
AUTOMATIC FISH TRACKING: KEEPING TRACK

OF WHO’S WHO

by

Ari Spraggins

A Thesis Submitted to the Faculty of

The Wilkes Honors College

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Biological and Physical Sciences

with a Concentration in Physics and Mathematics

Wilkes Honors College of

Florida Atlantic University

Jupiter, Florida

May 2021

AUTOMATIC FISH TRACKING: KEEPING TRACK

OF WHO’S WHO

by

Ari Spraggins

This thesis was prepared under the direction of the candidate’s thesis advisor,
Dr. Yaouen Fily, and has been approved by the members of their supervisory
committee. It was submitted to the faculty of the Harriet L. Wilkes Honors
College and was accepted in partial fulfillment of the requirements for the degree
of Bachelor of Science in Biological and Physical Science.

SUPERVISORY COMMITTEE:

Dr. Yaouen Fily

Prof. Annina Ruest

Dean Justin Perry, Harriet L. Wilkes Honors College

Date

ii

Abstract

Author: Ari Spraggins

Title: Automatic Fish Tracking: Keeping Track of Who’s Who

Institution: Harriet L. Wilkes Honors College, Florida Atlantic University

Thesis Advisor: Dr. Yaouen Fily

Degree: Bachelor of Science in Biological and Physical Science

Concentration: Physics and Mathamatics

Year: 2021

Automatic video tracking has had a major impact on animal behavior studies.

One of the challenges of this technique is keeping track of the identities of the

fish, especially when they swim together and exchange positions. In this project

we use the python programming language to address this problem for groups of

fish. The video data comes from schooling assays performed at FAU’s Cavefish

Trilab (Dr. Keene, Dr. Duboue, and Dr. Kowalko). The method is inspired

by the idTracker animal tracking software: we track patterns of brightness as

a visual identifier of each fish which we then use to detect when the fish swap

places.

iii

Contents

Abstract iii

1 Introduction 1

1.1 Tracking Animal Behaviour . 1

1.2 Nature of the problem . 1

1.3 Previous work . 4

1.4 Roadmap . 5

2 Methods 6

2.1 Video Collection . 6

2.2 Current Tracking . 6

2.3 Distance Based Unswapping . 7

2.4 Histogram Based Unswapping . 8

2.5 A Basic Overview of Analysing Histograms 10

2.6 Determining Accuracy . 11

3 Results 12

4 Conclusion 14

A Locating Nonoverlapping Ranges 15

B Distance Based Swap Checking 16

C Data Shape 18

D Histogram Creation 19

iv

List of Figures

1 Left : Close-up of two fish in their tank. The tank is made of

white plastic. Each fish appears as a dark spot. Middle and

Right : Two consecutive frames of a two-fish video. Fish 1 is

highlighted in blue. Fish 2 is highlighted in red. Basic dark spot

detection makes no attempt to maintain the color ID of the fish,

i.e., the colors can swap at any time. 2

2 Overlap event. Left : Before the overlap, fish 1 (blue) is on the

right and fish 2 (red) is on the left. Middle: During the over-

lap, the dark spot detection algorithm only detects one object

(purple). The identities of the fish are meaningless because the

algorithm thinks they are at the exact same place. Right : After

the overlap, the fish identities cannot be recovered by analyzing

the distance traveled. 3

3 Left : The tank setup. Right : An example frame of the video. . . 6

4 Distance traveled by the fish between two frames when identities

are maintained (left panel) and when identities are swapped (right

panel). 7

5 An example of how the brightness map is used to identify the fish 8

6 Brightness correlation as a visual identifier of the fish. To decide

whether two histograms are from the same fish, the histograms

are compared bin by bin (red arrow), and then these values are

added to provide values. 9

7 The nonoverlapping ranges . 10

8 Bin reduction. “Reduced by a factor of n” means that a square

of n× n original bins were merged to form the new bins. 13

9 The error of the untuned process 13

v

10 The shape of the array that holds the data 18

vi

1 Introduction

1.1 Tracking Animal Behaviour

While visually pleasing, schooling is a rather challenging topic that has long

intrigued animal scientists. In order to quantify the animals’ behavior, a vast

quantity of positional data is needed; more than can be collected by hand.

Advances in computer vision technology now make this type of data accessible

through computerized video-tracking. Beyond schooling, this allows to quantify

a wide variety of behaviors in a very accurate manner.

This thesis focuses on tracking the motion of Mexican Tetra fish (Astyanax

mexicanus). One of the quirks of the Mexican Tetra species is that some of its

populations have been living in underground caves for about a million years.

There, they have evolved a number of behavioral differences with the popu-

lations living on the surface, including the loss of schooling: whereas surface

populations of A. mexicanus school, cave-adapted ones do not [1].

The data used in this thesis comes from experiments performed on campus in

the labs of Dr. Keene, Dr. Duboué, and Dr. Kowalko, collectively known as the

Cavefish Trilab. The tracking software that the project aims to improve on was

developed by Dr. Fily’s group for the Cavefish Trilab [4, 3]. The current version

of that software has trouble maintaining the identities of the fish throughout an

experiment. The purpose of this work is to fix that issue.

1.2 Nature of the problem

Before discussing how to maintain the identity of the fish as we track them,

we must first talk a little about how the software locates them. Throughout

the thesis we focus on two-fish experiments. In each frame of the video,

the software identifies regions that are darker than their surrounding. After

1

filtering out dark regions whose size of aspect ratio is inconsistent with a fish,

each remaining dark spot is interpreted as a fish. This works well for determining

the positions of the fish at any given moment, but the identities of the fish can

swap (fish 1 becomes fish 2 and vice versa) at any time.

Figure 1: Left : Close-up of two fish in their tank. The tank is made of white

plastic. Each fish appears as a dark spot. Middle and Right : Two consecutive

frames of a two-fish video. Fish 1 is highlighted in blue. Fish 2 is highlighted

in red. Basic dark spot detection makes no attempt to maintain the color ID of

the fish, i.e., the colors can swap at any time.

Many of those identity swaps can be fixed by analyzing the distance traveled

by each fish. The videos are shot at 30 frames per second, so fish do not move

much from one frame to the next. Therefore, the correct ID of a dark spot can

often be obtained by matching each dark spot in the frame to the closest dark

spot in the previous frame.

However, this does not always work. Issues occur in two scenarios: when the

fish get close enough that the program thinks there is only one fish (figure 2),

and when the fish move fast enough that they are closer to the other’s previous

position then their previous position. The first of these issues is the easier of the

two to check, since it is fairly trivial to check for regions in which only one fish

is reported (please see Appendix A). While it is easy enough to check for the

2

first of these issues, the second is a little tougher. To check for errors in these

cases, the distance of each fish from its previous position must be compared to

the distance from each fish to the other fishes previous position (Appendix B).

If the software mistakes the positions of the fish, which we will refer to as a

swap, it will look like the fish traveled longer than it should have.

If the fish are near each other and moving fast, then a fish may closer to the

previous position of another fish than to its own previous position. In that case,

the distance-based method will swap the two fish’s identities. If the fish are

even closer, or if one is over or under another, the algorithm may only detect

a single large dark spot. We call this an overlap event. An example is shown

in Figure 2. Eventually, the fish separate and the algorithm detects them as

distinct dark spots again, but the fish identities are lost in the process and

Figure 2: Overlap event. Left : Before the overlap, fish 1 (blue) is on the right

and fish 2 (red) is on the left. Middle: During the overlap, the dark spot

detection algorithm only detects one object (purple). The identities of the fish

are meaningless because the algorithm thinks they are at the exact same place.

Right : After the overlap, the fish identities cannot be recovered by analyzing

the distance traveled.

3

1.3 Previous work

Video-tracking software designed with multi-animal experiments in mind typi-

cally handle the first type of identity swap described above – the ones that are

fixable by analyzing the distance traveled between frames. Swaps caused by

overlap situations are trickier. Some older video-tracking software offer the pos-

sibility to fix the animals’ tracks by hand after running the automatic tracking.

A popular example is the commercial video-tracking software Ethovision, made

by Noldus. The downside of this approach is that it is slower. In some cases,

fixing all identity swaps by hand can become the most time-consuming part of

the project.

In recent years, several new software have come out to address this issue using

various strategies.

The one this thesis is most heavily inspired from is idTracker [5]. The idea

is that each fish has a unique pattern of brighter and darker spots on its body,

which can be used to recognize the fish even after loosing its track for a while. To

quantify those patterns, the program measures spatial brightness correlations

over each fish’s body and compare them with previous frames to decide whether

an identity swap has occurred. A more recent version of this software, known

as idTracker.ai, uses machine learning methods to perform this task.

More recently, TRex [6] provides a similar workflow but uses deep-learning

methods to identify a visual pattern unique to each fish.

DeepLabCut [2] also uses deep-learning methods, however it solves a more

ambitious problem: tracking multiple points of interest on each animal in order

to quantify their posture as well as their position. The trade-off here is that the

user has to manually identify the points of interest in several frames across the

video, which is a bit more labor-intensive.

4

1.4 Roadmap

The goal of this project is to draw from the original idTracker approach to help

fix identity swaps in a pre-existing video-tracking code designed for use in Cave-

fish Trilab: cvtracer [4, 3]. To do this, we will be covering the two processes we

use to determine whether or not the fish have been correctly identified depend-

ing on how many fish are detected. These two processes are a distance based

unswapping method (section 2.3), and a histogram based method (sections 2.4

and 2.5). We will then go over how accurate each of these methods were at

giving the fish the correct identity (sections 2.6 and 3).

5

2 Methods

2.1 Video Collection

While any actual experimentation on the fish is beyond the scope of this thesis,

it is still useful to describe the process of gathering data. The basic setup of

the labs we are taking data from is a tank with two fishes in it and a camera

trained on them, as seen below. This setup produces a video for us to use, of

which an example frame is shown below.

Figure 3: Left : The tank setup. Right : An example frame of the video.

2.2 Current Tracking

To track the fish, we must first feed the video captured from this setup to an

analysis program, in our case cvtracer [4, 3], which has been especially created

for use by the Jupiter Trilab. The tracker works taking the tank as a constant

background, and noting that the fish are the only dark spots on the tank. It

then returns an array for each of the fish containing a list of the fish’s pixels

and those pixel’s colors. Once we have the fish saved in a format that we can

analyze, we are ready to start working on the tracking of the fish. Since each

the way we store the data gives each fish an identifier, we then can use those

identifiers to analyse the fish.

6

2.3 Distance Based Unswapping

The first and simplest round of identity unswapping works by minimizing the

total distance traveled by the fish between the previous frame and the current

one. Figure 4 illustrates the way the method works for two fish. The semi-

transparent fish indicate each fish’s position in the previous frame. In the left

panel, identities are maintained, and the distances traveled (double arrows) are

small. In the right panel, an identity swap has occurred: in the new frame, the

red fish has become blue and vice versa. Because of this swap, each fish appears

to have traveled much more distance (double arrows) than it actually has.

Figure 4: Distance traveled by the fish between two frames when identities are

maintained (left panel) and when identities are swapped (right panel).

In order to determine whether a swap has occurred, we compute the following

distance matrix, which contains all four of the distances shown in the figure:


distance from fish 1 in previous
frame to fish 1 in current frame

distance from fish 1 in previous
frame to fish 2 in current frame

distance from fish 2 in previous
frame to fish 1 in current frame

distance from fish 2 in previous
frame to fish 2 in current frame



7

The sum of the diagonal terms (previous-1-to-current-1 and previous-2-to-current-

2) represents the total distance traveled by both fish since the previous frame

assuming identities were maintained. The sum of the two off-diagonal terms

(previous-1-to-current-2 and previous-2-to-current-1) represents the total dis-

tance traveled by both fish since the previous frame assuming identities were

swapped. If the latter is smaller than the former, then we conclude the identities

were swapped.

2.4 Histogram Based Unswapping

When the two fish overlap, the distance-based method described above no longer

works, and a new method is required. Following idTracker [5], we compute a

visual signature of each fish based on the brightness correlations. Figure 5

illustrate the basic principle of the method.

Figure 5: An example of how the brightness map is used to identify the fish

It looks at the cumulative brightness of every pair of pixels on a fish’s body

and computes the chances of finding a specific cumulated brightness at a specific

distance. As an example, consider a fish with two bright spots separated by

a distance d. Then the chance of finding two pixels with a large cumulated

brightness and a distance d between them is higher. This translates to a peak

in the combined brightness vs distance graph. The location of such peaks can

8

then be used to identify a fish, and ultimately decide whether two fish from

different frames are the same fish or not.

The actual method used in [5] and in our code uses a slightly more detailed

description of brightness correlations. For each inter-pixel distance, we log not

only the average cumulated brightness, but the chances of getting various values

of the cumulated brightness. The result is the 2d histogram shown in Figure 6.

Figure 6: Brightness correlation as a visual identifier of the fish. To decide

whether two histograms are from the same fish, the histograms are compared

bin by bin (red arrow), and then these values are added to provide values.

The next step is to define the similarity metric to assess whether two 2d

brightness histograms are likely to be the same fish or not. To do this, we

compare bin heights in the two histograms one bin at a time (red arrow in

Figure 6). We then add up the squares of all those bin heights and take the

square root. In other words, we compute the Euclidean distance between the

two histograms.

Finally, we compute the distance matrix as in section 2.3, except the distance

is now the distance between the histograms rather than the physical distance

9

between the fish:



distance between histogram 1 in
previous frame and histogram 1
in current frame

distance between histogram 1 in
previous frame and histogram 2
in current frame

distance between histogram 2 in
previous frame and histogram 1
in current frame

distance between histogram 2 in
previous frame and histogram 2
in current frame


where histogram 1 is the 2d histogram computed obtained from fish 1 and

histogram 2 is the one obtained from fish 2. As in the distance-based method, if

the sum of the diagonal terms is larger than the sum of the off-diagonal terms,

we conclude that a swap has occurred.

2.5 A Basic Overview of Analysing Histograms

As the histogram based unswapping method only works in time frames of the

video in which there are two fish detected, the regions with only one fish detected

must be identified so that the histogram unswapping method can be used to

reidentify the fish after the overlap (see figure 7). The approach that was used

for determining these overlapping regions was to comb through the list of the fish

in each frame for the amount of fish that the program detected (see Appendix A).

Figure 7: The nonoverlapping ranges

The big advantage of histogram-based unswaps compared to distance-based

unswapping is that it can reidentify the fish even after an extended period of

10

time, regardless of the distance traveled by the fish during that time.

2.6 Determining Accuracy

The distance-based method is widely used and known to work well, so we con-

centrate our efforts on the histogram based unswaps. First, we established the

true identities of the fish by hand by watching the video through the first 60

overlaps. The accuracy rate was then obtained by measuring the percentage of

overlaps after which the program correctly guessed whether there had been a

swap.

11

3 Results

The main question when constructing the combined brightness histograms is

how to choose the bins. The size of the fish is less than 30 pixels, so the distance

between two pixels on the same fish is always smaller than 30 pixels, and the

distance bins only need to go up to 30 pixels. That distance, however, can go

all the way down to 1 pixel when comparing two neighboring pixels. The range

of typical values for the combined brightness (the vertical axis of the histogram)

was initially set to 0 → 510, because individual pixel brightness values are in

the range 0 → 255. This range was then reduced to 150 → 350 (for brightness

sum histogram) or 0 → 50 (for brightness difference histograms) based on the

values actually encountered in the video of interest.

The width of the bins (or equivalently the number of bins) also plays a role.

Too many bins increases the noise. Not enough bins makes all fish look the

same. To find the ideal bin width, we started with a narrow bin width then

produced “reduced” histograms by merging bins together as shown in Figure 8.

12

Figure 8: Bin reduction. “Reduced by a factor of n” means that a square of

n× n original bins were merged to form the new bins.

To find the ideal bin width, we tested several widths and computed the ac-

curacy of each. Figure 9 shows which overlaps led to a an identity swap (red

crosses) and which ones did not (green circles). The upper line shows true

swaps as based on identifying the fish by eye. The lower line shows when the

histogram-based algorithm detected a swap. The error rate in this case is 19%,

meaning that in 19% of overlaps the algorithm either thought there was a swap

when there wasn’t or thought there was no swap when there was. Varying the

bin size made little difference.

Figure 9: The error of the untuned process

13

4 Conclusion

One problem faced by scientists working on animal tracking tasks is keeping

track of which animal is which. To solve this problem for the Jupiter Trilab, we

aimed to create a software that detects fish based on a unique identifier. To do

this, first we looked at the two types of identity swaps that occur in the original

software: a first type that can be fixed by analysing the distance traveled by the

fish from frame to frame, and a second type where the fish are so close to each

other that the image recognition software only sees one fish. For the second of

these swaps, we took the visual identifier of the brightness histogram of each

fish and used that to determine the fish’s identities. When combined, the two

methods perform reasonably well, but not well enough, correctly re-identifying

the fish about 80% of the time after they crossed path.

In retrospect, the video used to develop the program is particularly chal-

lenging for two reasons. First, each fish occupies a relatively small number of

pixels, about 100 pixels on average. Increasing the video’s resolution would

provide more visual detail for the histogram-based method to analyze. Second,

the fish’s skin has a fairly uniform dark color, which makes it more difficult to

pick up patterns of brightness to identify them. Some of the other fish used

in the CaveFish Trilab are partially transparent, which may lead to a greater

variety of brightness values over each fish’s body, and more information for the

histogram-based method to pick up.

