You are here

GCSF GENE THERAPY FOR PARKINSON’S DISEASE

Download pdf | Full Screen View

Date Issued:
2021
Abstract/Description:
The kynurenine pathway plays a critical role in regulating immunological homeostasis in the brain. Evidence supporting the hypothesis that kynurenine pathway dysfunction may exacerbate progression of neurodegenerative diseases like Parkinson’s is growing. First, we investigate the effects of Interferon-γ, Lipopolysaccharide, and Interleukin-4 on several key kynurenine pathway metabolites using high performance liquid chromatography. We found that Interferon-γ had significant effects on the extracellular concentration of kynurenine metabolites in astrocytes, microglia, and macrophage. GCSF gene therapy is previously demonstrated to exert neuroprotective effects on models of Parkinson’s and Alzheimer’s disease. Seven days after receiving GCSF gene therapy, A53T Parkinson’s mice were found to have increased levels of GCSF and tyrosine hydroxylase positive neurons. A concurrent increase in expression of the kynurenine pathway enzyme kynurenine aminotransferase 2 was observed. GCSF gene therapy may exhibit neuroprotective effects in a Parkinson’s disease mouse model by restoring this key kynurenine pathway enzyme.
Title: GCSF GENE THERAPY FOR PARKINSON’S DISEASE.
19 views
3 downloads
Name(s): Lee, Zachary, author
Wu, Jang-Yen, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Biomedical Science
Charles E. Schmidt College of Medicine
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2021
Date Issued: 2021
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 66 p.
Language(s): English
Abstract/Description: The kynurenine pathway plays a critical role in regulating immunological homeostasis in the brain. Evidence supporting the hypothesis that kynurenine pathway dysfunction may exacerbate progression of neurodegenerative diseases like Parkinson’s is growing. First, we investigate the effects of Interferon-γ, Lipopolysaccharide, and Interleukin-4 on several key kynurenine pathway metabolites using high performance liquid chromatography. We found that Interferon-γ had significant effects on the extracellular concentration of kynurenine metabolites in astrocytes, microglia, and macrophage. GCSF gene therapy is previously demonstrated to exert neuroprotective effects on models of Parkinson’s and Alzheimer’s disease. Seven days after receiving GCSF gene therapy, A53T Parkinson’s mice were found to have increased levels of GCSF and tyrosine hydroxylase positive neurons. A concurrent increase in expression of the kynurenine pathway enzyme kynurenine aminotransferase 2 was observed. GCSF gene therapy may exhibit neuroprotective effects in a Parkinson’s disease mouse model by restoring this key kynurenine pathway enzyme.
Identifier: FA00013773 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2021.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Parkinson Disease
Gene therapy
Kynurenine
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013773
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.