You are here
GENETIC SCREENS IDENTIFY NOVEL REGULATORS OF SLEEP AND METABOLISM IN DROSOPHILA MELANOGASTER
- Date Issued:
- 2021
- Summary:
- Proper regulation of sleep and metabolism are critical to the survival of all organisms. In humans, dysregulation of sleep is linked to metabolic syndrome, including hypertension, hyperglycemia and hyperlipidemia. However, the mechanisms regulating interactions between sleep and metabolism are poorly understood. Although the fruit fly, Drosophila melanogaster, bears little anatomical resemblance to humans, it shares similar genetics essential in understanding normal development and disease in humans. From humans to flies, many disease-related genes and pathways are highly conserved, rendering the fruit fly ideal to understanding the interactions between sleep and metabolism. Therefore, using the fruit fly provides a framework for understanding how genes function between sleep and metabolism. During starvation, both humans and rats reduce their sleep. Similarly, previous studies have shown that fruit flies also suppress sleep to forage for food, further showing that sleep and metabolism are intricately tied to one another and that they are highly conserved across species. To further explore the interactions between sleep and metabolism, I have conducted multiple genetic screens to identify novel regulators of sleep-metabolism interactions. These experiments led to the identification of the mRNA binding protein translin (trsn) as being required for starvation-induced sleep suppression. A second screen that targeted metabolic genes from a genome-wide association study identified the ion channel accessory protein uncoordinated 79 (unc79) as a critical regulator of both sleep duration and starvation resistance. The genes function in different regions of the brain and suggest complex neural circuitry is likely to underlie regulation of sleep metabolism interactions. Taken together, a mechanistic understanding of how different genes function to regulate sleep in flies will further our understanding of how sleep and metabolism is regulated in humans.
Title: | GENETIC SCREENS IDENTIFY NOVEL REGULATORS OF SLEEP AND METABOLISM IN DROSOPHILA MELANOGASTER. |
54 views
21 downloads |
---|---|---|
Name(s): |
Murakami, Kazuma N., author Keene, Alex C., Thesis advisor Florida Atlantic University, Degree grantor Department of Biological Sciences Charles E. Schmidt College of Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2021 | |
Date Issued: | 2021 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 136 p. | |
Language(s): | English | |
Summary: | Proper regulation of sleep and metabolism are critical to the survival of all organisms. In humans, dysregulation of sleep is linked to metabolic syndrome, including hypertension, hyperglycemia and hyperlipidemia. However, the mechanisms regulating interactions between sleep and metabolism are poorly understood. Although the fruit fly, Drosophila melanogaster, bears little anatomical resemblance to humans, it shares similar genetics essential in understanding normal development and disease in humans. From humans to flies, many disease-related genes and pathways are highly conserved, rendering the fruit fly ideal to understanding the interactions between sleep and metabolism. Therefore, using the fruit fly provides a framework for understanding how genes function between sleep and metabolism. During starvation, both humans and rats reduce their sleep. Similarly, previous studies have shown that fruit flies also suppress sleep to forage for food, further showing that sleep and metabolism are intricately tied to one another and that they are highly conserved across species. To further explore the interactions between sleep and metabolism, I have conducted multiple genetic screens to identify novel regulators of sleep-metabolism interactions. These experiments led to the identification of the mRNA binding protein translin (trsn) as being required for starvation-induced sleep suppression. A second screen that targeted metabolic genes from a genome-wide association study identified the ion channel accessory protein uncoordinated 79 (unc79) as a critical regulator of both sleep duration and starvation resistance. The genes function in different regions of the brain and suggest complex neural circuitry is likely to underlie regulation of sleep metabolism interactions. Taken together, a mechanistic understanding of how different genes function to regulate sleep in flies will further our understanding of how sleep and metabolism is regulated in humans. | |
Identifier: | FA00013722 (IID) | |
Degree granted: | Dissertation (PhD)--Florida Atlantic University, 2021. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Drosophila melanogaster Sleep Genetic screening |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013722 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |