You are here

CHANGES IN PHYSICAL PROPERTIES OF THE PEAT SOIL MATRIX ACROSS A SALINITY GRADIENT IN THE EVERGLADES: IMPLICATIONS FOR ACCELERATING PEAT COLLAPSE DURING SEA LEVEL RISE

Download pdf | Full Screen View

Date Issued:
2021
Abstract/Description:
Peatlands are areas with an accumulated layer of peat soil that are considered global stores of carbon, acting as a net sink of carbon dioxide and a net source of methane. Recent studies in coastal peatlands have shown how that a rise in sea level may contribute to the degradation of peat soils due to the inland progression of the saltwater interface, which may result in physical changes within the peat matrix that may eventually result in peat collapse. For example, earlier studies in boreal peat soils described the effect of pore dilation as a result of increased salinity in peat soils, while recent studies in Everglades peat soils showed specific salinity thresholds that may represent a permanent loss of the structural integrity of the peat matrix that may represent early stages of peat collapse. While most of these previous efforts have focused on drivers, recent work has also explored conceptual models to better understand the mechanisms inducing peat collapse. However, few datasets exists that consistently compare differences in physical properties under different in‐situ salinity conditions. In this study differences in the physical properties of peat soils across a salinity gradient along the western edge of Big Cypress National Preserve are investigated to test how differences in salinity may induce physical changes in the soil matrix. The physical properties targeted for this study include porosity, hydraulic conductivity, and carbon content. Measurements are conducted at the laboratory scale using peat cores and monoliths collected at selected locations to investigate: 1) how overall soil physical properties change spatially over a salinity gradient at the km scale moving from permanently saline to freshwater conditions; and 2) how physical properties change spatially at specific sites as dependant on vegetation boundaries and proximity to collapsed soils. This study has implications for better understanding the potential relation between physical changes of the soil matrix and the phenomena of peat collapse in the Everglades as saltwater intrusion progresses inward and alters freshwater ecosystems. Furthermore, a better mechanistic understanding of the peat collapse phenomenon can potentially help mitigate its occurrence.
Title: CHANGES IN PHYSICAL PROPERTIES OF THE PEAT SOIL MATRIX ACROSS A SALINITY GRADIENT IN THE EVERGLADES: IMPLICATIONS FOR ACCELERATING PEAT COLLAPSE DURING SEA LEVEL RISE.
0 views
0 downloads
Name(s): Florey, Maxwell, author
Comas, Xavier, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Geosciences
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2021
Date Issued: 2021
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 53 p.
Language(s): English
Abstract/Description: Peatlands are areas with an accumulated layer of peat soil that are considered global stores of carbon, acting as a net sink of carbon dioxide and a net source of methane. Recent studies in coastal peatlands have shown how that a rise in sea level may contribute to the degradation of peat soils due to the inland progression of the saltwater interface, which may result in physical changes within the peat matrix that may eventually result in peat collapse. For example, earlier studies in boreal peat soils described the effect of pore dilation as a result of increased salinity in peat soils, while recent studies in Everglades peat soils showed specific salinity thresholds that may represent a permanent loss of the structural integrity of the peat matrix that may represent early stages of peat collapse. While most of these previous efforts have focused on drivers, recent work has also explored conceptual models to better understand the mechanisms inducing peat collapse. However, few datasets exists that consistently compare differences in physical properties under different in‐situ salinity conditions. In this study differences in the physical properties of peat soils across a salinity gradient along the western edge of Big Cypress National Preserve are investigated to test how differences in salinity may induce physical changes in the soil matrix. The physical properties targeted for this study include porosity, hydraulic conductivity, and carbon content. Measurements are conducted at the laboratory scale using peat cores and monoliths collected at selected locations to investigate: 1) how overall soil physical properties change spatially over a salinity gradient at the km scale moving from permanently saline to freshwater conditions; and 2) how physical properties change spatially at specific sites as dependant on vegetation boundaries and proximity to collapsed soils. This study has implications for better understanding the potential relation between physical changes of the soil matrix and the phenomena of peat collapse in the Everglades as saltwater intrusion progresses inward and alters freshwater ecosystems. Furthermore, a better mechanistic understanding of the peat collapse phenomenon can potentially help mitigate its occurrence.
Identifier: FA00013809 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2021.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Peat soils
Salinity
Sea level
Big Cypress National Preserve (Fla.)
Everglades (Fla.)
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013809
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.