14

A Locating Nonoverlapping Ranges

1 i2=0

2 nonOverlappingRange =[]

3 while i2<len(fish):

4 i1=i2

5 while i1<len(fish) and len(fish[i1])!=2:

6 i1+=1

7 i2=i1

8 while i2 < len(fish) and len(fish[i2])==2:

9 #find the first overlapping index

10 i2+=1

11 nonOverlappingRange.append ([i1 ,i2])

12 print(nonOverlappingRange)

15

B Distance Based Swap Checking

1 def swapStatus(pos ,i):

2 ’’’

3 Detect swaps between consecutive frames based on

proximity.

4

5 Input:

6 pos:Postionts. Array with shape (Nframes ,Nfish

,Ndimensions),

7 i: Frame index. Int.

8

9 Output:

10 Int. 0 if no swaps , 1 if swapped , 2 if

overlapping.

11 ’’’

12 nFish=pos.shape [1] #Number of fish

13 distanceMatrix =[np.linalg.norm(pos[i+1][0] - pos[i

][0]) ,

14 np.linalg.norm(pos[i+1][1] - pos[i

][1]) ,

15 np.linalg.norm(pos[i+1][0] - pos[i

][1]) ,

16 np.linalg.norm(pos[i+1][1] - pos[i

][0])]

17 swapCriteron =(distanceMatrix [0]+ distanceMatrix [1])

-(distanceMatrix [2]+ distanceMatrix [3])

18 if abs(swapCriteron)<1e-10:

16

19 return 2 #Overlapping

20 elif swapCriteron >0:

21 return 1 #Swapped

22 elif swapCriteron <0:

23 return 0 #Normal

24 else:

25 return -1

17

C Data Shape

The data is stored in an array of shape [frame][fish][xpixels,ypixels][color]

Figure 10: The shape of the array that holds the data

18

D Histogram Creation

1 for i in tnrange (60,desc=’nonOverlappingRange ’):

2 for k in range (2):

3 countSum =0

4 countDif =0

5 pairData =[]

6 for j in range(* nonOverlappingRange[i]):

7 fishPixels = fishU[j][k]

8 m,l=np.triu_indices(fishPixels.shape[0],k

=1)

9 d=np.sqrt((fishPixels[l,0]- fishPixels[m

,0]) **2+(fishPixels[l,1]- fishPixels[m,1]) **2)

10 bSum=fishPixels[l,2]+ fishPixels[m,2]

11 bDif=fishPixels[l,2]- fishPixels[m,2]

12

13 heightValuesSum ,_,_=np.histogram2d(d,bSum ,

bins=(binsDist ,binsSum))

14 histSum += heightValuesSum

15 countSum +=1

16 heightValuesDif ,_,_=np.histogram2d(d,bDif ,

bins=(binsDist ,binsDif))

17 histDif += heightValuesDif

18 countDif +=1

19 histSum /= countSum

20 histSumList[i,k]= histSum.copy()

21 histDif /= countDif

22 histDifList[i,k]= histDif.copy()

19

References

[1] Johanna Kowalko. Utilizing the blind cavefish Astyanax mexicanus to un-

derstand the genetic basis of behavioral evolution. Journal of Experimental

Biology, 223(Suppl 1), February 2020.

[2] Alexander Mathis, Pranav Mamidanna, Kevin M. Cury, Taiga Abe,

Venkatesh N. Murthy, Mackenzie Weygandt Mathis, and Matthias Bethge.

DeepLabCut: markerless pose estimation of user-defined body parts with

deep learning. Nature Neuroscience, 21(9):1281–1289, 2018.

[3] Adam Patch. patchmemory/cvtracer, August 2020. original-date: 2019-08-

22T15:20:36Z.

[4] Adam Patch, Alexandra Paz, Karla Holt, Erik Duboue, Johanna E.

Kowalko, Alex C. Keene, and Yaouen Fily. Kinematic analysis decon-

structs the evolved loss of schooling behavior in cavefish. bioRxiv, page

2020.01.31.929323, August 2020. Publisher: Cold Spring Harbor Labora-

tory Section: New Results.

[5] Alfonso Pérez-Escudero, Julián Vicente-Page, Robert C. Hinz, Sara Ar-

ganda, and Gonzalo G. de Polavieja. idTracker: tracking individuals in

a group by automatic identification of unmarked animals. Nature Methods,

11(7):743–748, July 2014. Number: 7 Publisher: Nature Publishing Group.

[6] Tristan Walter and Iain D Couzin. TRex, a fast multi-animal tracking system

with markerless identification, and 2D estimation of posture and visual fields.

eLife, 10:e64000, February 2021. Publisher: eLife Sciences Publications, Ltd.

20

