You are here
NEUROPROTECTION AGAINST OXIDATIVE STRESS USING RESVERATROL-INSPIRED ANALOGS
- Date Issued:
- 2021
- Summary:
- Synaptic transmission is a mechanism that makes life possible for many organisms. Damaging this crucial process, such as with a buildup of Reactive Oxygen Species (ROS), is extremely detrimental for the entire organism. Previously, the Dawson-Scully lab has determined that exposure of the Drosophila melanogaster neuromuscular junction (NMJ) to ROS accumulation can result in synaptic failure at a faster rate than saline controls (Caplan et al., 2013). To combat such effects, novel three-dimensional Resveramorph compounds were created to act as a neuroprotective agent against the harmful effects of acute oxidative stress (Bollinger et al., 2019; Sial et al., 2019). With the initial Resveramorph compounds demonstrating neuroprotective effects, additional analysis of other Resveramorph compounds were of interest to better understand their role in neuroprotection. Further testing of these compounds allows for the investigation of how chemical structure affects a compound’s neuroprotective activity.
Title: | NEUROPROTECTION AGAINST OXIDATIVE STRESS USING RESVERATROL-INSPIRED ANALOGS. |
105 views
39 downloads |
---|---|---|
Name(s): |
Simonson, Alec Jordan, author Dawson-Scully, Ken, Thesis advisor Florida Atlantic University, Degree grantor Department of Biological Sciences Charles E. Schmidt College of Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2021 | |
Date Issued: | 2021 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 71 p. | |
Language(s): | English | |
Summary: | Synaptic transmission is a mechanism that makes life possible for many organisms. Damaging this crucial process, such as with a buildup of Reactive Oxygen Species (ROS), is extremely detrimental for the entire organism. Previously, the Dawson-Scully lab has determined that exposure of the Drosophila melanogaster neuromuscular junction (NMJ) to ROS accumulation can result in synaptic failure at a faster rate than saline controls (Caplan et al., 2013). To combat such effects, novel three-dimensional Resveramorph compounds were created to act as a neuroprotective agent against the harmful effects of acute oxidative stress (Bollinger et al., 2019; Sial et al., 2019). With the initial Resveramorph compounds demonstrating neuroprotective effects, additional analysis of other Resveramorph compounds were of interest to better understand their role in neuroprotection. Further testing of these compounds allows for the investigation of how chemical structure affects a compound’s neuroprotective activity. | |
Identifier: | FA00013687 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2021. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Resveratrol Neuroprotective agents |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013687 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |