You are here

Overcoming Multidrug Resistance in Prostate Cancer Cells Using Nanoparticle Delivery of a Two-Drug Combination

Download pdf | Full Screen View

Date Issued:
2021
Summary:
Prostate cancer (PCa) is the second most diagnosed cancer in men. The resistance of prostate cancer to chemotherapy has been linked to the ATP Binding Cassette (ABC)-Mediated Multidrug Resistance (MDR). This study investigated the combination of 3-Bromopyruvate (3-BPA) and the anti-inflammatory molecule SC-514 in reducing MDR in prostate cancer. The compounds were incorporated into a PLGA nanoparticles to increase delivery to target cells. To investigate the effectiveness of SC-514 and/3-BPA, cytoxicity assays including trypan blue dye exclusion, MTT tetrazolium reduction, NBT, LDH release poly caspase detection, cell titer glow assay, and ELISA were utilized. Both immunofluorescence and multidrug resistance efflux assays were utilized to estimate the number of drug resistant cells. SC-514 was encapsulated in PLGA nanoparticles via single-emulsion method. SC-514 nanoparticles were analyzed utilizing Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Liquid chromatography–mass spectrometry (LC–MS) was used to measure the amount of SC- 514 released from the nanoparticle. Alternative SC-514 drug release quantification methods such as colony forming assay, wound healing assay, and transwell and migration assay were explored.
Title: Overcoming Multidrug Resistance in Prostate Cancer Cells Using Nanoparticle Delivery of a Two-Drug Combination.
88 views
36 downloads
Name(s): Toluleke, O. Famuyiwa, author
Kumi-Diaka, James, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Biological Sciences
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2021
Date Issued: 2021
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 248 p.
Language(s): English
Summary: Prostate cancer (PCa) is the second most diagnosed cancer in men. The resistance of prostate cancer to chemotherapy has been linked to the ATP Binding Cassette (ABC)-Mediated Multidrug Resistance (MDR). This study investigated the combination of 3-Bromopyruvate (3-BPA) and the anti-inflammatory molecule SC-514 in reducing MDR in prostate cancer. The compounds were incorporated into a PLGA nanoparticles to increase delivery to target cells. To investigate the effectiveness of SC-514 and/3-BPA, cytoxicity assays including trypan blue dye exclusion, MTT tetrazolium reduction, NBT, LDH release poly caspase detection, cell titer glow assay, and ELISA were utilized. Both immunofluorescence and multidrug resistance efflux assays were utilized to estimate the number of drug resistant cells. SC-514 was encapsulated in PLGA nanoparticles via single-emulsion method. SC-514 nanoparticles were analyzed utilizing Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Liquid chromatography–mass spectrometry (LC–MS) was used to measure the amount of SC- 514 released from the nanoparticle. Alternative SC-514 drug release quantification methods such as colony forming assay, wound healing assay, and transwell and migration assay were explored.
Identifier: FA00013677 (IID)
Degree granted: Dissertation (PhD)--Florida Atlantic University, 2021.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Prostate--Cancer
Nanoparticles
Drug Delivery Systems
Multidrug resistance
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013677
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.