
 

GCSF GENE THERAPY FOR PARKINSON’S DISEASE 

By 

Zachary Lee 

 

 

 

 

A Thesis submitted to the Faculty of 

The Charles E. Schmidt College of Medicine 

In Partial Fulfillment of the Requirements for the Degree of 

Master of Science 

 

 

Florida Atlantic University 

Boca Raton 

August 2021 



ii 
 

 

 

 

 

 

 

Copyright 2021 by Zachary Lee 

  



iii 

GCSF GENE THERAPY FOR PARKINSON’S DISEASE

by

Zachary Lee 

This thesis was prepared under the direction of the candidate’s thesis advisor, Dr. Jang Yen 
Wu, Department of Biomedical Science, and has been approved by all members of the
supervisory committee. It was submitted to the faculty of the Charles E. Schmidt College 
of Medicine and was accepted in partial fulfillment of the requirements for the degree of 
Master of Science. 

SUPERVISORY COMMITTEE:

 ____________________________________
 Jang Yen Wu, Ph.D. 
 Thesis Advisor 

 ____________________________________ 
 Howard Prentice, Ph.D. 

 ____________________________________
 Rui Tao, DVM. Ph.D. 

____________________________________ 
Janet Robishaw, Ph.D. 
Chair, Biomedical Science 

____________________________________ 
Sarah K. Wood, M.D. 
Interim Dean, Charles E. Schmidt College of 
Medicine  

____________________________________ ________________________
Robert W. Stackman Jr., Ph.D. Date 
Dean, Graduate College 

July 23, 2021



iv 
 

ACKNOWLEDGEMENTS 

 Thanks to the three members of his committee, Dr. Jang-Yen Wu, Dr. Rui Tao 

and Dr. Howard Prentice for their guidance, mentorship, and continued support 

throughout the research process. Dr. Jigar Modi, Dr. Yoshimi Shibata, Estaban Velasquez 

Saldarriaga and Subash Bhandari contributed to the experiments featured in this thesis. 

Dr. Janet Menzie, Dr. Lisa Ann Brennan, and Hongyaun Xu offered valuable technical 

advice throughout the research process. Ana Ritchie and Wen Ow helped to review this 

thesis. 

Thanks to my academic advisor Dr. Bridget Smith who has been my invaluable 

guide through this program. Special thanks to Dr. Patricia Louis who encouraged me to 

choose this program and go on to medical school. 

 I would like to also thank my mother, father, sister, brother and friends for 

supporting me through many years of education. Lastly, I would like to thank Wen Ow 

for her partnership throughout this program.



v 
 

ABSTRACT 
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The kynurenine pathway plays a critical role in regulating immunological 

homeostasis in the brain. Evidence supporting the hypothesis that kynurenine pathway 

dysfunction may exacerbate progression of neurodegenerative diseases like Parkinson’s 

is growing. First, we investigate the effects of Interferon-γ, Lipopolysaccharide, and 

Interleukin-4 on several key kynurenine pathway metabolites using high performance 

liquid chromatography. We found that Interferon-γ had significant effects on the 

extracellular concentration of kynurenine metabolites in astrocytes, microglia, and 

macrophage. GCSF gene therapy is previously demonstrated to exert neuroprotective 

effects on models of Parkinson’s and Alzheimer’s disease. Seven days after receiving 

GCSF gene therapy, A53T Parkinson’s mice were found to have increased levels of 

GCSF and tyrosine hydroxylase positive neurons. A concurrent increase in expression of 

the kynurenine pathway enzyme kynurenine aminotransferase 2 was observed. GCSF 

gene therapy may exhibit neuroprotective effects in a Parkinson’s disease mouse model 

by restoring this key kynurenine pathway enzyme. 
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CHAPTER 1: INTRODUCTION 

Parkinson’s disease is the second most common neurodegenerative disease affecting 1% 

of the population over the age of 60.1 The loss of dopaminergic neurons in the substantia 

nigra pars compacta is a key pathological finding of Parkinson’s disease along with 

aggregation of misfolded protein. Degeneration in the midbrain is the presumed cause of 

PD’s characteristic motor and nonmotor symptoms.2–4 However, many of these 

symptoms are not unique, rather they are shared among a host of neurodegenerative 

diseases including Alzheimer’s and Huntington’s disease. These similarities in both 

pathology and clinical presentation demonstrate a need to understand the disease not just 

for treatment of this condition but for a range of neurodegenerative conditions. First, we 

focus on further understanding how different stimuli can affect the kynurenine pathway, a 

growing area of focus in brain research. Secondly, we investigate the neuroprotective 

effects of human Granulocyte-Colony Stimulating Factor (hGCSF) gene therapy on a 

mouse model of Parkinson’s disease. 

1.1 Symptoms of Parkinson’s disease 

Bradykinesia, a slow initiation of voluntary movement is usually the first symptom 

present in Parkinson’s disease. Often at the same time, muscular rigidity, a resting tremor 

and postural instability may be diagnosed. Patients with more advanced Parkinson’s 

disease often have a stooped body posture and a shuffling gait that may lead to a loss of 
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balance and falls. Non-motor symptoms of Parkinson’s disease include apathy, insomnia, 

dementia, and anxiety.3–5 

1.2 Pathological Hallmarks and Therapies for Neurodegenerative Disease 

There are several key pathological and molecular features that develop through the course 

of Parkinson’s disease. Misshapen proteins associate with cognitive decline and loss of 

neurons in many neurodegenerative diseases. In Parkinson’s disease, α-synuclein 

aggregates form primarily in the substantia nigra pars compacta and appear to associate 

with a loss of dopaminergic neurons. Under normal conditions, these neurons project to 

the basal ganglia where they synapse in the striatum’s two parts, the putamen and caudate 

nucleus (Figure 1). The loss of these neurons in the nigrostriatal pathway explains some 

of the motor symptoms of the disease. Aggregates that form within neuronal perikarya 

are called lewy bodies, those inside neuronal processes are called Lewy neurites.6 

The significance of protein aggregates is shared by other neurodegenerative disorders. In 

Multiple Systems Atrophy, α-synuclein plaques may form within oligodendroglial cells.7 

This leads to atrophy of the brain in a fashion that is similar to that seen in Parkinson’s 

disease. In Alzheimer’s disease hyperphosphorylated tau and clusters of extracellular 

amyloid-β preceded neuronal degeneration. In both Parkinson’s and Alzheimer’s disease, 

the association between protein aggregation, onset, and severity of pathological 

symptoms is less than perfect.8,9 In fact, while certain drugs may reduce amyloid burden 

in AD patients, scant evidence exists for improvement of any symptoms.10 In a recently 

approved antibody therapy for Alzheimer’s disease, Aducanumab, PET scans confirmed 

that amyloid-β deposits were reduced after treatment. However only one of the two 

randomized controlled trials touted a significant effect 
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Figure 1. Nigrostriatal dysfunction in Parkinson's Disease. A/B. Nigrostriatal pathway in healthy 
and diseased brain. The red line represents dopaminergic neuron projections C. Lewy bodies 
found within dopaminergic neurons in the Substantia Nigra pars compacta. Reused with 
Permission (Dauer W, Przedborski S. Neuron. 2003).6 

on the Clinical Dementia Rating, Sum of Boxes test. Neither study presents an 

association between the reduction of amyloid beta and reduced progression of 

dementia.11,12 While little progress has been made in treating Alzheimer’s disease 

patients, far more progress has been made at treating symptoms of Parkinson’s disease. 

Upon recognition that dopamine neurons and subsequently, a loss of nigrostriatal 
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dopamine exacerbates disease progression, disease treatment has centered around 

dopamine metabolism. No drug more central to this pathway than levodopa, the 

immediate precursor to dopamine first shown to be efficacious in Parkinson’s disease in 

the 1960s.13 

Levodopa can cross the blood brain barrier where it is metabolized into dopamine by 

aromatic L-amino acid decarboxylase (AADC). Levodopa, often given with carbidopa to 

deliver it more efficiently to the brain treats many of the motor symptoms of Parkinson’s 

disease. Other treatments that focus on the dopamine system are dopamine agonists, 

monoamine oxidase B (MAO-B) inhibitors and Catechol-O-methyl transferase (COMT) 

inhibitors. Together, these drugs increase dopamine concentrations or potency in the 

brain alleviating many of the motor symptoms of Parkinson’s Disease. Importantly, these 

drugs only slow the progression of degeneration and symptoms reiterating the need for 

the discovery of novel therapies.14–16 

1.3 The Kynurenine Pathway 

The kynurenine pathway has been implicated in Parkinson’s disease and many other 

neurodegenerative diseases.17 The pathway begins with the ingestion of the essential 

amino acid L-Tryptophan. The unique albumin binding properties of L-tryptophan 

prevents 90% of plasma tryptophan from crossing the blood-brain barrier (BBB). The 

unbound 10% is free to be transported across the BBB by a competitive transporter along 

with other large neutral amino acids. Cerebral microvasculature around the BBB may 

also enhance the separation of tryptophan from albumin.18 

The exact uptake mechanism of tryptophan from extracellular fluid into cells of the brain 

is unknown. While small portion of this tryptophan is taken up by serotonergic neurons to 
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begin the process of producing serotonin most of the extracellular tryptophan will be 

taken up by several non-neronal cells, namely astrocytes and microglia but also 

infiltrating macrophage and dendritic cells. In the periphery tryptophan 2,3-dioxygenase 

(TDO) is enzyme primarily responsible for the conversion of tryptophan to kynurenine. 

In the CNS, Indoleamine-2,3-dioxygenase (IDO) 1 and 2 primarily fulfills this role.18 The 

fate of newly formed kynurenine likely hinges upon the type of cell that produced it (See 

a schematic of the kynurenine pathway Figure 2).19 In microglia, kynurenine is 

transformed through a series of intermediates including anthranilic acid, 3-

hydroxykynurenine, 3-hydroxyanthranilic acid and eventually quinolinic acid. 

Alternatively, in astrocytes, kynurenine is metabolized into kynurenic acid by kynurenine 

aminotransferase. 

Kynurenine aminotransferase (KAT) has four known isoforms (numbered 1-4).20,21 

Kynurenine aminotransferases are found in the liver, skeletal muscles, and brain. KAT2, 

KAT3 and KAT4 localize to the mitochondria. Endurance exercise enhances KAT 

expression in individual skeletal muscle fibers. 22 KAT2 is responsible for 70% of 

kynurenic acid production in the brain.23 A recent paper has noted that due to the kinetic 

properties of KAT1 and the in-vivo availability of the substrate kynurenine, it is more 

likely KAT1 uses glutamine as a substrate.24 Several inhibitors of KAT2 have been 

identified.23 One inhibitor of KAT2, glycrrhizic acid is noted to be highly selective for 

KAT2.25 Kynurenic acid is typically present in the rat brain in picomole/mL26 or 

picomole/gram of wet tissue27 concentration. Kynurenic acid is a competitive antagonist 

of glycine at NMDA receptors and at α7 nicotinic acetylcholine receptors although the 
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latter claim is disputed.28–30 The mechanism for kynurenic acid release from astrocytes is 

unknown.30 

1.4 The Kynurenine Pathway in Parkinson’s Disease 

Inflammation is thought to exacerbate neurodegeneration. In Parkinson’s disease, 

astrocytes and microglia congregate around the substantia nigra pars compact. Mouse 

studies have showed that preventing microglia from activating can decrease the severity 

of degeneration.31 In addition to inflammation in the brain, a study in humans found that 

inflammation in the guts of PD patients was associated with elevations in Glial Fibrillary 

Acidic Protein and another marker of astrocytes.32 Several mechanisms describing the 

anti-inflammatory properties of kynurenic acid have been described. Kynurenic acid in 

the high micromolar levels (>100 μM) can scavenge free radicals which may prevent 

further activation of microglia.33 Kynurenic acid is shown to bind to G protein coupled 

receptor 35 which is present mostly on immune cells which also suggests it may directly 

interface with other immune cells.34 

The alternate metabolite of kynurenine is quinolinic acid. When quinolinic acid is 

administered to mice, it can produce Parkinson’s like symptoms. Additionally, it 

produces a main pathological hallmark of Parkinson’s disease, α-synuclein like 

aggregates.35 Quinolinic acid can also disrupt cytoskeletons, induce oxidative stress and 

activate microglia. Astrocytes but not neurons, can be induced to increase kynurenic acid 

after quinolinic acid stimulation suggesting some feedback mechanism.33 
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Figure 2. Schematic Overview of the Kynurenine Pathway. Reused with permission (Maddison 
DC, Giorgini F. Seminars in Cell & Developmental Biology. 2015).19 

Kynurenic acid has known effects in other, non-neurodegenerative diseases of the CNS, 

such as depression. In unmedicated clinically depressed patients, the ratio of kynurenic 

acid to quinolinic acid in the blood is positively correlated with hippocampal and 

amygdalar volume.36 Abnormal hippocampal neurogenesis has recently been reported in 

Parkinson’s disease.37 As depression and Parkinson’s disease are common 

comorbidities38 it is not surprising that there are ties between the two. This could have 
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implications in Alzheimer’s disease where loss of hippocampal volume is associated with 

progression of the disease.39 

Microglia, infiltrating macrophage, and astrocytes play complex and often dueling roles 

in the pathology of brain disease and injury. In traumatic brain injury models, microglia 

and macrophages migrate to the site of damage and release pro-inflammatory cytokines 

to orchestrate healing and prevent further damage. With increasing age however, 

microglia become ‘primed’ in such a way that makes pro-inflammatory responses more 

easily inducible.40 One key function of microglia and macrophages is phagocytosis which 

involves the “eating” of a pathogen or debris. Upon contact with pathogens or cellular 

debris, these cells release reactive oxygen species. Stimulation of these immune cells may 

induce the release of other cytokines which in turn recruits other immune cells. In one 

model of neurodegenerative disease, the ensuing heightened reactivity of area immune 

cells may be a contributing factor in disease progression.40–43 

The role of immune cells in neurodegenerative disease remains poorly understood. In 

Alzheimer’s disease, accumulating amyloid-β plaques and tau proteins induce innate glial 

activation causing an increase in proinflammatory cytokines. This leads to more glial 

activation and unfortunately, also increases the rate of amyloid-β aggregation, initiating a 

positive feedback loop that leads to runaway inflammation.40,44,45 It is unclear why 

microglia activation might exacerbate amyloid-β deposit formation. In addition, the 

presence of amyloid-β plaques near free radicals may catalyze the production of more 

amyloid-β without cellular intervention.46 Some studies report that amyloid-β can form in 

the absence of microglia complicating this intererpretation.47 When lipopolysaccharide, a 

common inflammatory molecule, is injected into the substantia nigra of rats with 
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ulcerative colitis a disease of peripheral inflammation, Tumor Necrosis Factor-α (TNF-

α), Interleukin-1β (IL-1β), and Interleukin-6 (IL-6) were elevated, proliferation of 

microglia and astrocytes, and loss of dopaminergic neurons was observed.48 

Still, evidence suggests that glia can be recruited to remove amyloid-β without worsening 

the disease. IL-6 and IL-1β are key cytokines involved in both PD and AD. IL-6 was 

elevated in the cerebrospinal fluid but not plasma of patients with both diseases.49 

Upregulation of the IL-6 gene into two different mouse models of Alzheimer’s disease 

caused microglia to phagocytose amyloid-β at a rate high enough to reduce amyloid-β 

plaque formation. Interestingly, the increased amyloid-β uptake did not cause microglia 

to further worsen the amyloid beta load despite undergoing gliosis.50 That study indicates 

that in AD, IL-6 may activate microglia without the accompanying inflammation that 

results in amyloid-β aggregation. Under normal physiological conditions IL-6 causes 

astrocytes to release nerve growth factor which promotes neuron differentiation.51 

Interestingly, primary cultures of human astrocytes were reported to increase expression 

of GCSF when stimulated with Interferon-γ (IFNγ) and IL-1β or TNF-α.52 The same 

authors reported that stimulation of astrocytes with IL-1β and TNF-α caused increased 

levels of IL-6 mRNA and protein. Interpreting the different effects of IFNγ on immune 

cells of the brain is complicated by various factors. For instance, IFNγ receptor is found 

to be overexpressed in microglia in cell culture compared to microglia in healthy, AD, 

and PD brain tissue.53 

1.5 Granulocyte Colony Stimulating Factor Gene Therapy 

Granulocytes are white blood cells that have broad functions in initiating immune 

response to infection and repairing damaged tissue. Drug analogs of human GCSF have 
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been used to replenish neutrophils lost by patients undergoing chemotherapy. In the last 

decade, GCSF has been shown to have neuroprotective properties. In stroke models, 

GCSF increased hematopoietic stem cells in the brain, reduced endoplasmic reticulum 

stress, improved vascularization, and promoted the growth of new neurons.54–56 In 

another stroke model, GCSF activated the mTOR/p70S6K pathway leading to reduced 

expression of inflammatory cytokines including IL-1β and TNF-α.57 The rho kinase 

inhibitor Fausdil was able to promote neurogenesis in part by inducing astrocytes to 

induce GCSF production.58 In a Parkinson’s disease mouse model, subcutaneous GCSF 

increased expression of dopaminergic neurons.59 Notably, astrocytes and glia were found 

to be significantly increased in the striatum and hippocampus in the GCSF group.40 In an 

Alzheimer’s mouse model, GCSF treated mice had increased levels of α7 nAChR protein 

and decreased pro-inflammatory cytokines including IL-6.60 Previously, transgenic 

Alzheimer’s mice have also been shown to perform better in radial arm maze tests, and 

have reduced amyloid-β plaques after GCSF was administered.54 

Interestingly, there has been some debate within the literature about which cells express 

GCSF and GCSF receptor. Initially, work in the early 1990s showed that astrocytes could 

produce GCSF after incubation with TNF-α or IL-1b. In 2005, immunohistochemical 

analysis of rat brains showed no localization with glial fibrillary acidic protein with 

GCSF but strong localization with neurons.61 However, a recent systematic study found 

that while GCSF and its receptor is mostly localized in neurons, it was also found in other 

cell types including epidydimal cells, cells of the choroid plexus and most notably, 

astrocytes.62 That study found no difference in the distribution of GCSF or its’ receptor in 

the brains of AD patients suggesting that it does not play a causal role in the disease. 
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1.6 Cell Culture Background 

Immortal cell lines have significant advantages, they are inexpensive, relatively easy to 

assay, and have few ethical concerns compared with primary cells. But challenges remain 

for responsible use of immortal cell lines. One study of a cell line library estimated that 

over one third of submissions were contaminated. The most common contaminant by far 

was Mycoplasma, which is resistant to most common antibiotics and is impossible to 

detect with standard microscopy.63 The hardiness of mycoplasma is hard to understate. In 

one experiment, a mycoplasma free culture was subcultured weekly in a fume hood 

infected with mycoplasma. In 6 weeks, the culture tested positive for mycoplasma.64 

In order to prevent contamination, strict aseptic technique will be followed. This includes 

sterilizing surfaces of the laminar fume hood with UV light treatment and 70% ethanol 

before use. All items passed into the hood will also be sprayed with 70% ethanol. The 

culture dish will remain sealed until it is within the sterilized fume hood. In addition, 

gloves will be worn when handling cell cultures which will be frequently coated with 

70% ethanol to help prevent contamination.65 

1.7 Mouse Models of Parkinson’s Disease 

While no animal model can perfectly recapitulate the complex biochemical and 

symptomatic features of Parkinson’s disease, their use may yield valuable insights with 

fewer ethical implications than when working with higher mammals. Parkinson’s like 

symptoms and pathology can be induced through genetic manipulation or chemical 

administration. 

The modern landscape of Parkinson’s mouse models arguably began with the discovery 

of Parkinson’s like symptoms in students who had mistakenly synthesized and then self-
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administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).66 A treating 

physician, Dr. J. William Langston, recognizing the possible value of this treatment 

attempted to establish a model using intraperitoneal administration of MPTP to squirrel 

monkeys. In his experiments he noted dramatic cell loss of the substantia nigra, very 

closely mirroring that loss seen in patients with Parkinson’s disease.67 Further 

experimentation showed that MPTP could induce many of the motor symptoms of 

Parkinson’s disease and other groups translated this research to mice.68 

MPTP mice gradually became one of the dominant models of Parkinson’s disease. 

MPTP, which is not neurotoxic by itself becomes so when converted to 1-methyl-4-

phenylpyridium(MPP+) by astrocytes with MOA-B in the brain. MPP+ is taken up 

selectively by dopamine neurons by dopamine transporter (DAT). Once inside the 

dopamine neuron, MPP+ inhibits mitochondrial respiration leading to a remarkable 

decrease in ATP in the substantia nigra pars compacta. The resulting dopamine neuron 

degeneration occurs over a period of about a week although this varies significantly with 

age.69,70 One critical drawback of MPTP mice is the lack a PD hallmark, Lewy bodies.66 

A less common chemically induced Parkinson’s mouse model, 6-hydroxydopamine (6-

OHDA), shares similar patterns of neurodegeneration in the Substantia Nigra pars 

Compacta as the MPTP model. Upon direct injection to the Substantia Nigra pars 

Compacta, the 6-OHDA, forms reactive oxygen species and triggers degeneration 

resulting in some motor impairments. Like the MPTP model, Lewy bodies do not form.71 

As the genes linked to cases of familial Parkinson’s Disease were uncovered, the race to 

develop a genetic model took off. One such gene, alpha-synuclein, is present in the 

presynaptic terminals of healthy neurons. In patients with the A53T point mutation in the 
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alpha-synuclein gene, alpha-synuclein forms a major component of Lewy bodies.71 

Mouse models that knockout the alpha-synuclein gene are protected against MPTP.72 

Mouse models that overexpress A53T mimic the lewy body pathology observed in 

Parkinson’s disease. Dopamine neurons are also reduced in the striatum, but interestingly 

not in the substantia nigra as observed in Parkinson’s disease.73–75 

A53T mice do show changes in motor performance including arched back, severe muscle 

weakness, and ataxia approaching 1 year of age.76 Non-motor changes in A53T mice also 

recapitulate Parkinson’s disease with hyperactivity, reduced anxiety, loss of olfaction and 

depressive like behaviors.77–79  
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CHAPTER 2: METHODS 

2.1 Cell Culture Cytokine/Lipopolysaccharide Stimulation 

Since different cell types are reported to have vastly different roles in producing 

tryptophan metabolites, we designed an experiment to stimulate cells with cytokines or 

lipopolysaccharide and quantify the extracellular metabolites. We used A172 cells to 

represent astrocytes, HMC3 cells to represent microglia, and RAW264.7 cells to 

represent macrophage. Each cell type was seeded at 1-2 x 106 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑚𝑚𝑐𝑐

 in 6 cm culture dish 

with their respective media (Table 1). 

Cell Type Media Additives 

A172 Dulbecco’s Modified Eagle’s Medium 

10% Fetal Bovine Serum 
1% Penicillin/Streptomycin 

HMC3 Eagle's Minimum Essential Medium 

RAW 264.7 Dulbecco's Modified Eagle's Medium 

Table 1. Description of media used during the cytokine/lipopolysaccharide stimulation 
experiment. 

Cells were incubated overnight at 37˚C and 5.5% CO2 to allow adherence to the plate.  

Then either IFNγ, LPS, IL-4 or saline was added to each well at a concentration at 

20𝑛𝑛𝑛𝑛
𝑚𝑚𝑐𝑐

 except for saline in which 10µl was added. After 24 hours of incubation, media was 

collected for HPLC analysis and stored in -80ºC freezer. Upon thawing, 5% perchloric 

acid was added to each tube and it was centrifuged at 25,000 RCF for 30 minutes. The 

supernatant was collected and used for HPLC analysis.
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2.2 Parkinson’s Mice 

A53T αSyn wild type (Wild Type) and transgenic B6;C3-Tg(Prnp-SNCA*A53T)83Vle/J 

(Parkinson’s disease) mice were raised in the Florida Atlantic University Vivarium under 

standard conditions. These mice represent a Parkinson’s disease pathological phenotype 

of over expressed α-synuclein on neurons.84,85 

Mice received either no eye drop, GCSF gene therapy (AAV-CMV-GCSF 3x109 PFU in 

1.5uL), or vector gene therapy (AAV-CMV-GFP 3x109 PFU in 1.5uL) in the left eye. 

Mice were sacrificed 7 days after gene therapy. 

2.3 RNA Extraction and RT-PCR 

Reverse Transcription Polymerase Chain Reaction (RT-PCR) quantifies the expression of 

a particular gene. It involves three main parts, extraction of RNA from a tissue, 

amplification of the target RNA, and quantification of each amplicon. 

Brain tissue was harvested using a mouse brain matrix and cut into 2 mm sections from 

the frontal lobe. The left side of the brain was used for RNA analysis. Total RNA was 

extracted using the RNeasy Mini Kit without deviation from instructions. DNA was 

removed using Turbo DNase (Thermo Fisher Scientific). Random pd(N)6 primer and 

Thermoscript RT-PCR system (Life Technologies) were used to reverse transcribe 

extracted RNA. The housekeeping gene Actin was used to normalize expression. 

Samples were amplified and quantified with the Alilent Aria Mx real time PCR system 

using SYBR green dye. Analysis was conducted with Aria Mx 1.5. Primers used can be 

found in (Table 2). 
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Gene 
Primer 

Direction Sequence 

Human Granulocyte-
Colony Stimulating 

Factor 80 

Forward 5’-AACTCGGGGGAGATCCCTTCCA-3’ 

Reverse 5’-ACTCTCTGGGCATCCCCCT-3’ 

mTyrosine 
Hydroxylase (TH) 

Forward 5’-TGTTGGCTGACCGCACAT-3’ 
Reverse 5’-GCCCCCAGAGATGCAAGTC-3’ 

Table 2. Description of primers used in Reverse Transcriptase PCR experiment. 

2.4 Protein Extraction and Western Blot 

After sacrifice, the whole brain was dissected out and divided into both a frontal (0-4mm) 

‘R1’ and middle ‘R2’ section (4-8mm). The frontal R1 section contains parts of the 

cerebrum including the cerebral cortex and early parts of the striatum. The middle R2 

contains some cortex, importantly the part of the striatum that includes the caudate 

putamen, and part of the reticular region of the substantia nigra. For a more details of the 

dissected area view (Figure 3). The tissue was snap frozen in liquid nitrogen until ready 

to be processed. Brain tissue was weighed and submerged in proportional volume of 

RIPA buffer with 1% phosphatase and 1% protease. Tissue was homogenized with a 

Branson Digital Sonifier. Each sample received two 7 second long pulses separated by 3 

minute incubation on ice. After vortexing, an aliquot of each sample was collected and 

subjected for the Bicinchoninic Acid Assay (BCA) for protein while the remaining 

samples returned to the -80°C freezer. 

The BCA assay estimates the total amount of protein in each sample. First a dilution 

solution of 90% water and 10% RIPA is created to mimic the solution used in our tissue 

collection protocol. A bovine serum albumin stock is dissolved in the dilution solution.  

