You are here
MACHINE LEARNING APPROACH FOR VEGETATION CLASSIFICATION USING UAS MULTISPECTRAL IMAGERY
- Date Issued:
- 2021
- Abstract/Description:
- Vegetation monitoring plays a significant role in improving the quality of life above the earth's surface. However, vegetation resources management is challenging due to climate change, global warming, and urban development. The research aims to identify and extract vegetation communities for Jupiter Inlet Lighthouse Outstanding Natural Area (JILONA) using developed Unmanned Aerial Systems (UAS) deployed with five bands of RedEdge Micasence Multispectral Sensor. UAS has a lot of potential for various applications as it provides high-resolution imagery at lower altitudes. In this study, spectral reflectance values for each vegetation species were collected using a spectroradiometer instrument. Those values were correlated with five band UAS Image values to understand the sensor's performance, also added with reflectance’s similarities and divergence for vegetation species. Pixel and Object-based classification methods were performed using 0.15 ft Multispectral Imagery to identify the vegetation classes. Supervised Machine Learning Support Vector Machine (SVM) and Random Forest (RF) algorithms with topographical information were used to produce thematic vegetation maps. The Pixel-based procedure using the SVM algorithm generated an overall accuracy and kappa coefficient of above 90 percent. Both classification approaches have provided aesthetic vegetation thematic maps. According to statistical cross-validation findings and visual interpretation of vegetation communities, the pixel classification method outperformed object-based classification.
Title: | MACHINE LEARNING APPROACH FOR VEGETATION CLASSIFICATION USING UAS MULTISPECTRAL IMAGERY. |
![]() ![]() |
---|---|---|
Name(s): |
Kesavan, Pandiyan, author Sudhagar Nagarajan, Thesis advisor Florida Atlantic University, Degree grantor Department of Civil, Environmental and Geomatics Engineering College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2021 | |
Date Issued: | 2021 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 109 p. | |
Language(s): | English | |
Abstract/Description: | Vegetation monitoring plays a significant role in improving the quality of life above the earth's surface. However, vegetation resources management is challenging due to climate change, global warming, and urban development. The research aims to identify and extract vegetation communities for Jupiter Inlet Lighthouse Outstanding Natural Area (JILONA) using developed Unmanned Aerial Systems (UAS) deployed with five bands of RedEdge Micasence Multispectral Sensor. UAS has a lot of potential for various applications as it provides high-resolution imagery at lower altitudes. In this study, spectral reflectance values for each vegetation species were collected using a spectroradiometer instrument. Those values were correlated with five band UAS Image values to understand the sensor's performance, also added with reflectance’s similarities and divergence for vegetation species. Pixel and Object-based classification methods were performed using 0.15 ft Multispectral Imagery to identify the vegetation classes. Supervised Machine Learning Support Vector Machine (SVM) and Random Forest (RF) algorithms with topographical information were used to produce thematic vegetation maps. The Pixel-based procedure using the SVM algorithm generated an overall accuracy and kappa coefficient of above 90 percent. Both classification approaches have provided aesthetic vegetation thematic maps. According to statistical cross-validation findings and visual interpretation of vegetation communities, the pixel classification method outperformed object-based classification. | |
Identifier: | FA00013768 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2021. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Vegetation classification Machine learning Multispectral imaging Unmanned aerial vehicles |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013768 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |