to the hypothetical network diagram are given starting in table A.2, as

are parameter values for calculated from them for r, s, and f . Subject ID is RBS-R CSS rank from

low to high.
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ID sn nm ms p2f p2f2 pv cp

1 -0.2304 0.0728 0.1712 0.2877 0.0054 0.0500 0.0678

2 0.0186 0.0147 0.1601 0.1139 -0.1202 -0.1489 0.1085

3 0.0694 -0.0368 -0.0442 0.0618 0.1660 0.2706 0.0099

4 0.0920 -0.2013 0.3135 -0.0772 0.1459 -0.0276 0.1495

5 -0.4061 -0.1180 0.6635 0.0973 -0.1099 0.1405 0.1567

6 -0.0673 -0.0685 0.0628 0.1879 0.1693 0.2171 0.0230

7 -0.1642 -0.1347 -0.3166 0.1746 0.0512 0.4956 0.2534

8 -0.1511 0.0088 0.0655 0.3157 0.0150 0.3407 -0.0578

9 -0.1464 -0.1659 0.0795 0.1720 -0.1296 0.2583 -0.0006

10 -0.0828 -0.1755 0.3484 0.0705 0.1175 -0.0795 0.0735

11 -0.0771 -0.3847 0.1150 0.2659 0.0021 0.1373 0.1045

12 0.1372 0.0480 0.1764 0.0591 -0.1841 0.2518 0.0534

13 -0.2475 -0.0206 0.4067 0.1070 -0.1265 -0.0600 0.2229

14 0.0496 0.1312 0.1816 0.2084 0.0796 -0.1474 -0.0386

15 -0.1035 -0.2451 0.2994 0.3563 0.0488 -0.2338 0.0461

16 -0.0880 -0.0494 0.1897 0.0872 0.3308 0.0835 0.1632

17 -0.0235 0.0354 0.0709 0.0381 -0.2655 0.1833 -0.0197

18 0.0408 -0.0777 0.1072 -0.1379 -0.1276 -0.1535 0.2337

19 -0.0330 0.1207 0.1745 0.1801 -0.1529 -0.0838 -0.0157

20 -0.0641 0.0073 0.2526 -0.1221 -0.0244 -0.0278 0.0080

21 0.0504 0.1201 0.0330 -0.0552 -0.0259 0.0323 0.0376

22 -0.0918 -0.0101 0.3359 -0.0170 -0.3398 -0.0604 -0.0341

23 0.2582 0.1489 0.5429 -0.1247 -0.0888 -0.1609 -0.1680

24 0.1605 0.1946 0.3443 -0.3466 -0.2494 -0.0481 0.0097

25 0.2686 0.3071 0.6564 0.1569 -0.2666 -0.1607 -0.1936

26 0.1277 0.1645 0.3481 -0.1912 -0.2597 -0.3649 -0.0908

27 0.0861 0.3192 0.6612 -0.3055 -0.3700 -0.3937 -0.0953

Table A.3: Connectivity values for individual subjects along with calculated parameter
values, node names corresponding to figure 3.33.
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ID cp2 sc mc mc2 af ca cf ev2

1 -0.1725 0.2149 0.1484 0.1013 0.0632 -0.5427 0.1484 0.0645

2 -0.1258 0.2168 0.1352 0.1877 -0.0086 -0.3030 -0.1314 0.0450

3 -0.1490 0.0037 0.1733 0.1188 0.0890 -0.1959 0.0307 0.1614

4 -0.2126 0.2981 0.1647 0.1002 0.1349 -0.1702 -0.0762 -0.0912

5 -0.1026 0.0813 0.0408 -0.0501 -0.0002 -0.3407 0.1967 0.1806

6 -0.2882 0.1525 -0.0738 -0.0425 0.1614 -0.0340 0.0219 0.0387

7 -0.0045 0.2147 0.0687 -0.0128 0.2249 -0.1953 -0.0963 0.0257

8 -0.1320 -0.0054 0.3148 0.2912 0.3375 -0.0731 -0.0460 -0.1992

9 -0.1214 0.0320 0.2056 0.0947 0.1369 -0.3449 0.0579 0.0735

10 -0.2630 0.1721 0.0637 0.2617 -0.0532 -0.2997 -0.0469 0.0609

11 -0.1730 0.1642 0.1101 0.0905 0.0424 -0.3637 0.0252 -0.0599

12 -0.0809 -0.0032 0.1637 0.0935 0.0992 -0.2437 0.1200 -0.0473

13 -0.2073 0.2397 0.1427 0.1090 0.1458 -0.1870 -0.1695 0.0827

14 -0.1840 0.1353 0.2917 0.0890 0.0114 -0.1141 0.1740 0.2221

15 -0.0689 0.2137 0.3165 0.2127 0.2211 -0.1302 0.1088 -0.2142

16 -0.1828 0.2028 0.1730 0.0631 0.0321 -0.1519 -0.0659 -0.0251

17 -0.1259 0.0723 -0.0983 0.0050 0.1328 -0.3179 -0.0785 -0.0100

18 -0.1079 0.0476 0.0860 -0.0687 0.0124 -0.1076 -0.0555 -0.1821

19 -0.1421 -0.1015 0.1835 0.0949 -0.1099 -0.0498 0.1213 -0.4229

20 -0.0654 0.0131 -0.0057 0.0062 0.1800 -0.1521 0.2090 -0.0832

21 -0.1807 0.1593 0.0898 -0.0268 -0.1447 0.0470 0.0193 -0.0463

22 -0.0159 0.0767 0.1107 0.0896 0.0655 0.0548 0.1047 -0.2065

23 -0.1231 0.0725 -0.0108 0.0179 -0.1950 -0.0522 0.0774 -0.1083

24 -0.0841 0.0311 -0.0225 -0.0385 -0.2242 -0.2024 0.1119 -0.0886

25 0.0425 -0.0728 -0.1074 -0.0850 -0.0431 0.1273 -0.0795 -0.4372

26 0.0571 -0.0678 -0.0156 -0.1470 -0.2273 0.1743 0.1497 -0.3499

27 0.0001 -0.0936 -0.0887 -0.0783 -0.2565 0.0033 0.3516 -0.2250
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ID et st co cf2 r s f

1 0.0497 0.1929 -0.0869 -0.2140 -0.1846 0.1712 0.1015

2 -0.0601 0.0567 -0.1031 -0.3599 0.0386 0.1601 -0.2963

3 -0.2256 0.2785 -0.1414 -0.1151 0.0312 -0.0442 0.1769

4 0.0095 0.1308 -0.1355 -0.3060 -0.1435 0.3135 -0.2221

5 -0.0160 0.0232 -0.0587 -0.1405 -0.8719 0.6635 0.0429

6 -0.0915 0.1738 -0.2352 -0.0067 -0.1443 0.0628 0.1714

7 0.0236 0.0100 -0.1296 -0.0866 -0.2042 -0.3166 -0.0363

8 -0.0162 0.3323 -0.0437 0.0446 -0.1516 0.0655 0.2722

9 0.0375 0.1353 -0.0785 -0.1102 -0.3370 0.0795 0.0844

10 0.1377 0.3336 -0.2198 -0.4327 -0.3484 0.3484 0.0277

11 0.5879 0.4607 -0.1322 -0.1168 -0.5148 0.1150 0.3995

12 0.0924 0.1585 -0.0507 -0.0908 0.2178 0.1764 0.1804

13 0.1721 0.1908 -0.1752 -0.1419 -0.3771 0.4067 -0.0662

14 -0.0863 -0.0075 -0.2258 -0.0461 0.2137 0.1816 -0.0962

15 0.0457 0.4536 -0.1800 -0.3402 -0.4529 0.2994 0.1569

16 0.2152 0.3304 -0.0678 -0.0027 -0.1635 0.1897 0.2880

17 0.2007 0.3485 0.0468 0.0076 0.0127 0.0709 0.3731

18 0.0775 0.4056 -0.0381 -0.2616 -0.0409 0.1072 0.4128

19 0.0963 0.2596 -0.1082 0.1113 0.1030 0.1745 0.3158

20 -0.0444 0.3239 0.0448 -0.0457 -0.0712 0.2526 0.4100

21 0.1662 0.2720 0.0392 0.0567 0.1761 0.0330 0.3093

22 0.2454 0.3503 -0.0164 -0.0066 -0.1362 0.3359 0.4763

23 0.2650 0.5428 0.0841 0.3451 0.6280 0.5429 0.8997

24 0.4839 0.2577 0.0940 0.1416 0.4773 0.3443 0.3276

25 0.2439 0.4159 -0.0030 0.0947 0.9536 0.6564 0.6342

26 0.5347 0.6916 0.0522 -0.0260 0.3940 0.3481 0.7340

27 0.5932 0.7242 0.0457 0.2460 0.6733 0.6612 0.7980
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Calculation of the statistic ˆ̇
z Calculation of putative averaged motor activation, the independent

variable against which subject RBS-R CSS was regressed in the linear homogeneous model form,

followed the analytical formulation given in equation 3.6. The loop to do so, and actual coordinate

bounds across which model output was summed, are shown below.

%Note: w in the code is evaluated as the linear, not angular, frequency

[x,y,z]=meshgrid(j,-20:2:20,-20:2:20);

U = -2*pi*w*sin(2*pi*w*x);

V = c.*x - n.*y;

H = mact*(r.*abs(z) + s.*z - f.*y);

for ii = 1:length(y)/2

for ij = 1:length(z)/2

zdothat = zdothat + H(2*ii,2*ij);

end

end
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Nonlinear model extension summary statistic calculations and tables Values of nonlinear, in-

homogeneous dynamical model summary statistics used for regression analysis are given starting in

table A.2. Results were obtained after first iterating the dynamical model

[t,dynamic]=ode45(model,tvals,[k,yvals,zvals]);

yout = transpose(dynamic(:,2));

zout = transpose(dynamic(:,3));

stats = [tvals.’ yout.’ zout.’]

zmean = mean(stats(:,3), ’omitnan’);

zsd = std(stats(:,3), ’omitnan’);

zskew = skewness(stats(:,3));

ztcor = corr(stats, ’Rows’, ’pairwise’);

% etc.
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ID rbsr high avg.0 sd.0 ske.0 kur.0 cor.t0

1 1 -1 -0.2088 13.4244 -0.0081 1.5081 -0.0127

2 1 -1 0.5309 13.3653 -0.0489 1.5336 0.045

3 2 -1 0.1136 12.9805 -0.0077 1.5893 0.0085

4 3 -1 0.2125 13.6863 -0.0439 1.4811 0.0238

5 3 -1 -2.3047 15.0725 -0.0019 1.3685 -0.1276

6 3 -1 -0.2423 13.2033 0.0036 1.546 -0.0175

7 4 -1 -0.1507 12.4927 -0.0108 1.695 -0.0186

8 4 -1 -0.1969 13.2064 -0.0023 1.5449 -0.014

9 4 -1 -0.4735 13.2589 -0.0052 1.5373 -0.0318

10 4 -1 -0.2197 13.779 -0.0391 1.4694 -0.0057

11 4 -1 -0.7811 13.3865 -0.003 1.5199 -0.055

12 5 -1 0.378 13.4532 -0.0036 1.5026 0.025

13 6 -1 -0.4384 13.9352 -0.0237 1.4436 -0.0202

14 6 -1 0.4955 13.453 -0.016 1.5065 0.0348

15 7 -1 -0.3698 13.6911 -0.0453 1.4829 -0.0166

16 8 -1 -0.2169 13.4714 -0.0039 1.4992 -0.0136

17 10 -1 -0.0245 13.2134 0.0046 1.5439 -0.002

18 14 -1 -0.0899 13.2901 0.0038 1.5299 -0.007

19 16 -1 0.1348 13.4332 0.0024 1.505 0.0085

20 17 -1 -0.1857 13.6011 0.0061 1.4777 -0.012

21 19 -1 0.2119 13.1407 0.0047 1.5572 0.015

22 19 -1 -0.3476 13.7929 0.0101 1.4493 -0.0226

23 25 1 1.3955 14.4617 -0.0029 1.3876 0.0775

24 29 1 1.0162 13.9154 -0.0146 1.44 0.0617

25 33 1 2.4926 15.132 0.0108 1.3788 0.1377

26 36 1 0.9911 13.8674 -0.0252 1.4521 0.0621

27 38 1 2.1436 14.8009 -0.0213 1.4132 0.1231

Table A.4: Summary statistics calculated from nonlinear inhomogeneous dynamical model
output, mean, s.d., skewness, kurtosis, correlations between model variables, given for different
time ranges, from 0 to 1, 0 to 5, 95 to 100, 99 to 100, and from 0 to 100.

275



ID cor.x0 avg.1 sd.1 ske.1 kur.1 cor.t1 cor.x1 avg.2

1 0.0297 -1.0391 8.4548 0.172 2.9186 -0.0619 0.152 -4.6455

2 0.1034 0.3406 9.5797 -0.015 2.0505 -0.0027 0.4337 1.667

3 0.0183 0.1518 7.6428 -0.0212 3.8568 0.0018 0.0955 0.0652

4 0.1074 -0.7748 10.3705 0.0608 1.7883 -0.051 0.4496 -2.8738

5 -0.0073 -6.866 12.8333 0.1892 1.5675 -0.2186 0.0127 -20.471

6 -0.0004 -0.7332 7.9447 0.1346 3.4744 -0.0368 -0.0026 -2.405

7 0.0139 -0.5761 7.103 0.1317 4.7576 -0.0268 0.0699 -0.065

8 0.0149 -0.7586 7.9779 0.1433 3.429 -0.0425 0.0747 -2.852

9 0.0161 -1.7198 8.1942 0.2883 3.2263 -0.0901 0.082 -5.5566

10 0.1078 -2.154 10.7484 0.135 1.7391 -0.1063 0.4505 -9.266

11 0.0242 -2.7817 8.6614 0.3941 2.8714 -0.1449 0.1148 -8.4038

12 -0.0046 1.2546 8.4134 -0.1989 2.9749 0.0648 -0.0231 4.5986

13 0.0879 -2.5818 10.6316 0.194 1.8123 -0.1261 0.3849 -10.4553

14 0.024 1.2789 8.493 -0.1875 2.8964 0.0578 0.1239 5.2449

15 0.1085 -2.7123 10.6713 0.1655 1.7832 -0.1296 0.4507 -10.0146

16 0.0207 -0.9403 8.4571 0.1536 2.9167 -0.0542 0.1039 -3.1207

17 -0.0109 0.055 7.9435 -0.0152 3.4601 0.0063 -0.0582 0.1822

18 -0.0026 -0.2219 8.0527 0.0385 3.3295 -0.0103 -0.0138 -0.5672

19 -0.0132 0.5818 8.3366 -0.0995 3.0228 0.0338 -0.0663 2.2166

20 -0.0127 -0.4608 8.6487 0.0632 2.7262 -0.0193 -0.0637 -1.9019

21 -0.0174 0.8435 7.8977 -0.1624 3.5285 0.0474 -0.0888 2.7826

22 -0.0158 -0.9406 9.0799 0.114 2.4087 -0.0419 -0.0728 -3.2301

23 -0.0329 4.9284 11.2614 -0.31 1.7873 0.2094 -0.1542 15.6279

24 -0.0029 3.1936 9.635 -0.3144 2.2303 0.1435 -0.0222 10.9547

25 0.0089 7.3896 13.0886 -0.1785 1.5651 0.2276 -0.0077 21.4641

26 0.0329 2.7978 9.5471 -0.2995 2.2594 0.1262 0.1472 9.8738

27 0.0859 6.3009 12.7119 -0.3326 1.6117 0.2376 0.2987 17.7201
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ID sd.2 ske.2 kur.2 cor.t2 cor.x2 avg.t sd.t ske.t

1 0.3288 1.3409 7.1194 -0.2973 -0.0095 -4.7809 0.234 0.2432

2 1.5148 -0.7678 2.7309 0.3173 0.03 2.1903 0.8588 0.2331

3 0.1433 0.0398 1.5203 -0.0553 -0.0293 0.0646 0.1496 -0.0261

4 3.9296 0.388 1.3376 -0.205 0.0417 -5.1815 2.8305 2.0536

5 0.0145 -0.0982 1.5411 0.0162 -0.4136 -20.4662 0.0134 -0.4336

6 0.8798 2.1339 5.6044 -0.2499 -0.0366 -2.7599 0.0103 -0.0829

7 0.0974 0.0679 1.5186 -0.1015 0.0279 -0.0818 0.1021 0.3203

8 0.1345 0.4302 2.6635 -0.2492 -0.0067 -2.9081 0.1096 0.1895

9 0.1127 0.0453 1.5216 -0.0606 0.094 -5.5704 0.1142 0.18

10 0.8456 0.0525 1.5205 -0.0425 0.1743 -9.4631 0.861 0.3244

11 0.1666 0.061 1.5263 -0.0513 0.161 -8.433 0.1666 0.2533

12 1.7363 -2.2601 6.111 0.2538 0.0352 5.2602 0.0265 -0.1897

13 0.6781 0.0678 1.5255 -0.0302 0.2009 -10.6181 0.6839 0.3379

14 0.1994 0.0599 1.5383 -0.0504 0.0861 5.2072 0.2033 0.2811

15 0.8466 0.0596 1.524 -0.0282 0.1883 -10.2129 0.857 0.3118

16 2.358 0.8018 1.6622 0.0147 -0.0055 -2.9249 2.4233 0.6104

17 0.9417 -0.0249 1.0341 -0.0282 0.0035 0.1109 0.9351 0.1286

18 1.4292 0.0314 1.002 -0.004 -0.0019 -0.5813 1.4284 0.0501

19 2.1647 -0.7718 1.6048 0.0103 0.0064 2.2093 2.1635 -0.7582

20 3.2283 0.5915 1.3542 -0.0442 -0.0013 -2.2282 3.1104 0.8287

21 0.1257 -0.0546 1.5304 0.1016 -0.0227 2.8052 0.1302 -0.2244

22 4.2469 0.6671 1.4487 -0.0383 0.0009 -3.6147 4.0964 0.8841

23 0.2685 -0.0844 1.5351 0.0248 -0.3183 15.6971 0.26 -0.3504

24 0.0189 -0.0637 1.5284 0.0352 -0.2215 10.9582 0.0187 -0.2522

25 0.0335 0.1028 1.541 -0.0176 0.4289 21.4524 0.0309 0.4614

26 0.2605 0.0505 1.5241 -0.0455 0.193 9.8172 0.2597 0.2698

27 0.6293 0.0884 1.5318 -0.0203 0.3631 17.509 0.5943 0.4179
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ID kur.t cor.tt cor.xt favg fsd fske fkur fcort

1 1.4742 -0.9884 -0.1573 -2.644 3.3438 0.892 7.489 -0.1904

2 1.463 -0.9909 -0.2978 0.5206 3.8981 -0.14 5.2023 0.0555

3 1.4579 -0.987 -0.141 0.1139 1.8818 -0.008 51.767 -0.0161

4 5.9363 -0.4856 -0.064 -1.9794 5.43 0.2547 2.3803 -0.0594

5 1.6919 0.9598 -0.0991 -16.7941 8.0312 1.8477 4.7918 -0.4777

6 1.5057 0.9897 0.0952 -1.5578 2.2686 1.0462 27.3204 -0.1543

7 1.5122 -0.9906 -0.1691 -0.1657 1.6316 -0.1979 84.6809 0.0797

8 1.462 -0.9898 -0.1471 -1.8041 2.3683 1.213 23.66 -0.1872

9 1.5233 -0.9872 -0.0598 -4.513 2.8111 2.3369 17.0162 -0.3433

10 1.5468 -0.9817 -0.116 -6.3525 5.7575 1.2358 3.6438 -0.4001

11 1.5566 -0.9837 -0.0347 -7.155 3.4737 2.609 12.6056 -0.3846

12 1.5318 0.9874 0.066 3.2431 3.202 -1.1274 8.9591 0.1994

13 1.5638 -0.9801 -0.0978 -6.9727 6.1567 1.1386 3.1138 -0.3781

14 1.5242 -0.9872 -0.2281 3.2171 3.42 -1.0617 7.33 0.2432

15 1.5382 -0.9804 -0.1274 -7.5612 5.5394 1.5365 4.6114 -0.4215

16 1.3905 0.002 0.0018 -2.7791 3.2776 1.0594 8.1991 -0.1274

17 1.0522 0.0304 0.0217 0.1661 2.1748 -0.1517 31.1703 0.0134

18 1.0035 0.0144 -0.0021 -0.5078 2.3535 0.3014 23.2361 -0.0308

19 1.5841 -0.0596 -0.0307 1.9391 2.9925 -0.9276 10.4168 0.1101

20 1.6919 0.0629 0.0499 -1.603 3.7914 0.5424 4.6035 -0.0736

21 1.4823 0.9896 0.1756 1.8418 2.3146 -1.2751 25.609 0.2127

22 1.7861 0.094 0.0925 -2.8598 4.7394 0.6321 2.7731 -0.0794

23 1.6108 0.9716 -0.0704 12.7789 6.5067 -1.9789 5.5588 0.3934

24 1.5547 0.981 -0.045 8.4098 4.9552 -1.6385 5.1316 0.4399

25 1.7097 -0.9566 0.0993 18.3678 7.7063 -2.2277 6.419 0.4557

26 1.5526 -0.9819 -0.0608 7.5873 4.816 -1.7181 5.4939 0.3462

27 1.6462 -0.9672 -0.0369 14.4515 7.7212 -1.916 5.138 0.3859
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ID fcorx statavg subject

1 0.1561 3.542 -184.6028

2 0.2786 8.3339 38.6149

3 0.1312 2.7909 31.1981

4 0.2487 8.2888 -143.5361

5 -0.0174 -20.5165 -871.8784

6 -0.005 -2.962 -144.3063

7 0.0826 0.7399 -204.2054

8 0.1057 1.9705 -151.63

9 0.1016 1.3852 -337.035

10 0.2565 7.1313 -348.3894

11 0.1227 1.4711 -514.7919

12 -0.0245 4.9396 217.7949

13 0.2216 6.6153 -377.1275

14 0.1327 6.9577 213.693

15 0.2676 6.2027 -452.9338

16 0.1117 3.1693 -163.5448

17 -0.092 -2.6561 12.6843

18 -0.0184 -2.4957 -40.8615

19 -0.0783 -2.8975 102.9624

20 -0.0602 -5.4231 -71.1863

21 -0.1238 -1.9147 176.118

22 -0.0588 -7.2952 -136.1748

23 -0.1253 14.434 628.0188

24 -0.025 10.8469 477.2538

25 0.0408 21.57 953.6364

26 0.1198 11.2896 393.974

27 0.166 19.8243 673.3037
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Values of stochastic model extension output starting in table A.5. Results are from twenty

separate iterations of the model extensions, according to

rng = rand(105);

tsteps = [0:0.01:100];

...

% Full model definition of time derivatives of x,y,z

g = @(t,P)[-2*pi*w*(sin(2*pi*w*t))+cos(2*pi*rng(step,round(t+5))) ...

-0.5*cos(2*pi*rng(step,round(t+4)))-0.25*cos(2*pi*rng(step,round(t+3))) ...

-0.125*cos(2*pi*rng(step,round(t+2)))- ...

0.0625*cos(2*pi*rng(step,round(t+1))); ...

c*P(1)-n*P(2);mact*(r*abs(P(3))+s*P(3)-f*P(2) ...

-(.075*(P(3))^3)/abs(P(3)))];

for p=1:27 %27 subjects

%calculate subject values for f, r, s

for step = 1:20 %20 randomized value runs

%solve model for values of rng

stattable = [runz.’]; %value of z at each time step

substattable(:,20*(p-1)+step+1) = stattable(:,2);

%20 columns per subject, 20 subjects, 540 data columns

end

end

%full output table stored in variable "data"

...

%stat calcluations from model output

for subject = 1:27

for run = 1:20

avgs(subject,run+1) = mean(data(:,1+run+(subject-1)*20));

sds(subject,run+1) = std(data(:,1+run+(subject-1)*20));
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skews(subject,run+1) = skewness(data(:,1+run+(subject-1)*20));

kurts(subject,run+1) = kurtosis(data(:,1+run+(subject-1)*20));

ztcor(subject,run) = corr(data(:,1),data(:,1+run+(subject-1)*20));

%yields table below of stochastic model stats

%rows are subjects, columns are runs, stored per stat

%combined in table below

%28 rows (titles + 27 subjects)

%107 columns

%(titles + 5 stats * 20 runs + 5 avgs + mean divg. stat)

end

end

.
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id zt1 zt2 zt3 zt4 zt5 zt6 zt7

1 -0.3894 -0.1050 -0.1621 -0.8686 -0.3245 0.1401 -0.6662

2 -0.1181 0.1503 -0.2186 0.7999 0.6445 -0.5672 0.6968

3 0.2289 -0.1030 -0.2699 -0.6495 -0.2796 0.6851 -0.6875

4 0.3761 0.1401 0.4227 0.6979 0.2503 -0.5444 0.7972

5 -0.2047 -0.4907 -0.3634 -0.7390 -0.4075 0.3916 -0.6136

6 0.0342 0.0884 0.2116 -0.8047 -0.5430 0.4332 -0.7437

7 0.2521 0.1318 -0.3929 0.7121 0.5936 -0.2385 0.7485

8 0.1288 -0.5560 -0.3712 -0.8982 -0.4478 0.6527 -0.6437

9 -0.2420 0.1710 0.1678 -0.8698 -0.4322 0.3366 -0.8040

10 0.3683 -0.3914 -0.1747 -0.7890 -0.6777 0.1374 -0.6448

11 0.2283 -0.1507 0.2211 -0.8486 -0.6776 0.6358 -0.3846

12 -0.5209 -0.1499 0.4329 0.2609 0.2290 -0.5151 -0.3202

13 0.0885 0.3229 -0.7306 0.2042 -0.4381 0.5056 0.4104

14 0.6632 0.4209 -0.7642 -0.2417 0.3150 0.6716 0.1667

15 -0.5615 -0.2112 0.5623 -0.1082 0.2824 -0.5763 -0.1906

16 -0.4466 -0.3657 0.5540 0.2046 0.3434 -0.7104 -0.1424

17 -0.6765 -0.2439 0.7228 0.2261 0.0345 -0.7715 -0.2956

18 -0.1493 -0.3851 0.5640 -0.1831 -0.0653 -0.6951 -0.3987

19 -0.2330 -0.3713 0.5135 0.0505 -0.0576 -0.7320 -0.0649

20 -0.0725 -0.2528 0.6954 0.1013 0.2167 -0.6846 -0.2456

21 0.0220 -0.3438 0.6248 0.2918 0.2277 -0.7255 -0.2080

22 -0.2146 -0.1912 0.6717 -0.0099 0.2522 -0.7825 -0.4490

23 -0.4183 -0.0062 0.5585 0.1815 0.1868 -0.6621 0.1611

24 -0.3014 0.0944 0.7022 -0.0215 0.2922 -0.6528 -0.5061

25 -0.2952 -0.2025 0.3387 0.0357 0.1091 -0.4148 -0.2623

26 -0.4325 -0.2007 0.5684 0.0123 0.0548 -0.7174 -0.4408

27 0.0865 -0.1445 0.5780 -0.4852 0.2830 -0.7149 -0.4590

Table A.5: Summary statistics calculated from nonlinear stochastic dynamical model out-
put, mean, s.d., skewness, kurtosis, correlations of z with t, across 20 randomized runs.

282



id zt8 zt9 zt10 zt11 zt12 zt13 zt14 zt15

1 0.0137 -0.5893 0.5505 0.8420 -0.3904 -0.4722 0.7073 0.7215

2 0.0040 0.5239 -0.2475 -0.7915 0.2850 0.3159 -0.6066 -0.4236

3 0.4194 -0.6984 0.5735 0.8338 -0.2485 -0.5932 0.7989 0.4102

4 -0.1707 0.5654 -0.5370 -0.8584 -0.0274 0.4873 -0.6095 -0.5281

5 0.1534 -0.4116 0.4589 0.7628 -0.1724 -0.4942 0.5846 0.1024

6 0.0328 -0.6258 0.5786 0.8413 -0.3944 -0.6619 0.7836 0.5731

7 -0.2965 0.7058 -0.6912 -0.7625 0.3194 0.4647 -0.6468 -0.6055

8 -0.4415 -0.6906 0.3924 0.7662 -0.2037 -0.4339 0.7858 0.7262

9 0.0903 -0.6435 0.6025 0.8209 0.0809 -0.5194 0.7836 0.5387

10 -0.5214 -0.6100 -0.0649 0.8000 -0.2751 -0.3374 0.5474 -0.0357

11 -0.4534 -0.7198 0.3060 0.8473 -0.3622 -0.5184 0.6684 0.5151

12 0.4858 -0.6722 0.4291 -0.7013 -0.3990 -0.6898 -0.2630 0.6551

13 -0.4148 0.3930 -0.3943 0.5880 0.1847 0.5728 0.4670 -0.4314

14 -0.3841 0.5675 -0.2172 0.6260 0.3828 0.6160 -0.1720 -0.7823

15 0.2037 -0.7998 0.2609 -0.7598 -0.2596 -0.7239 0.2555 0.7330

16 0.2345 -0.7073 0.3893 -0.6515 -0.3308 -0.6657 -0.2132 0.8082

17 0.6087 -0.6961 0.1995 -0.7035 -0.1519 -0.6460 0.1346 0.8030

18 0.5308 -0.7199 0.1723 -0.6677 -0.1958 -0.6886 -0.1146 0.6427

19 0.4754 -0.7072 0.3644 -0.5395 -0.2117 -0.6523 -0.0686 0.7432

20 0.3957 -0.7270 0.0577 -0.7514 0.0266 -0.6711 -0.0506 0.5711

21 0.5646 -0.7542 0.3597 -0.7036 -0.3395 -0.6433 0.1679 0.7786

22 0.5174 -0.6741 0.3777 -0.6860 -0.0479 -0.6038 0.0967 0.7220

23 0.6458 -0.7456 0.2174 -0.7463 0.0080 -0.7671 0.4938 0.8160

24 0.2630 -0.6330 0.2230 -0.6381 -0.3227 -0.4796 0.0631 0.3906

25 0.4451 -0.7560 0.3842 -0.7169 0.2282 -0.6500 0.0598 0.7886

26 0.5856 -0.8317 0.2800 -0.6759 -0.2450 -0.7166 -0.3774 0.8181

27 0.5384 -0.7974 0.2669 -0.7532 -0.2540 -0.7612 -0.3693 0.6568
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id zt16 zt17 zt18 zt19 zt20 mean1 mean2 mean3

1 0.5273 0.1873 -0.5704 -0.6550 0.2932 5.4840 -9.0358 -9.7243

2 -0.4319 0.1236 0.6013 0.7764 -0.2048 -20.6082 21.0932 13.6802

3 0.5878 0.1081 -0.7307 -0.7347 0.4632 14.5389 -11.6145 -13.4724

4 -0.6278 -0.2746 0.6498 0.7654 -0.1942 -6.5283 15.0622 19.5387

5 0.5746 0.3021 -0.3892 -0.5262 0.1041 -6.4651 -20.4665 -20.7199

6 0.5294 0.3582 -0.5666 -0.7802 0.6052 11.6956 -10.8100 -7.9140

7 -0.5215 -0.4772 0.0746 0.6559 -0.2391 -2.5531 4.2251 1.7802

8 0.6254 0.6080 -0.6085 -0.8097 0.2892 13.0611 -24.5157 -21.7520

9 0.4886 0.4006 -0.4514 -0.7681 0.4354 4.7864 -8.0025 -9.6567

10 0.1582 0.2116 -0.3631 -0.6642 0.2709 4.9852 -11.8813 -10.3252

11 0.5855 0.3691 -0.4030 -0.7835 -0.1727 20.3811 -24.9669 -15.1790

12 -0.6692 -0.2135 -0.0200 0.5280 0.6629 -24.0449 -24.7510 4.7064

13 0.7170 -0.0391 -0.1044 -0.4455 -0.6821 12.2640 15.5585 -7.7964

14 0.6764 -0.0696 0.0534 -0.6985 -0.3074 20.8791 23.3030 -3.6825

15 -0.5469 -0.3270 0.0209 0.2129 0.4369 -27.0792 -28.0396 3.5942

16 -0.5443 0.0333 0.0360 0.3565 0.3419 -30.6299 -37.5980 8.6879

17 -0.5837 0.2719 -0.3295 0.2481 0.5318 -33.9259 -40.1644 12.3575

18 -0.4492 -0.2117 -0.0690 0.3733 0.5305 -32.0694 -43.8404 6.8881

19 -0.6896 0.1645 -0.1659 0.6082 0.4353 -29.0457 -38.5043 5.2888

20 -0.7530 0.1865 -0.3613 0.5115 0.0595 -31.7677 -42.6608 13.3561

21 -0.4951 0.3107 -0.2703 0.3517 0.4688 -24.9666 -34.9012 8.5047

22 -0.5848 0.2868 -0.3917 0.3434 0.7212 -37.0166 -43.9493 13.5245

23 -0.7286 -0.0570 -0.2089 0.7157 0.5233 -52.2988 -51.4627 15.4027

24 -0.1434 0.0642 -0.1412 0.2833 0.3510 -28.1371 -27.2145 11.6574

25 -0.6070 -0.1258 -0.1897 0.6103 0.3818 -33.2741 -47.0837 15.1840

26 -0.5730 0.1910 -0.2868 0.4310 0.6431 -43.6025 -53.4978 14.7698

27 -0.5221 0.0904 -0.3146 0.6142 0.4444 -36.9351 -53.4957 10.1885
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id mean4 mean5 mean6 mean7 mean8 mean9 mean10 mean11