Then serial dilutions were performed to achieve standards through the anticipated linear 

range of the assay 0.5-0.05𝑚𝑚𝑛𝑛
𝑚𝑚𝑐𝑐

. The BCA reagent was diluted to the working 
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concentration. In each well, 200uL BCA working solution and 10uL sample or standard 

is loaded in triplicate. The absorbance is read on a microplate reader at 595 nm. Standard 

curves were accepted when R2 ≥ 0.97. 

Western blotting relies on three main mechanisms. First, an electrical current separates 

protein in a sample by size in on a sodium dodecyl sulfate polyacrylamide gel. This gel is 

formulated with reducing agents to degrade sulfhydryl groups and disulfide bonds while 

leaving the primary protein structure intact. The gel is made of two parts, a stacking 

component that enables wells for protein to be loaded and a separating component that 

separates the proteins by molecular weight. The recipe for the SDS-polyacrylamide gel 

used in these experiments is found in (Table 3). The electrophoresis step adds additional 

specificity compared to other antibody dependent protein assays such as enzyme linked 

immunoassays. 100ug of protein were loaded into each lane. Each gel ran for 90 minutes 

at 150 volts. 

Table 3. Ingredients used for the sodium doedecyl sulfate polyacrlamide gel which is used to 
separate protein by size prior to a western blots. 

The next step involves transferring the proteins from the gel to a nitrocellulose 

membrane. To do this, a transfer sandwich was made. The sandwich was loaded into the 

cassette and run at 30 volts for 90 minutes in transfer buffer. Following the transfer, the 

 12% Separating Gel 6% Stacking Gel 
Distilled Water 10.2 mL 8.7 mL 

40% Acrylamide 7.2 mL 2.25 mL 
1.5 M Tris pH 8.8 6 mL 0 mL 
0.5 M Tris pH 6.8 0 mL 3.75 mL 

10% Sodium Dodecyl Sulfate 240 uL 150 uL 
TEMED 24 uL 15 uL 

10% Ammonium Persulfate 240 uL 150 uL 
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nitrocellulose membrane was briefly incubated with ponceau stain to confirm a 

successful separation and transfer. 

After washing with Tris Buffered Solution with Tween (TBST) to remove all remaining 

ponceau’s stain, the membrane was soaked in a 2.5% nonfat milk TBST solution for 1 

hour. This blocking step prevents nonspecific protein-antibody interactions. Next, 

proteins on the membrane are exposed to a primary antibody specific to the protein of 

interest diluted in 1.5 mL of TBST. Then a secondary antibody coupled with a 

fluorescent enzyme binds to the primary antibody and the membrane is imaged with a 

Licor Odyssey Fc Imaging System. For a list of antibodies used, see (Table 4). The 

Odyssey exposes the membrane to 600 nm, 700 nm, and 800 nm light to stimulate 

fluorescence of the secondary antibody and the molecular weight ladder. Bands were 

identified and quantified with Image Studio Lite version 5.2. 

Membranes were restriped by incubating with restriping buffer for 15 minutes, washing 

with TBST and repeating the experiment starting with the blocking step. The same 

membrane was restriped no more than three times to prevent loss of target or 

housekeeping protein.  

In each lane of the western blot, we identified at least two proteins, the protein of interest, 

as well as a loading control GAPDH. Loading controls are expressed without much 

variation in a variety of tissues. Thus, the loading controls help account for differences in 

the amount of tissue loaded in each well. These differences may be caused by imprecise 

pipetting or the amount of tissue used per sample.  
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2.5 High Performance Liquid Chromatography  

High performance liquid chromatography (HPLC) is a technique for analyzing the 

presence of chemicals in a liquid sample. Generally, a pump pushes the mobile phase 

through a tightly packed column known as the stationary phase. An analyte is injected 

into the mobile phase upstream of the column. When it reaches the column, chemicals in 

the sample are separated by their polarity due to their affinity to the beads in the column.  

As they leave the column, they pass a detector which gives a response readout that can be 

used to quantify the amount of compound present.  

For detection of kynurenic acid, a Shimadzu RF-10AXL Fluorescence Detector with the 

PowerChrom 2.5.13 software was used for metabolite detection. For this metabolite a 

Shimadzu LC-10ADVP pumped through a 50 mm Sodium Acetate 10.0% Acetonitrile 

mobile phase at 0.6 mL/min. After the column a Wiz ISCO pumped Zinc Acetate at 0.5 

mL/min. For tryptophan, kynurenine, anthranilic acid, and 3-hydroxy-anthranillic acid, 

the Waters 2996 Photodiode Array using Waters Empower 3 software was used in 

addition to the fluorescence detector. In this setup a monosodium phosphate 88.32 mM, 

disodium phosphate anhydrous 12.28 mM, 15% methanol mobile phase was pumped in at 

0.6 ml/min. 10 µL of each sample was analyzed. 

To make the standards, the pure metabolite was first dissolved in Dimethyl Sulfoxide 0.1 

g of metabolite/100µL. Subsequent serial dilutions were performed with nanopure water 

to reach appropriate concentrations. The column was washed with nanopure water as well 

as 0.1 N Nitric acid. Standards were made fresh daily. For each of the kynurenine 

metabolite standard the R2 > 0.97. 
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Figure 3. Coronal slices of mouse brain representing structures found in dissected regions. A. 
Structures found in R1 slice 1mm from frontal pole including several cerebral cortex features B. 
Structures found in R1 slice 3mm from frontal pole including cerebral cortex features and early 
cerebral nuclei. C. Structures found in R2 slice 5mm from frontal pole including the caudate 
putamen. D. Structures found in R2 slice 8mm from frontal pole including the reticular region of 
the substantia nigra. Reused with permission from the Allen Mouse Brain Atlas. Image credit: 
Allen Institute.81 
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Antibody Manufacturer Product # 
Lot # Dilution Molecular 

Weight 
Rabbit pAB 
Kynurenine 

Aminotransferase 
2 

Rockland 600-401-J37 
33473 1:200 49kDa 

Rabbit mAB to 
Recombinant 
Granulocyte 

Colony 
Stimulating 

Factor 

Abcam 
Ab181053 

GR3223080-3 1:2000 60kDa 

Rabbit pAB to 
Tyrosine 

Hydroxylase 
Abcam Ab112 

GR3244479-2 1:200 24kDa 

GAPDH 
Cell Signaling 
Technology 

D16H11 
5174S 1:5000 36kDa 

LICOR 
IRDye 800CW 

Goat anti-
Rabbit 

926-32211 
C80925-25 1:10,000 n/a 

Table 4. Antibodies and dilutions used for western blot.  
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CHAPTER 3: RESULTS 
4.1 A172 Astrocytes  

The media in which we cultured A172 astrocytes contained the amino acid tryptophan 

which explains why the media only condition had the highest level of tryptophan (Figure 

4). Compared to the media only condition, the saline condition showed a significant 

reduction in the levels of tryptophan. LPS appeared to slow the degradation of tryptophan 

in the media although this effect was not statistically significant. IL-4 did not appear to 

affect the degradation of tryptophan. IFNγ nearly caused all of the tryptophan in the 

media to be depleted. 

In the kynurenine pathway, tryptophan is transformed into kynurenine by IDO1, IDO2 or 

TDO. No kynurenine was detected in the media only condition (Figure 5). In the saline 

condition, an increase in kynurenine was detected. Compared to the saline group, IFNγ, 

LPS and IL-4 conditions saw an increase in kynurenine. A roughly 2-fold increase was 

observed in the IL-4 and LPS groups and a 10-fold increase in the IFNγ group. 

Kynurenic Acid is one of the terminal products of the kynurenine pathway, resulting 

immediately from kynurenine. No difference in the amount of kynurenic acid was seen in 

the media only and the saline group (Figure 6). No difference was seen in the IL-4 or 

LPS groups. However, the IFNγ group saw a modest increase. 

3-hydroxyanthranilic acid and anthranilic acid are other possible products in the 

kynurenine pathway. Anthranilic acid may form directly from kynurenine while 3-
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hydroxyanthranilic acid may form indirectly from kynurenine through either anthranilic 

acid or 3-hydroxykynurenine. No statistically significant changes were observed in either 

metabolite however differences in the mean were noted that may indicate that changes 

did occur, but we did not have the statistical power to observe them (Figures 7 and 8). 

 

 

Figure 4 A172 cells grown in Dulbecco’s Modified Eagle Media 10% Fetal Bovine Serum were 
incubated for 24 hours with the above chemicals. The media was collected, processed and 
subject to HPLC to identify extracellular tryptophan. Tryptophan is present in sterile media 
without cells in high amounts. The saline condition resulted in significant reductions in the 
amount of detected extracellular tryptophan. Compared to the saline condition, IL-4 and LPS 
were statistically equivalent while IFNγ stimulation resulted in a remarkable reduction in 
availability of tryptophan. (n=6 Error bars represent the standard error of the mean) 
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Figure 5. A172 cells grown in Dulbecco’s Modified Eagle Media 10% Fetal Bovine Serum were 
incubated for 24 hours with the above chemicals. The media was collected, processed and 
subject to HPLC to identify kynurenine. No kynurenine was detected in the sterile media without 
cells. The saline condition resulted in an increase in detectable kynurenine. Compared to the 
saline condition, IL-4 and LPS resulted in a rough doubling of extracellular kynurenine while the 
IFNγ condition dramatically increased extracellular kynurenine. (n=6 Error bars represent 
standard error of the mean) 

 
Figure 6. A172 cells grown in Dulbecco’s Modified Eagle Media 10% Fetal Bovine Serum were 
incubated for 24 hours with the above chemicals. The media was collected, processed and 
subject to HPLC to identify extracellular kynurenic acid. Stimulation with IFNγ resulted in an 
increase in kynurenic acid. IL-4, LPS, and media without cells did not result in changes in the 
amount of kynurenic acid present in the media. (n=6 Error bars represent standard error of the 
mean) 

IFNy
IL-4

LPS

Med
ia 

Only
Sali

ne
0

500

1000

1500

A172

%
 K

yn
ur

en
in

e

IFNy
IL-4
LPS
Media Only
Saline

*

***

**

***

IFNy
IL-4

LPS

Med
ia 

Only
Sali

ne
0

50

100

150

A172

%
  K

yn
ur

en
ic

 A
c i

d

IFNy
IL-4
LPS
Media Only
Saline

*



25 
 

 
Figure 7. A172 cells grown in Dulbecco’s Modified Eagle Media 10% Fetal Bovine Serum were 
incubated for 24 hours with the above chemicals. The media was collected, processed and 
subject to HPLC to identify extracellular anthranilic acid. While no statistically significant 
observations were observed, the investigator believes that this is due to a lack of power as the 
mean anthranilic acid appeared to vary from the saline condition in the IFNγ, IL-4 and LPS 
groups. (n=6 Error bars represent standard error of the mean) 

 
Figure 8. A172 cells grown in Dulbecco’s Modified Eagle Media 10% Fetal Bovine Serum were 
incubated for 24 hours with the above chemicals. The media was collected, processed and 
subject to HPLC to identify extracellular 3-hydroxyanthranilic acid. No significant changes to this 
metabolite were observed. (n=6 Error bars represent standard error of the mean) 
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3.1 HMC3 Microglia 

As in the A172 media, the HMC3 media contained the amino acid tryptophan. No 

differences were noted in the tryptophan levels of the saline, media only, LPS or IL-4 

groups. However, IFNγ group saw a roughly 40% reduction in tryptophan levels 

compared to the saline group (Figure 9). 

Kynurenine was not detected in the HMC3 media. No statistically significant differences 

in kynurenine were detected in any group. However, an increase in the mean kynurenine 

of the LPS and IFNγ groups were observed. Our investigation likely did not have the 

statistical power to resolve the differences that occurred (Figure 10). 

No differences in Kynurenic acid were observed between each group and the saline 

condition (Figure 11). Measurement of 3-hydroxyanthranilic acid was lowest in the 

media only group. The saline group was approximately triple the media only group and 

statistically equivalent with the IL-4 and LPS conditions. The IFNγ condition had less 3-

hydroxyanthranilic acid than the saline condition (Figure 12). No anthranilic acid was 

observed.  
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Figure 9. HMC3 cells grown in Eagle's Minimum Essential Medium 10% Fetal Bovine Serum were 
incubated for 24 hours with the above chemicals. The media was collected, processed and 
subject to HPLC to identify extracellular tryptophan. Tryptophan is present in sterile media 
without cells. The saline, IL-4, and LPS conditions had equivalent amounts of tryptophan. 
Tryptophan was reduced in the IFNγ condition compared to the saline condition. (n=6 Error bars 
represent the standard error of the mean) 

 
Figure 10. HMC3 cells grown in Eagle's Minimum Essential Medium 10% Fetal Bovine Serum 
were incubated for 24 hours with the above chemicals. The media was collected, processed and 
subject to HPLC to identify extracellular kynurenine. No statistically significant differences were 
observed but compared to the saline group, the mean kynurenine was greater in the IFNγ and 
LPS group and decreased in the IL-4 group. (n=6 Error bars represent the standard error of the 
mean) 
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Figure 11. HMC3 cells grown in Eagle's Minimum Essential Medium 10% Fetal Bovine Serum 
were incubated for 24 hours with the above chemicals. The media was collected, processed and 
subject to HPLC to identify extracellular kynurenic acid. No statistically significant differences 
were observed. (n=6 Error bars represent the standard error of the mean) 

 

3.1 Raw 264.7 Macrophage 

As with the other two cell lines, the media of RAW 264.7 cells contained tryptophan that 

was depleted in each condition (Figure 12). The saline condition reduced the available 

tryptophan by about a third. The saline condition was statistically equivalent with the IL-

4 and LPS conditions although visually did appear to be lower in the LPS condition. IFNγ 

had a higher amount of tryptophan indicating that it slowed the degradation of 

tryptophan. 

