You are here

MICROALGAE HARVESTING IN A MICROFLUIDIC CENTRIFUGAL SEPARATOR FOR ENHANCED BIOFUEL PRODUCTION

Download pdf | Full Screen View

Date Issued:
2021
Summary:
Among various sources for biofuels, microalgae provide at least three-orders-of-magnitude higher production rate of biodiesel at a given land area than conventional crop-based methods. However, microalgal biodiesel still suffers from significantly lower harvesting efficiency, making such a fuel less competitive. To increase the separation efficiency of microalgae from cultivation solution, an orbital microchannel was utilized that enabled the isolation of biofuel-algae particles from the effluent. The results obtained showed that the separation efficiency in the microfluidic centrifugal separator can be as high as 76% within a quick separation time of 30 seconds. Multiple parameters of algae behaviors and separation techniques such as initial concentration, pH and temperature were studied and manipulated to achieve better efficiencies. It was found that changing these factors altered the separation efficiency by increasing or decreasing flocculation, or “clumping” of the microalgae within the microchannels. The results suggested that an acidic condition would enhance the separation efficiency since in a basic environment, large flocs of microalgae would block and hinder the separation process. Furthermore, a hot temperature solution (around 33 °C) yielded to a higher separation efficiency. The important characteristics of the separator geometry and the infusion rate on algae separation were also very effective in the separation process. This study revealed that there is an opportunity to improve the currently low efficiency of algae separation in centrifugal systems using much smaller designs in size, ensuring a much more efficient algae harvesting.
Title: MICROALGAE HARVESTING IN A MICROFLUIDIC CENTRIFUGAL SEPARATOR FOR ENHANCED BIOFUEL PRODUCTION.
49 views
23 downloads
Name(s): Kavosi, Mohammadhassan, author
Kim, Myeongsub, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Ocean and Mechanical Engineering
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2021
Date Issued: 2021
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 54 p.
Language(s): English
Summary: Among various sources for biofuels, microalgae provide at least three-orders-of-magnitude higher production rate of biodiesel at a given land area than conventional crop-based methods. However, microalgal biodiesel still suffers from significantly lower harvesting efficiency, making such a fuel less competitive. To increase the separation efficiency of microalgae from cultivation solution, an orbital microchannel was utilized that enabled the isolation of biofuel-algae particles from the effluent. The results obtained showed that the separation efficiency in the microfluidic centrifugal separator can be as high as 76% within a quick separation time of 30 seconds. Multiple parameters of algae behaviors and separation techniques such as initial concentration, pH and temperature were studied and manipulated to achieve better efficiencies. It was found that changing these factors altered the separation efficiency by increasing or decreasing flocculation, or “clumping” of the microalgae within the microchannels. The results suggested that an acidic condition would enhance the separation efficiency since in a basic environment, large flocs of microalgae would block and hinder the separation process. Furthermore, a hot temperature solution (around 33 °C) yielded to a higher separation efficiency. The important characteristics of the separator geometry and the infusion rate on algae separation were also very effective in the separation process. This study revealed that there is an opportunity to improve the currently low efficiency of algae separation in centrifugal systems using much smaller designs in size, ensuring a much more efficient algae harvesting.
Identifier: FA00013745 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2021.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Microfluidics
Biofuels
Microalgae
Biodiesel fuels
Separation (Technology)
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013745
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.