1 -7.9528 3.3264 -0.4023 -12.2858 13.4486 -28.9095 24.0827 7.5156

2 2.1972 2.1681 -10.2935 22.6891 -18.1473 45.6994 -34.4630 -10.6843

3 -0.3378 7.2014 10.7851 -12.1367 19.5400 -35.6416 30.0695 10.3317

4 -1.5543 -8.3755 -7.5762 19.7481 -22.3694 39.8934 -35.9140 -11.7853

5 -17.0610 -8.0560 -9.5252 -23.1325 3.0253 -28.8099 12.7754 -7.6361

6 -2.0106 1.3052 6.1073 -16.2851 16.4216 -34.5180 29.2106 6.9369

7 -1.6940 0.2809 -1.7542 4.8651 -7.1430 14.3425 -14.2397 -3.8955

8 -3.7043 2.1776 8.9885 -19.7219 8.2337 -44.3391 34.8356 7.6079

9 -9.2306 1.9719 1.5433 -14.9380 11.5366 -27.8194 21.8424 4.4955

10 -3.6262 -4.2978 -3.7479 -10.6398 2.6513 -18.5627 9.0814 -0.5056

11 -12.7664 -5.0179 8.5918 -23.4991 7.8516 -54.7563 36.7979 11.7310

12 12.5121 23.2528 -4.4864 -24.6283 2.8487 10.2606 27.4648 -25.9469

13 -3.4297 -18.4632 2.4242 16.4297 -2.6712 -9.4994 -20.3737 15.5954

14 -3.0674 -4.3227 8.3934 20.2812 5.2782 -4.3552 -15.4211 22.0239

15 -4.1672 16.4819 -10.3639 -26.3544 -11.2763 -5.8751 21.8915 -30.7026

16 9.2205 28.3181 -12.2134 -31.9791 -11.6780 4.7029 31.0615 -36.3894

17 3.5372 24.5911 -16.2957 -36.0928 10.3861 4.3935 31.6099 -37.5169

18 -4.0329 25.5802 -16.2981 -35.5856 6.5620 6.2209 34.2573 -39.2376

19 2.9643 24.3653 -16.0572 -30.0877 -0.4440 7.7742 30.8738 -30.0729

20 0.4140 31.6367 -16.1784 -39.3036 -4.4529 5.9055 32.8608 -41.9698

21 7.5818 27.8637 -13.2346 -29.3846 5.9593 4.6171 30.5493 -33.0180

22 8.5387 32.6970 -23.0968 -46.7151 1.5627 11.1490 41.5377 -45.5742

23 25.7768 48.7745 -24.6241 -42.8517 22.5465 8.4419 57.4671 -56.4953

24 8.5525 34.0545 -9.1982 -36.9037 -4.0744 13.4602 33.8582 -33.3469

25 19.3178 45.4002 -3.9298 -43.0769 3.6366 16.0734 59.2245 -44.5799

26 6.7005 39.0847 -20.8442 -50.9062 13.1557 -1.3011 52.1751 -52.9990

27 -1.2540 51.1246 -14.7184 -53.5289 13.9898 -5.3147 61.2799 -57.4064

285



id mean12 mean13 mean14 mean15 mean16 mean17 mean18 mean19

1 4.6093 -4.7233 23.0096 14.3757 18.4808 15.6447 -23.6681 -20.0449

2 -10.7623 4.6743 -37.4941 -16.5911 -34.0378 -25.2368 35.4441 34.6495

3 8.8510 -5.6197 32.7916 13.3454 27.6814 20.7960 -28.7144 -25.1760

4 -17.0412 6.5133 -36.0623 -17.1016 -34.1053 -27.8868 33.3859 28.2186

5 -3.2065 -18.0233 12.7688 -0.3248 9.7267 8.8753 -25.3666 -25.5020

6 6.5957 -11.1615 29.3797 15.0426 25.8771 22.5413 -30.1702 -27.3316

7 -3.8253 0.7998 -11.8114 -6.1722 -11.3713 -9.2609 7.4620 7.4678

8 14.5864 -3.6425 37.2802 22.0955 33.3226 31.4527 -36.8403 -34.5734

9 8.0465 -4.6912 18.7734 10.9893 16.1031 14.8937 -20.6113 -20.5290

10 2.2098 -6.2276 11.7891 -0.1118 8.4890 9.2330 -15.0350 -15.3765

11 15.4230 -10.5671 38.5870 16.9788 37.2138 33.3639 -41.8294 -44.7806

12 5.4567 -28.3090 -10.3476 19.0692 -7.7647 -21.9583 27.4383 28.5828

13 -5.2588 18.6614 8.2210 -14.5030 4.1847 12.1804 -21.0618 -19.8677

14 2.4913 26.9878 3.6772 -9.3706 9.8422 17.5251 -17.1638 -21.3026

15 -1.1580 -35.5460 -3.2223 10.9149 -9.1592 -26.5392 23.3646 17.8735

16 1.6288 -41.9662 -3.7391 20.2631 -8.4027 -25.7270 32.1959 29.5811

17 8.2125 -45.2227 -5.0536 24.8753 -10.2799 -24.4999 29.3138 31.9029

18 12.9880 -49.8236 -10.4778 19.6579 4.1958 -32.8227 36.7801 35.4989

19 9.0671 -39.9400 -7.1509 18.5497 -5.8394 -24.6075 32.6750 35.5482

20 12.6456 -45.4419 -6.6542 21.2745 -3.6130 -27.1405 33.0870 38.4420

21 3.8803 -37.8686 2.6446 24.1083 -2.4948 -17.6286 30.7961 31.6187

22 12.5412 -53.6438 -8.8678 26.9926 -8.4112 -28.2719 35.8198 37.3074

23 23.6965 -74.1724 5.2997 39.8151 -19.0413 -43.6315 59.5950 68.2329

24 2.7343 -36.4479 -4.9827 18.7684 13.3574 -24.4712 37.9101 34.1319

25 35.7427 -53.2043 -5.6671 40.6591 -3.5961 -38.4616 53.3330 58.0370

26 13.7275 -63.7062 -22.4172 37.0819 -8.4906 -35.4054 48.6820 54.6213

27 18.6910 -70.1160 -21.0467 48.1916 7.7140 -40.3275 57.3485 65.3314
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id mean20 sd1 sd2 sd3 sd4 sd5 sd6 sd7

1 22.5815 9.2493 9.2135 7.9323 12.3621 10.6563 11.1847 7.6408

2 -34.3045 11.8243 13.929 13.9522 17.8016 17.3295 17.2396 11.7332

3 29.8191 9.716 10.9428 8.3169 14.8648 11.8447 13.7183 10.4388

4 -33.106 15.1982 13.2894 9.2742 18.2566 14.9651 16.1904 9.225

5 11.2303 13.4797 8.4446 6.0405 11.3922 13.4785 12.4679 6.3126

6 29.5519 12.875 13.5789 10.7198 15.2461 13.3713 14.1385 8.5688

7 -11.3298 3.7728 4.0196 3.8072 4.7205 4.816 4.4412 3.118

8 34.9702 10.3867 12.7487 10.1101 20.5484 17.8051 16.5402 9.8801

9 18.2631 7.3439 9.2478 8.4567 11.7594 9.6955 9.2069 5.939

10 11.1041 4.2741 6.1488 5.0139 9.2762 7.448 8.1742 4.5534

11 32.7593 15.0149 18.2821 16.5993 21.2173 21.4167 20.278 11.0254

12 17.0863 9.5887 9.6537 13.0672 8.5669 10.444 13.5994 6.962

13 -13.0808 3.7134 4.8421 9.972 9.6125 7.7123 9.9051 3.9043

14 -5.6061 4.6495 5.1395 10.7832 7.79 12.2444 10.4353 4.5212

15 8.6845 7.1054 7.769 14.1348 11.414 9.4972 13.9277 6.2195

16 11.8753 8.7166 10.3573 19.0872 13.6435 12.7225 17.5037 9.0461

17 20.2736 9.8266 11.2101 18.6146 16.4425 13.6386 21.5386 9.0166

18 19.2816 9.9666 12.6297 18.6361 18.1442 15.9796 20.4142 8.9186

19 15.3027 9.7511 11.0319 17.0824 14.6117 14.7566 18.6671 8.1008

20 8.4321 18.22 12.6556 20.7292 18.6458 14.7863 20.7781 10.5911

21 15.2917 8.5272 9.8483 16.07 14.3959 13.0012 17.1958 8.475

22 25.7227 9.3058 13.5232 23.4293 19.4753 16.0739 24.4272 10.4378

23 34.6409 14.1667 17.5647 31.1744 23.1693 22.6826 28.8468 14.4791

24 16.6729 8.615 15.0495 18.5399 16.6122 14.5767 19.2059 9.4734

25 27.3133 9.9213 15.2316 28.4176 23.7904 18.6255 32.9369 11.3571

26 34.3166 11.1128 15.0939 29.2563 24.2841 19.623 27.9385 12.1479

27 29.7516 14.0945 15.9943 28.5121 27.8478 22.4255 31.372 12.3913
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id sd8 sd8 sd10 sd11 sd12 sd13 sd14 sd15

1 5.9947 6.8182 5.6852 12.4396 9.7095 8.841 6.753 7.447

2 11.7517 9.6008 9.3022 19.2175 16.3726 14.7799 10.4103 14.2676

3 6.4324 8.8849 7.2992 15.1796 12.7572 10.1072 9.4212 10.6483

4 8.8531 8.1651 8.7249 20.0896 12.4232 13.6619 9.9438 12.8284

5 9.64 6.2349 6.0309 14.3425 13.7555 7.348 6.1742 12.1739

6 11.3003 8.4014 6.6584 16.6743 11.2984 10.724 8.1812 10.0557

7 3.4018 3.7261 4.305 5.7107 3.5556 3.609 3.7884 4.199

8 15.0259 9.9712 9.7642 17.5628 11.8352 11.9784 10.356 10.3603

9 5.2968 6.7819 6.2738 10.7902 5.3529 9.2203 5.5495 5.9029

10 6.5199 5.0202 5.4733 9.8401 6.629 6.4227 3.8435 8.1662

11 20.4589 11.919 8.6766 23.1649 15.3281 16.4843 11.3664 17.0059

12 17.2688 15.673 7.0446 10.6654 13.773 8.4236 8.2291 12.4779

13 11.2185 10.0789 6.1598 5.1226 10.9208 5.2127 5.343 7.3664

14 11.481 11.3484 6.0352 5.6843 10.4947 6.3628 7.8567 9.0603

15 13.8131 16.8439 7.0623 9.8581 12.3329 9.5217 16.4931 11.0804

16 18.0169 19.5237 9.8437 12.1027 16.9176 10.8127 13.0488 14.5378

17 21.5321 22.2883 9.7151 12.561 16.672 12.6812 14.3259 13.7806

18 21.6072 23.0751 11.2167 12.9323 19.2967 13.6739 14.6372 15.9215

19 22.0232 20.4095 9.0784 11.3111 16.298 10.5521 12.4869 14.2806

20 23.2037 23.1198 10.3066 14.466 16.8612 11.4536 13.8514 14.9887

21 20.8802 20.4658 9.2341 11.1557 16.1774 10.2888 14.7886 12.3247

22 25.4695 26.3616 12.3767 13.9054 18.3424 13.75 16.3791 17.5329

23 33.9545 37.211 15.7671 20.9243 27.3203 20.5818 28.7824 27.0115

24 21.5044 23.2014 9.1513 11.8527 18.9157 10.231 18.8336 13.0569

25 33.423 35.0275 15.0436 17.8972 17.6013 16.5968 18.5797 22.6895

26 31.6821 35.4663 15.2581 17.3951 25.1744 16.954 14.8156 22.8494

27 35.5793 36.6233 16.1703 21.1388 30.0921 19.8843 18.21 21.8683
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id sd16 sd17 sd18 sd19 sd20 skew1 skew2 skew3

1 6.7727 7.0274 6.2856 5.713 7.3045 -0.9869 0.7444 0.6273

2 12.6258 7.9218 8.4968 8.3636 8.4501 1.1832 -1.1659 -0.7549

3 10.2519 5.0166 7.2663 7.3062 5.9736 -0.7563 0.8794 0.8433

4 11.8299 7.0074 6.6558 6.6977 7.1403 0.6497 -1.0062 -1.0635

5 7.8154 4.7416 5.548 5.7887 4.5179 -0.0061 2.3293 3.5678

6 8.6683 5.0742 7.6718 7.6817 5.7454 -1.2145 0.7355 0.5149

7 4.5886 2.8915 2.3581 2.5128 3.1895 0.7252 -0.7352 -0.3765

8 11.2834 7.6887 8.399 10.1785 6.7383 -0.9675 1.3791 0.934

9 6.3985 4.0164 4.8255 5.7119 5.5996 -1.1029 0.6263 0.8843

10 3.9838 3.4945 4.2141 4.8139 3.1616 -1.8746 1.8256 2.2918

11 13.8824 10.0615 8.8447 11.1665 8.0538 -1.0209 1.1414 0.6651

12 14.9321 8.0394 7.5644 7.112 13.2467 0.4145 0.9412 -0.2878

13 12.2565 3.8803 5.86 6.2417 11.556 -2.4178 -2.0274 0.8373

14 9.895 5.7686 6.0782 7.5292 11.1973 -1.7594 -1.98 0.8185

15 15.0783 6.8285 7.0848 9.0915 14.1717 2.0301 1.7488 -0.6412

16 19.2602 6.8434 9.3729 7.626 18.1441 1.4984 1.5871 -0.5331

17 23.6414 8.815 17.4294 7.8082 17.5174 1.0542 1.5137 -0.8851

18 19.0837 8.4372 10.5415 9.2975 20.3045 1.0512 1.3445 -0.5785

19 19.9404 7.85 9.6599 8.6869 16.9603 1.4229 1.6534 -0.4382

20 21.9037 9.4025 12.0105 8.589 21.8224 1.5342 1.1154 -0.9735

21 17.0829 9.9418 10.2336 7.2368 16.7019 1.207 1.6616 -0.6651

22 24.498 12.0916 14.2849 9.0922 24.4679 1.7151 1.0234 -0.8633

23 32.8613 12.6597 20.3763 15.6358 31.5136 1.5453 0.7929 -0.5287

24 19.0253 8.2632 9.6777 7.0596 19.7816 1.6812 1.27 -0.7374

25 28.9656 10.5818 11.9426 11.3601 27.2345 2.0108 1.3647 -0.4348

26 27.4736 11.2219 13.6101 12.3375 26.5211 1.676 1.2718 -0.5149

27 31.2249 16.2697 16.7681 13.6031 29.2422 1.2986 1.2196 -0.4153
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id skew4 skew5 skew6 skew7 skew8 skew9 skew10 skew11

