You are here

NEUROPROTECTION AGAINST OXIDATIVE STRESS USING RESVERATROL-INSPIRED ANALOGS

Download pdf | Full Screen View

Date Issued:
2021
Summary:
Synaptic transmission is a mechanism that makes life possible for many organisms. Damaging this crucial process, such as with a buildup of Reactive Oxygen Species (ROS), is extremely detrimental for the entire organism. Previously, the Dawson-Scully lab has determined that exposure of the Drosophila melanogaster neuromuscular junction (NMJ) to ROS accumulation can result in synaptic failure at a faster rate than saline controls (Caplan et al., 2013). To combat such effects, novel three-dimensional Resveramorph compounds were created to act as a neuroprotective agent against the harmful effects of acute oxidative stress (Bollinger et al., 2019; Sial et al., 2019). With the initial Resveramorph compounds demonstrating neuroprotective effects, additional analysis of other Resveramorph compounds were of interest to better understand their role in neuroprotection. Further testing of these compounds allows for the investigation of how chemical structure affects a compound’s neuroprotective activity.
Title: NEUROPROTECTION AGAINST OXIDATIVE STRESS USING RESVERATROL-INSPIRED ANALOGS.
100 views
36 downloads
Name(s): Simonson, Alec Jordan, author
Dawson-Scully, Ken, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Biological Sciences
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2021
Date Issued: 2021
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 71 p.
Language(s): English
Summary: Synaptic transmission is a mechanism that makes life possible for many organisms. Damaging this crucial process, such as with a buildup of Reactive Oxygen Species (ROS), is extremely detrimental for the entire organism. Previously, the Dawson-Scully lab has determined that exposure of the Drosophila melanogaster neuromuscular junction (NMJ) to ROS accumulation can result in synaptic failure at a faster rate than saline controls (Caplan et al., 2013). To combat such effects, novel three-dimensional Resveramorph compounds were created to act as a neuroprotective agent against the harmful effects of acute oxidative stress (Bollinger et al., 2019; Sial et al., 2019). With the initial Resveramorph compounds demonstrating neuroprotective effects, additional analysis of other Resveramorph compounds were of interest to better understand their role in neuroprotection. Further testing of these compounds allows for the investigation of how chemical structure affects a compound’s neuroprotective activity.
Identifier: FA00013687 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2021.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Resveratrol
Neuroprotective agents
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013687
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.