You are here

AUTOMATED VEHICLES AT SIGNALIZED INTERSECTIONS – IMPACT OF COMMERCIAL ADAPTIVE CRUISE CONTROL (ACC)

Download pdf | Full Screen View

Date Issued:
2021
Summary:
The first generation of autonomous vehicles are equipped with Adaptive Cruise Control (ACC), which automatically adjusts the vehicle speed to maintain a safe following distance and gap selected by the driver. Today’s ACC can also operate at low speeds and signalized intersections on arterial streets. However, the latency of the on-board sensors can significantly increase the start-up lost time and reduce capacity and increase delay on arterials with signalized intersections. This study investigates the fundamental characteristics of traffic flow under ACC vehicles and mixed driving scenarios. Field tests demonstrated that the design of ACC vehicles can lead to delayed response and gradual acceleration when operating on arterials with speed fluctuations due to disturbances. This study also examines the effect of increasing adoption of ACC vehicles at signalized intersections. Field validated simulations suggest that 100% market penetration of ACC vehicles could decrease the capacity by up to 10%. Furthermore, fuel consumption and emissions (CO2, NOx, CO, HC) can increase by up to 33%.
Title: AUTOMATED VEHICLES AT SIGNALIZED INTERSECTIONS – IMPACT OF COMMERCIAL ADAPTIVE CRUISE CONTROL (ACC).
39 views
18 downloads
Name(s): Imran, Md Ashraful, author
Kan, David, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Civil, Environmental and Geomatics Engineering
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2021
Date Issued: 2021
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 97 p.
Language(s): English
Summary: The first generation of autonomous vehicles are equipped with Adaptive Cruise Control (ACC), which automatically adjusts the vehicle speed to maintain a safe following distance and gap selected by the driver. Today’s ACC can also operate at low speeds and signalized intersections on arterial streets. However, the latency of the on-board sensors can significantly increase the start-up lost time and reduce capacity and increase delay on arterials with signalized intersections. This study investigates the fundamental characteristics of traffic flow under ACC vehicles and mixed driving scenarios. Field tests demonstrated that the design of ACC vehicles can lead to delayed response and gradual acceleration when operating on arterials with speed fluctuations due to disturbances. This study also examines the effect of increasing adoption of ACC vehicles at signalized intersections. Field validated simulations suggest that 100% market penetration of ACC vehicles could decrease the capacity by up to 10%. Furthermore, fuel consumption and emissions (CO2, NOx, CO, HC) can increase by up to 33%.
Identifier: FA00013707 (IID)
Degree granted: Thesis (MS)--Florida Atlantic University, 2021.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Automated vehicles
Adaptive control
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013707
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.