No kynurenine, 3-hydroxyanthranilic acid, anthranilic acid, or kynurenic acid was 

detected in any of the Raw 264.7 macrophage samples (data not shown). P values from 

all HPLC experiments can be found in (Table 5). 
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Figure 12 Raw 264.7 cells grown in Eagle's Minimum Essential Medium 10% Fetal Bovine Serum 
were incubated for 24 hours with the above chemicals. The media was collected, processed and 
subject to HPLC to identify extracellular tryptophan. Tryptophan is present in the media only 
condition without cells at higher rates than the saline condition. (n=2 Error bars represent the 
standard error of the mean) 
 

  IFNγ vs 
Saline 

IL-4 vs 
Saline 

LPS vs 
Saline 

Media Only 
vs Saline 

A172 

Tryptophan ** 
0.0085 

Ns 
0.04315 

Ns 
0.1775 

** 
0.0025 

Kynurenine * 
0.0134 

*** 
0.0005 

** 
0.0012 

*** 
0.0001 

3-Hydroxyanthranilic 
Acid 

Ns 
0.1796 

Ns 
0.3816 

Ns 
0.0751 

Ns 
0.1495 

Kyunrenic Acid * 
0.0298 

Ns 
0.7868 

Ns 
0.9094 

Ns 
0.8267 

Anthranilic Acid Ns 
0.2192 

Ns 
0.4187 

Ns 
0.1594 

Ns 
0.9337 

HMC3 

Tryptophan *** 
.0003 

Ns 
.1675 

Ns 
0.3426 

Ns 
.2670 

Kynurenine Ns 
0.1869 

Ns 
0.1747 

Ns 
0.1680 

Ns 
0.1747 

3-Hydroxyanthranilic 
Acid 

Ns 
0.3449 

Ns 
0.3449 

Ns 
0.3774 

**** 
< 0.0001 

Kynurenic Acid Ns 
0.5894 

Ns 
0.8350 

Ns 
0.7374 

Ns 
0.3419 

RAW 264.7 Tryptophan ** 
0.0011 

Ns 
0.7220 

Ns 
0.0751 

** 
0.0028 

Table 5. P values from Welch’s t test for unequal variances for kynurenine pathway metabolites 
measured in HPLC experiments.  
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3.2 Detection of human-Granulocyte Colony Stimulating Factor Gene Therapy 

To demonstrate that the hGCSF gene therapy increased expression of hGCSF in 

Parkinson’s mice 7 days after delivery, we conducted RT-PCR and western blots on 

different sections of the brain. The wild type control and A53T mice that received the 

AAV-CMV-GFP vector had no differences in GCSF expression in the basal ganglia 

(Figure 13) or diencephalon (Figure 14). hGCSF expression increased 2-3 fold in the 

basal ganglia of A53T mice receiving AAV-CMV-hGCSF gene therapy compared to the 

vector control. hGCSF expression increased 3 fold in the diencephalon of A53T mice 

receiving AAV-CMV-hGCSF gene therapy compared to the vector control. These results 

indicate that AAV-CMV-hGCSF gene therapy successfully increases the level of hGCSF 

mRNA in two distinct parts of the A53T mice brain. 

GCSF protein expression in the R1 forebrain region of the brain did not differ 

significantly from the WT control. GCSF protein expression in the R2 midbrain region of 

the brain was significantly higher in the GCSF gene therapy group compared to the other 

groups. (Figure 15)  
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Figure 13. qPCR quantification of hGCSF mRNA in the basal ganglia of Parkinson’s disease mice 7 
days after delivery of AAV-CMV-hGCSF gene vector via eye drop. PD mice treated with AAV-CMV 
GCSF show >2-fold change in expression of hGCSF mRNA compared to PD mouse treated with 
AAV-CMV-GFP on day 7. (n=2 Error bars indicate the standard error of the mean) 

 

Figure 14. qPCR quantification of hGCSF mRNA in the diencephalon of Parkinson’s disease mice 7 
days after delivery of AAV-CMV-hGCSF gene vector via eye drop. PD mice treated with AAV-CMV 
GCSF show >3-fold change in expression of hGCSF mRNA compared to PD mouse treated with 
AAV-CMV-GFP on day 7. (n=2 Error bars indicate the standard error of the mean) 
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Figure 15. Protein expression of hGCSF 7 days after gene therapy was delivered via eye drop. In 
the R1 forebrain region of the brain, a slight increase in GCSF was detected. In the R2 midbrain 
region, hGCSF expression was significantly increased in the gene therapy group. (n=2 Error bars 
indicate the standard error of the mean) 
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3.3 Change in Tyrosine Hydroxylase following Gene Therapy 

Then we measured both RNA and protein expression of tyrosine hydroxylase, a marker 

of dopamine neurons in mice 7 days after receiving AAV-CMV-hGCSF gene therapy. 

The wild type control and A53T mice that received AAV-CMV-GFP vector had no 

differences in GCSF expression in the basal ganglia (Figure 16) or diencephalon (Figure 

17). Tyrosine hydroxylase mRNA expression increased 10-fold in the basal ganglia 

compared to the control. Tyrosine hydroxylase mRNA expression increased 13-fold in 

the diencephalon compared to the control. In the western blot for tyrosine hydroxylase, 

no differences were seen in the R1 region of the brain. However, in the R2 midbrain 

region, Parkinson’s mice appeared to have a higher concentration of tyrosine hydroxylase 

compared to the control. AAV-CMV-hGCSF appeared to increase the level of tyrosine 

hydroxylase that was detected (Figure 18). 

 

Figure 16. qPCR quantification of tyrosine hydroxylase mRNA in the basal ganglia of Parkinson’s 
disease mice 7 days after delivery of AAV-CMV-hGCSF gene vector via eye drop. PD mice treated 
with AAV-CMV-GCSF show >10-fold change in expression of tyrosine hydroxylase mRNA 
compared to PD mice. (n=2 Error bars indicate the standard error of the mean) 

TH BG

TH
 m

R
N

A
/C

on
tr

ol

Contro
l

PD+AAV-C
MV-G

FP

PD+AAV-C
MV-hGCSF

0

5

10

15
Control
PD+AAV-CMV-GFP
PD+AAV-CMV-hGCSF

**



34 
 

 
Figure 17. qPCR quantification of tyrosine hydroxylase mRNA in the diencephalon of Parkinson’s 
disease mice 7 days after delivery of AAV-CMV-hGCSF gene vector via eye drop. PD mice treated 
with AAV-CMV-GCSF show >12-fold change in expression of Tyrosine Hydroxylase mRNA. (n=2 
Error bars indicate the standard error of the mean) 

 

Figure 18. Protein expression of tyrosine hydroxylase 7 days after gene therapy was delivered via 
eye drop. In the R1 forebrain region of the brain, no change in Tyrosine Hydroxylase was 
detected. In the R2 midbrain region, tyrosine hydroxylase expression was increased in the gene 
therapy group. Notability, tyrosine hydroxylase expression was higher in the Parkinson’s mouse 
compared to the wild type control. (n=2 Error bars indicate the standard error of the mean) 
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4.4 Change in KAT-2 following Gene Therapy 

To see how a key step in the kynurenine pathway might change following GCSF gene 

therapy, we then did a western blot for KAT2. In the R1 forebrain region, the Parkinson’s 

mice had reduced levels of KAT2. Wide variations in the standard error bars of vector 

and gene therapy groups makes it difficult to draw a conclusion in those groups. In the 

R2 midbrain region, a clearer difference emerged. The Parkinson’s mice had elevated 

levels of KAT2 compared to the WT control. The PD+AAV-CMV-hGCSF group then 

restored KAT 2 back to the level of the WT control (Figure 19).   

 

Figure 19 Protein expression of KAT2 7 days after gene therapy was delivered via eye drop. In the 
R1 forebrain, PD mice appeared to have reduced expression of KAT2 compared to the WT 
control. A wide variation in the vector and hGCSF treatment groups makes it impossible to form 
a reliable hypothesis about KAT2 expression. In the R2 midbrain region, PD mice show higher 
expression of KAT2 compared to the WT control. hGCSF gene therapy restores the normal level of 
KAT-2. (n=2 Error bars indicate the standard error of the mean) 
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CHAPTER 4: DISCUSSION 

Here we offer a comprehensive look into the influence of various stimulants in triggering 

elements of the kynurenine pathway in astrocytes, microglia, and macrophage. Our 

protocol involved incubating cells for 24 hours with either IFNγ, IL-4, LPS, or saline and 

then measuring the levels of 5 different kynurenine pathway metabolites. In our trials 

with A172 astrocytes, we saw significant differences in a kynurenine metabolite in at 

least one of the conditions. In HMC3 microglia and Raw 264.7 macrophage the only 

statistically confirmed difference was in tryptophan. 

Without a doubt, the strongest effect was seen in IFNγ which significantly depleted 

tryptophan in all three cell lines. Three enzymes are known to catabolize tryptophan into 

kynurenine, Indoleamine 2,3-dioxygenase 1 (IDO1), Indoleamine 2,3-dioxygenase 

2(IDO2), and Tryptophan 2,3-dioxygenase (TDO).82 Upregulation of IDO1 by IFNγ in a 

cell line was reported as early 1988.83,84 IDO2 which has a highly similar sequence to 

IDO1 is also known to be upregulated by IFNγ.85,86 Lastly TDO, whose significance in 

CNS kynurenine production is thought to be marginal may also be induced by IFNγ.82 

IFNγ has wide ranging effects downstream of the tryptophan degradation. In skin-derived 

fibroblasts treated with IFNγ, expression of the KATs were altered. KAT1 and KAT2 

were increased, while KAT3 and KAT4 was either unchanged or reduced. The same 

study found that enzymes that lead to the production of quinolinic acid including 

Kynurenine 3-Monoxygenase, Hydroxyanthranilic acid oxygenase, and 
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Quinolinic Acid Phosphoribosyl Transferase were unchanged by IFNγ stimulation while 

Kynureninase is enhanced by IFNγ.87 

IL-4 did not seem to affect tryptophan in any cell line and yet went on to result in 

increased kynurenine in A172 cells. Existing evidence suggests that IL-4 inhibits IDO 

expression in various cell lines and human monocytes88 but enhances IDO expression 

when accompanied by IFNγ in microglia.89 IL-4 stimulation of human keratinocytes does 

not affect either IDO or Kynureninase.90 

LPS increased the amount of kynurenine in the media with A53T and HMC3 cells in our 

study, though the increase was only statistically significant in the former. This increase 

was in line with a previous study that found that LPS stimulation of a microglia cell line 

enhanced transcription of IDO and KMO. This same study also found that LPS increased 

kynurenine and quinolinic Acid present in the media.91 In a mouse model, peripheral LPS 

administration resulted in increases in IDO1 but not IDO2 or TDO in the hippocampus, 

amygdala, and striatum.92 

In the second part of our study, we evaluate the ability of hGCSF gene therapy to alter 

expression of granulocyte colony stimulating factor, tyrosine hydroxylase and kynurenine 

aminotransferase 2 in a mouse model of Parkinson’s disease. The ability of AAV-CMV-

hGCSF to express granulocyte colony stimulating factor in mice is well established. A 

previous study used an MRI based noninvasive tracking technique to validate delivery of 

the same gene therapy previously.80 In our study, we used quantitative RT-PCR and 

western blotting to verify both transcription and translation of the therapeutic gene. 
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Tyrosine hydroxylase is an enzyme critical to dopamine production and neurons that 

contain it degenerate remarkably in patients with Parkinson’s disease.93 Our study found 

that gene therapy increased mRNA expression of tyrosine hydroxylase in the basal 

ganglia and diencephalon. Increased protein expression of tyrosine hydroxylase was 

observed in the midbrain, an area that typically sees remarkable tyrosine hydroxylase loss 

in the progression of Parkinson’s disease. This report reiterates an earlier finding from 

our lab where GCSF protein restored tyrosine hydroxylase-positive neurons in the SNpc 

of MPTP Parkinson’s mice. In-vivo microdialysis in that study showed that GCSF could 

restore striatal dopamine to levels equivalent to the MPTP free saline control.59  

To our surprise, we found that Kynurenine Aminotransferase 2 is elevated in the 

midbrain of our mouse model of Parkinson’s disease. We report that GCSF gene therapy 

was then able to restore the elevated level of KAT2 in Parkinson’s mice to the level seen 

in WT mice. Interpretation of this data must be made with two major considerations. 

First, KAT2 is only one of 4 isoforms of kynurenine aminotransferase that is responsible 

for producing kynurenic acid.94 The four mouse kynurenine aminotransferases were 

found to have varying biochemical properties such as varying levels of inhibition by 

methionine and optimal pH.95 Secondly the contribution the four kynurenine 

aminotransferases to kynurenine production in mouse, rat, and human brain tissue may 

differ in ways that complicate interpretation. For example, while in humans and rats 

KAT2 mainly localizes to astrocytes, it was found to be localize to Perkinje cells and 

other neurons in mice.93,96,97 

In our study, we investigated the wide-ranging effects of IFNγ, IL-4, and LPS on 

kynurenine pathway metabolites in microglia, macrophage, and astrocytes. We also 
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describe the neuroprotective effects of GCSF gene therapy in a mouse model of 

Parkinson’s disease. We conclude that GCSF gene therapy may be therapeutic in 

Parkinson’s disease by restoring kynurenine pathway dysfunction. Further research is 

needed to fully elucidate this possible mechanism. 
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