1 0.6716 -0.7817 0.2284 0.8262 -2.2722 3.6807 -2.6273 -0.7442

2 -0.1248 0.327 0.4366 0.3734 1.5981 -2.164 2.0634 0.5404

3 -0.2122 -0.9134 -0.6289 0.5476 -0.9852 2.7337 -1.7068 -0.6477

4 0.2391 0.8348 0.1986 -0.7566 2.2091 -2.6109 2.9837 0.4629

5 1.3902 0.0604 0.2525 2.9884 -1.4054 4.6771 -3.7936 0.3536

6 -0.0362 -0.6118 -0.0271 0.7329 -1.2657 2.7116 -2.5733 -0.3437

7 0.3405 0.2165 -0.3591 -0.4482 1.8914 -2.3608 2.8634 0.363

8 -0.1451 -0.6208 -0.4654 0.6173 -1.0206 3.0748 -1.0349 -0.5309

9 0.5589 -0.841 -0.0049 1.3548 -1.9809 3.1234 -1.7645 -0.4526

10 -0.06 0.1351 0.4626 1.9401 -1.1193 3.8619 -2.6115 -0.0144

11 0.6192 -0.2493 -0.543 1.0578 -0.9452 2.6164 -2.3006 -0.5222

12 -1.1717 -1.5241 0.4921 2.4563 -0.0852 -0.7962 -2.8981 1.3527

13 0.2176 2.3508 -0.6111 -3.7809 -0.0503 1.0767 3.3519 -2.8334

14 0.8018 0.5555 -0.7743 -1.8155 -0.6504 0.8686 2.7358 -2.4662

15 -0.1358 -1.9384 0.5865 3.2605 0.7946 -0.1238 -2.7208 1.9863

16 -0.8372 -2.1566 0.6958 1.9414 0.8 -0.6497 -2.0387 1.648

17 -0.3985 -1.3346 0.6274 2.1506 -0.4639 -0.5053 -2.233 2.0304

18 0.1446 -1.1054 0.7018 1.9423 -0.4496 -0.6194 -1.8089 1.9123

19 -0.2313 -1.1257 0.7805 2.0946 0.3069 -0.6741 -2.3912 1.5881

20 -0.2182 -1.8781 0.7975 1.784 0.2571 -0.5961 -2.1781 1.6497

21 -0.3832 -1.4131 0.7891 1.7857 -0.0495 -0.5388 -2.0529 2.1718

22 -0.4542 -1.9893 0.8386 2.7951 -0.113 -0.7866 -2.7175 2.5681

23 -1.1446 -1.6363 1.1211 1.6488 -0.7618 -0.4747 -2.7575 1.8464

24 -0.4881 -1.6297 0.6634 2.9487 0.4845 -0.8269 -2.3682 2.5945

25 -0.6996 -1.731 0.0295 2.8458 0.1958 -0.7534 -2.5808 2.1374

26 -0.4382 -1.3359 0.8524 2.3707 -0.2979 -0.2079 -2.321 2.3605

27 0.2042 -1.8894 0.7313 3.0054 -0.3537 0.1277 -2.9865 1.977
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id skew12 skew13 skew14 skew15 skew16 skew17 skew18 skew19

1 -0.8724 0.1108 -1.6281 -0.6104 -2.3556 -1.6139 2.3436 2.4933

2 0.8082 0.0702 2.5636 0.8563 2.3564 1.7451 -0.6912 -1.177

3 -1.1454 0.125 -1.4994 -0.5076 -1.5546 -1.9349 2.3801 1.9056

4 1.3494 -0.4432 2.6302 0.6326 2.7117 3.5412 -2.2695 -1.6699

5 -0.3316 2.2957 -3.4653 -0.773 -2.7128 -4.296 4.8106 4.5711

6 -0.9327 0.4149 -1.7595 -0.6005 -2.7143 -3.0756 2.1766 1.8676

7 1.1754 0.1097 3.0665 0.51 2.0314 4.0082 -2.3038 -1.65

8 -1.7013 -0.0844 -1.79 -0.1752 -2.5441 -2.1457 2.5627 1.3295

9 -2.3722 -0.136 -1.9912 -0.5061 -2.1052 -2.7358 3.9145 2.4828

10 -1.0377 0.6759 -3.8263 -0.4022 -2.6795 -3.1871 4.1717 3.1447

11 -1.5577 0.1482 -1.6114 -0.416 -2.4857 -1.5978 2.6089 1.7734

12 -0.4197 2.4128 1.0581 -0.7612 0.4636 1.1769 -1.1696 -1.7346

13 0.346 -2.5561 -1.7796 1.6224 -0.5319 -2.3973 2.7974 2.4511

14 -0.1362 -2.0359 -0.2358 0.9443 -0.9763 -0.9365 1.7705 2.0664

15 -0.0377 2.362 0.3367 -0.9978 0.4014 2.198 -1.1736 -0.8635

16 0.0135 2.4904 0.29 -1.0464 0.2972 1.9877 -1.0439 -2.1475

17 -0.4092 1.8759 0.2709 -1.1866 0.3056 1.1685 -1.1226 -2.131

18 -0.9324 1.9236 0.6245 -0.6144 -0.3034 1.9279 -1.4103 -1.9086

19 -0.724 2.6021 0.7975 -0.8151 0.0995 1.4631 -1.308 -2.1053

20 -0.8066 2.596 0.5827 -0.9166 -0.0954 1.6968 -0.8785 -2.9541

21 0.0159 2.3434 0.0683 -1.0127 0.1958 1.2415 -1.0671 -2.4442

22 -0.7535 2.2037 0.5302 -0.9309 0.2394 1.4357 -1.0174 -2.245

23 -0.7442 2.0486 -0.0526 -0.9519 0.7543 2.0883 -1.4214 -2.0463

24 0.0525 2.7563 1.1145 -1.0194 -0.7691 1.6584 -1.0763 -2.5707

25 -1.8893 2.0202 0.6971 -1.2129 0.3464 2.6774 -0.9904 -2.5926

26 -0.4437 2.1837 1.1238 -1.0843 0.453 1.1377 -0.728 -2.374

27 -0.6081 2.0686 1.5398 -1.3982 -0.2822 1.3113 -1.2059 -2.7199
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id skew20 kurt1 kurt2 kurt3 kurt4 kurt5 kurt6 kurt7

1 -0.6184 2.9083 2.2993 2.6936 1.9872 2.3937 1.6542 3.3968

2 2.6064 4.145 3.2843 2.5403 1.5274 1.6875 1.8806 3.3749

3 -2.7947 3.9124 2.6701 3.634 1.6268 2.7745 1.9924 2.8108

4 4.0925 1.9863 2.9036 4.7433 1.4707 2.3567 1.714 3.6426

5 -4.4765 1.1978 7.2384 16.1727 3.2979 1.1911 1.2587 15.1227

6 -3.5242 3.5891 2.3293 1.9913 1.3356 1.9657 1.8378 3.7347

7 3.9755 3.5374 3.4075 3.0206 2.2136 2.0399 2.9532 5.0683

8 -3.3074 3.4607 4.5463 4.3381 1.3944 1.9235 1.8771 3.7081

9 -0.8505 3.2011 1.9656 2.85 1.9164 2.3167 1.7026 5.9965

10 -3.9651 7.4153 5.8934 8.5673 1.2565 1.5267 1.5381 9.5967

11 -1.4078 3.657 2.984 2.2319 1.9938 1.6054 1.9556 4.9308

12 -0.9007 4.3696 4.5439 1.5479 3.7736 5.3926 1.9017 13.0013

13 0.8321 17.0788 11.6583 2.015 1.4675 8.0771 2.0686 25.4748

14 0.5238 11.1115 11.2094 1.9637 2.5227 1.9921 2.2896 11.5882

15 -0.684 11.5813 9.3427 1.7302 1.4152 6.6853 1.9337 17.975

16 -0.485 7.5572 7.8605 1.6248 2.9857 7.2315 2.1591 8.4882

17 -0.8933 6.7629 7.2237 2.1639 1.5983 4.556 2.0898 11.4056

18 -0.6954 5.6329 6.2114 1.7703 1.4918 3.5176 2.3705 11.1276

19 -0.7934 6.3256 7.4683 1.6187 1.5539 3.6683 2.4737 11.0161

20 -0.5334 5.1634 5.7038 2.2918 1.5804 6.334 2.3906 8.3016

21 -0.6878 6.3881 8.2029 1.9518 1.8689 5.0637 2.3967 8.6818

22 -0.896 9.9629 5.0168 2.0903 1.9244 6.7862 2.4075 14.4388

23 -0.8093 7.8901 4.2899 1.6321 3.0985 5.6431 3.1068 7.4721

24 -0.57 9.4279 4.6188 1.9739 1.7871 5.5597 2.2065 14.7947

25 -0.7584 12.0356 6.9045 1.4705 1.9715 6.3252 1.5331 15.6576

26 -1.0125 9.5847 6.5391 1.6929 1.5725 4.7565 2.4488 11.9691

27 -0.7646 6.4915 6.4993 1.5512 1.4627 6.2573 2.1491 16.2925
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id kurt8 kurt9 kurt10 kurt11 kurt12 kurt13 kurt14 kurt15

1 9.1617 19.1396 13.0643 2.0636 2.3448 1.7326 7.7931 3.5702

2 5.1575 9.8569 10.2505 1.9234 2.1878 1.6978 11.3018 3.4671

3 5.5685 12.6994 8.3715 2.0479 2.8917 1.8031 6.2364 2.6639

4 9.0309 12.7038 14.7801 1.6268 4.4777 1.7619 11.6216 2.9038

5 3.3325 26.6619 18.8418 1.2887 1.2251 7.5631 17.5102 1.9763

6 5.2097 13.4552 11.9142 1.5647 2.6176 2.2101 7.8178 3.0799

7 10.2113 12.4777 14.2426 2.1081 5.4266 3.0324 16.0412 4.5427

8 2.6445 14.8955 5.2098 1.91 5.0124 1.5824 7.4024 3.1847

9 8.2932 15.8577 7.7737 1.8661 9.3694 1.8056 10.0247 4.1736

10 2.775 20.6866 9.8821 1.1945 2.7999 2.3975 21.6794 1.8059

11 2.5163 13.2031 11.0491 1.9012 4.5255 1.6049 7.2582 2.6354

12 1.4638 2.1299 13.3841 6.0547 1.6595 10.757 3.9338 2.834

13 1.4452 3.0905 15.4954 14.6458 1.5224 13.4165 6.5315 5.4644

14 2.0399 2.3965 12.1775 11.6507 1.6787 9.0827 1.8144 2.7377

15 2.1788 1.5776 12.8661 8.4704 1.4655 10.0896 1.3726 3.0408

16 2.3339 1.9069 9.0161 8.2434 1.4577 10.748 1.8054 3.0473

17 2.0612 1.7557 9.7846 8.1138 1.8748 7.6548 1.7474 3.8669

18 1.8907 1.9597 7.8266 8.4729 2.6615 7.8078 2.2189 2.8071

19 1.7897 1.9204 10.3641 6.9615 2.2022 11.0785 2.4493 2.7951

20 1.6419 1.8362 10.289 7.178 2.3925 11.1699 2.2794 3.2522

21 1.7158 1.8216 8.6829 9.0544 1.4871 10.1115 1.5809 3.6429

22 1.6254 2.2171 11.9431 10.7317 2.2745 9.5642 2.0306 3.4938

23 2.3537 1.6719 12.7268 7.4131 2.0728 7.7443 1.4536 2.9297

24 1.7527 2.3245 10.8875 10.8685 1.4085 12.5702 2.7999 3.1679

25 1.4372 1.9655 11.741 8.801 6.0827 8.7034 2.3311 3.5728

26 1.8238 1.5613 10.2132 10.0113 1.7684 8.7607 4.2071 3.27

27 1.682 1.4693 13.557 8.0239 1.832 8.0481 4.859 4.8527
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id kurt16 kurt17 kurt18 kurt19 kurt20 meanmean meansd meanskew

1 9.5694 5.2804 14.0226 13.161 4.5754 1.7906 8.2515 -0.1692

2 8.9981 9.4815 5.7558 6.0144 14.216 -3.5164 12.7685 0.5725

3 6.2649 12.3493 12.7313 9.2232 16.0527 4.6519 9.8193 -0.2936

4 10.3785 18.7695 12.5895 7.8468 24.3855 -4.8523 11.521 0.6358

5 9.7023 25.0427 28.0649 25.3393 29.0941 -7.7947 8.7864 0.3018

6 10.7363 17.345 11.7393 9.3374 20.4401 3.0232 10.3317 -0.4763

7 8.6844 26.3134 17.8795 14.0957 25.8239 -2.1913 3.8266 0.6522

8 10.0072 10.7042 13.8956 6.1768 19.0116 2.9761 11.9581 -0.3318

9 8.5243 16.9144 23.1466 12.5726 7.5019 0.8883 7.1685 -0.1949

10 13.6311 18.0412 23.6585 15.85 30.3027 -2.0397 5.8236 -0.1134

11 9.8107 6.528 13.9886 8.3071 9.9121 1.3158 15.0123 -0.2014

12 2.067 5.9127 5.1279 9.1163 2.7406 0.3221 10.8166 -0.049

13 1.665 14.3911 14.44 11.8336 2.2603 -1.5243 7.544 -0.1551

14 2.8694 4.8863 9.4994 9.2294 1.9765 3.8195 8.2177 -0.1341

15 1.6493 12.3253 6.3106 3.6503 2.1813 -5.8339 10.9664 0.3194

16 1.733 10.9297 4.8901 9.8004 1.9657 -3.1394 13.3564 0.1156

17 1.6739 5.3591 3.6959 10.0354 2.6801 -2.3799 14.9528 -0.0283

18 1.6093 10.0593 5.9249 7.9941 2.3032 -2.8139 15.2357 0.0573

19 1.4671 7.1262 6.1268 9.5779 2.4072 -1.967 13.6769 0.1101

20 1.456 7.4258 4.3679 14.1123 1.9177 -3.0564 15.9193 -0.0008

21 1.7144 4.5302 4.9827 11.663 2.3898 -0.0041 13.2013 0.0583

22 1.6851 6.1951 4.6543 10.7348 2.538 -2.4077 17.2612 0.0291

23 2.249 9.8513 5.9286 9.5566 2.3669 2.2556 23.8342 -0.0742

24 2.2047 7.9414 5.4721 13.8542 2.0156 1.0191 14.6313 0.1584

25 1.554 13.6288 6.0977 13.3537 2.191 5.0524 20.3612 0.0341

26 1.7747 6.3672 4.1632 10.6095 2.8808 -1.9428 20.5108 0.1336

27 1.532 4.8636 5.6942 12.563 2.2428 0.4734 22.9656 0.043
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id meankurt meanztcor meanprod

1 6.1406 -0.0605 94.6788

2 5.4374 0.0656 161.961

3 5.9162 0.0057 141.4805

4 7.5847 0.039 183.7957

5 12.0561 -0.0689 459.6285

6 6.7125 -0.0025 305.0628

7 9.156 -0.0107 5.9728

8 6.1443 -0.0565 125.9333

9 7.3886 0.0093 96.3054

10 10.0249 -0.1528 95.7584

11 5.6299 -0.0549 473.1989

12 5.0856 -0.0725 -809.1486

13 8.7021 0.0387 -370.7584

14 5.7358 0.0761 -574.9109

15 5.8921 -0.1048 -635.3312

16 5.2892 -0.0738 -1241.4059

17 4.8052 -0.0659 -1442.7355

18 4.7829 -0.109 -1768.6842

19 5.0195 -0.0569 -1419.7962

20 5.0542 -0.0874 -1746.875

21 4.8966 -0.0157 -1197.3583

22 5.6157 -0.0323 -2001.3111

23 5.0725 0.0084 -5060.999

24 5.8818 -0.0556 -1244.0342

25 6.3679 -0.0419 -3087.8184

26 5.2987 -0.0957 -3479.7151

27 5.5962 -0.1008 -4580.7798
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A.3 FULL CIRCLE: CORTICAL SURFACE PROJECTIONS OF CONNECTIVITY

ASSOCIATIONS WITH DYNAMICAL MODEL OUTPUT

Subject RBS-R CSS was used to identify connections in a whole-brain search, which were used

to identify further connections until a functionally plausible hypothetical network model was suf-

ficiently populated with nodes, the network model then being used to generate parameter values

for a dynamical model putatively representing cortical activity, and here, subject-level calculated

output from that model is used to identify functional connectivity associations, in this case, from the

putative network cerebellar hub to the rest of the brain. Bivariate Pearson correlation connectivity

from an averaged seed comprising left and right cerebellum XIII and vermis X is depicted in each

case for qualitative comparison with the inflated cortical surface projection depictions used in the

rest of this thesis.

First, RBS-R CSS associated connectivity of the same kind is shown (figure A.3) for contextu-

alization, followed by connectivity associated with the measure of the time correlation of z in the

dynamical model (figure A.3), followed by connectivity associated with the skewness of z from the

dynamical model output (figure A.3), which is negatively correlated with RBS-R CSS, followed by

connectivity associations with the final time step value of z̄ in the static stimulus linear model real-

ization (figure A.3), followed by connectivity associations with the stochastic model mean divergence

regressor (figure A.3). Note that, for the first (RBS-R CSS) and last (stochastic model mean diver-

gence) figures, the heatmaps are effectively inverses of one another, given the very strong correlation

of the stochastic model mean divergence regressor with subject RBS-R CSS and the negative value

of the regression coefficient.
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Figure A.4: Reference RBS-R associated cerebellum—whole brain FC cortical surface projection
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Figure A.5: z̄|[t0, t0.05f ) associated cerbellum—whole brain FC cortical surface projection
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Figure A.6: skew(z)|[t0, t0.05f) associated cerbellum—whole brain FC cortical surface projection
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Figure A.7: Static z̄|tf associated cerebellum—whole brain FC cortical surface projection
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Figure A.8: Stochastic model z̄min · z̄max associated cerebellum—whole brain FC cortical surface projection
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Analogously generated cortical surface projections of connectivity from the hypothetical net-

work’s cerebellar hub to the rest of the brain, in this case associated with ADOS-G communication

subscale score (figure A.3) and ADOS-G social subscale score (figure A.3).
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Figure A.9: ADOS-G comm associated cerebellum—whole brain FC cortical surface projection
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Figure A.10: ADOS-G soc associated cerebellum—whole brain FC cortical surface projection
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[122] Francesca Happé, Angelica Ronald, and Robert Plomin. “Time to give up on a single expla-

nation for autism”. In: Nature neuroscience 9.10 (2006), pp. 1218–1220.

[123] LynnWaterhouse, Eric London, and Christopher Gillberg. “ASD validity”. In: Review Journal

of Autism and Developmental Disorders 3.4 (2016), pp. 302–329.

316



[124] Gerardo Noriega. “Brain Functional Connectivity Dynamics in Autism in the Context of

Restrictive, Repetitive and Stereotyped Behaviors”. In: 2021 10th International IEEE/EMBS

Conference on Neural Engineering (NER). IEEE. 2021, pp. 359–363.

[125] Seok-Jun Hong, Joshua T Vogelstein, Alessandro Gozzi, Boris C Bernhardt, BT Thomas

Yeo, Michael P Milham, and Adriana Di Martino. “Towards neurosubtypes in autism”. In:

Biological psychiatry (2020).

[126] Jessica H Schroeder, Mary Desrocher, James M Bebko, and M Catherine Cappadocia. “The

neurobiology of autism: Theoretical applications”. In: Research in Autism Spectrum Disorders

4.4 (2010), pp. 555–564.

[127] Jenna M Traynor and Geoffrey BC Hall. “Structural and functional neuroimaging of restricted

and repetitive behavior in autism spectrum disorder”. In: Journal of Intellectual Disability-

Diagnosis and Treatment 3.1 (2015), pp. 21–34.

[128] Claire J McKinnon, Adam T Eggebrecht, Alexandre Todorov, Jason J Wolff, Jed T Eli-

son, Chloe M Adams, Abraham Z Snyder, Annette M Estes, Lonnie Zwaigenbaum, Kelly N

Botteron, et al. “Restricted and repetitive behavior and brain functional connectivity in in-

fants at risk for developing autism spectrum disorder”. In: Biological Psychiatry: Cognitive

Neuroscience and Neuroimaging 4.1 (2019), pp. 50–61.

[129] James W Bodfish, Frank J Symons, Dawn E Parker, and Mark H Lewis. “Varieties of repet-

itive behavior in autism: Comparisons to mental retardation”. In: Journal of autism and

developmental disorders 30.3 (2000), pp. 237–243.

[130] Anna Fetta, Elisa Carati, Laura Moneti, Veronica Pignataro, Marida Angotti, Maria Chiara

Bardasi, Duccio Maria Cordelli, Emilio Franzoni, and Antonia Parmeggiani. “Relationship

between Sensory Alterations and Repetitive Behaviours in Children with Autism Spectrum

Disorders: A Parents’ Questionnaire Based Study”. In: Brain sciences 11.4 (2021), p. 484.

[131] Dionisio A Amodeo, Brandon Oliver, Alma Pahua, Kristianna Hitchcock, Alexa Bykowski,

Devon Tice, Aya Musleh, and Bryce C Ryan. “Serotonin 6 receptor blockade reduces repet-

itive behavior in the BTBR mouse model of autism spectrum disorder”. In: Pharmacology

Biochemistry and Behavior 200 (2021), p. 173076.

[132] Wouter G Staal, Mariken de Krom, and Maretha V de Jonge. “Brief report: the dopamine-

3-receptor gene (DRD3) is associated with specific repetitive behavior in autism spectrum

disorder (ASD)”. In: Journal of autism and developmental disorders 42.5 (2012), pp. 885–888.

317



[133] Wouter G Staal. “Autism, DRD3 and repetitive and stereotyped behavior, an overview of

the current knowledge”. In: European Neuropsychopharmacology 25.9 (2015), pp. 1421–1426.

[134] Gabriella E DiCarlo, Jenny I Aguilar, Heinrich JG Matthies, Fiona E Harrison, Kyle E

Bundschuh, Alyssa West, Parastoo Hashemi, Freja Herborg, Mattias Rickhag, Hao Chen, et

al. “Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission

and dopamine-dependent behaviors”. In: The Journal of clinical investigation 129.8 (2019),

pp. 3407–3419.

[135] Sheryl S Moy, Natallia V Riddick, Viktoriya D Nikolova, Brian L Teng, Kara L Agster, Randal

J Nonneman, Nancy B Young, Lorinda K Baker, Jessica J Nadler, and James W Bodfish.

“Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model

of autism”. In: Behavioural brain research 259 (2014), pp. 200–214.
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[158] Rümeysa İnce, Saliha Seda Adanır, and Fatma Sevmez. “The inventor of electroencephalog-

raphy (EEG): Hans Berger (1873–1941)”. In: Child’s Nervous System (2020), pp. 1–2.

[159] Edgar Douglas Adrian. Brain rhythms. 1944.

[160] Rosaleena Mohanty, William A Sethares, Veena A Nair, and Vivek Prabhakaran. “Rethinking

measures of functional connectivity via feature extraction”. In: Scientific reports 10.1 (2020),

pp. 1–17.

[161] Michael D Fox and Michael Greicius. “Clinical applications of resting state functional con-

nectivity”. In: Frontiers in systems neuroscience 4 (2010), p. 19.

[162] Timothy P Meehan and Steven L Bressler. “Neurocognitive networks: findings, models, and

theory”. In: Neuroscience & Biobehavioral Reviews 36.10 (2012), pp. 2232–2247.

[163] Dongyang Zhang and Marcus E Raichle. “Disease and the brain’s dark energy”. In: Nature

Reviews Neurology 6.1 (2010), pp. 15–28.

[164] Michael Greicius. “Resting-state functional connectivity in neuropsychiatric disorders”. In:

Current opinion in neurology 21.4 (2008), pp. 424–430.

320



[165] Aarthi Padmanabhan, Charles J Lynch, Marie Schaer, and Vinod Menon. “The default mode

network in autism”. In: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 2.6

(2017), pp. 476–486.

[166] Way KW Lau, Mei-Kei Leung, and Ruibin Zhang. “Hypofunctional connectivity between

the posterior cingulate cortex and ventromedial prefrontal cortex in autism: Evidence from

coordinate-based imaging meta-analysis”. In: Progress in Neuro-Psychopharmacology and Bi-

ological Psychiatry 103 (2020), p. 109986.

[167] R Cameron Craddock, Paul E Holtzheimer III, Xiaoping P Hu, and Helen S Mayberg. “Dis-

ease state prediction from resting state functional connectivity”. In: Magnetic Resonance

in Medicine: An Official Journal of the International Society for Magnetic Resonance in

Medicine 62.6 (2009), pp. 1619–1628.

[168] Janine Bijsterbosch, Stephen M Smith, and Christian F Beckmann. An introduction to resting

state fMRI functional connectivity. Oxford University Press, 2017.

[169] Jessica S Damoiseaux and Michael D Greicius. “Greater than the sum of its parts: a review

of studies combining structural connectivity and resting-state functional connectivity”. In:

Brain structure and function 213.6 (2009), pp. 525–533.

[170] Kaat Alaerts, Daniel G Woolley, Jean Steyaert, Adriana Di Martino, Stephan P Swinnen,

and Nicole Wenderoth. “Underconnectivity of the superior temporal sulcus predicts emotion

recognition deficits in autism”. In: Social cognitive and affective neuroscience 9.10 (2014),

pp. 1589–1600.

[171] Paul Broca. “Perte de la parole, ramollissement chronique et destruction partielle du lobe

antérieur gauche du cerveau”. In: Bull Soc Anthropol 2.1 (1861), pp. 235–238.

[172] Steven L Bressler. “Large-scale cortical networks and cognition”. In: Brain Research Reviews

20.3 (1995), pp. 288–304.

[173] Karl Spencer Lashley. “Mass action in cerebral function.” In: Science (1931).

[174] Steven L Bressler and JA Scott Kelso. “Cortical coordination dynamics and cognition”. In:

Trends in cognitive sciences 5.1 (2001), pp. 26–36.

[175] Steven L Bressler and Vinod Menon. “Large-scale brain networks in cognition: emerging

methods and principles”. In: Trends in cognitive sciences 14.6 (2010), pp. 277–290.

321



[176] Lucina Q Uddin, Kaustubh Supekar, Charles J Lynch, Amirah Khouzam, Jennifer Phillips,

Carl Feinstein, Srikanth Ryali, and Vinod Menon. “Salience network–based classification and

prediction of symptom severity in children with autism”. In: JAMA psychiatry 70.8 (2013),

pp. 869–879.

[177] Mark Tommerdahl, Vinay Tannan, Jameson K Holden, and Grace T Baranek. “Absence of

stimulus-driven synchronization effects on sensory perception in autism: Evidence for local

underconnectivity?” In: Behavioral and Brain Functions 4.1 (2008), pp. 1–9.

[178] Zhiliang Long, Xujun Duan, Dante Mantini, and Huafu Chen. “Alteration of functional con-

nectivity in autism spectrum disorder: effect of age and anatomical distance”. In: Scientific

reports 6.1 (2016), pp. 1–8.

[179] Christine Ecker, Lisa Ronan, Yue Feng, Eileen Daly, Clodagh Murphy, Cedric E Ginestet,

Michael Brammer, Paul C Fletcher, Edward T Bullmore, John Suckling, et al. “Intrinsic gray-

matter connectivity of the brain in adults with autism spectrum disorder”. In: Proceedings of

the National Academy of Sciences 110.32 (2013), pp. 13222–13227.

[180] Michal Assaf, Kanchana Jagannathan, Vince D Calhoun, Laura Miller, Michael C Stevens,

Robert Sahl, Jacqueline G O’Boyle, Robert T Schultz, and Godfrey D Pearlson. “Abnormal

functional connectivity of default mode sub-networks in autism spectrum disorder patients”.

In: Neuroimage 53.1 (2010), pp. 247–256.

[181] Christopher S Monk, Scott J Peltier, Jillian Lee Wiggins, Shih-Jen Weng, Melisa Carrasco,

Susan Risi, and Catherine Lord. “Abnormalities of intrinsic functional connectivity in autism

spectrum disorders”. In: Neuroimage 47.2 (2009), pp. 764–772.

[182] Kathrin Koch, Tim J Reeß, Oana G Rus, Deniz A Gürsel, Gerd Wagner, Götz Berberich,
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