You are here

DEVELOPING A DEEP LEARNING PIPELINE TO AUTOMATICALLY ANNOTATE GOLD PARTICLES IN IMMUNOELECTRON MICROSCOPY IMAGES

Download pdf | Full Screen View

Date Issued:
2020
Abstract/Description:
Machine learning has been utilized in bio-imaging in recent years, however as it is relatively new and evolving, some researchers who wish to utilize machine learning tools have limited access because of a lack of programming knowledge. In electron microscopy (EM), immunogold labeling is commonly used to identify the target proteins, however the manual annotation of the gold particles in the images is a time-consuming and laborious process. Conventional image processing tools could provide semi-automated annotation, but those require that users make manual adjustments for every step of the analysis. To create a new high-throughput image analysis tool for immuno-EM, I developed a deep learning pipeline that was designed to deliver a completely automated annotation of immunogold particles in EM images. The program was made accessible for users without prior programming experience and was also expanded to be used on different types of immuno-EM images.
Title: DEVELOPING A DEEP LEARNING PIPELINE TO AUTOMATICALLY ANNOTATE GOLD PARTICLES IN IMMUNOELECTRON MICROSCOPY IMAGES.
48 views
19 downloads
Name(s): Jerez, Diego Alejandro, author
Hahn, William, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Mathematical Sciences
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2020
Date Issued: 2020
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 58 p.
Language(s): English
Abstract/Description: Machine learning has been utilized in bio-imaging in recent years, however as it is relatively new and evolving, some researchers who wish to utilize machine learning tools have limited access because of a lack of programming knowledge. In electron microscopy (EM), immunogold labeling is commonly used to identify the target proteins, however the manual annotation of the gold particles in the images is a time-consuming and laborious process. Conventional image processing tools could provide semi-automated annotation, but those require that users make manual adjustments for every step of the analysis. To create a new high-throughput image analysis tool for immuno-EM, I developed a deep learning pipeline that was designed to deliver a completely automated annotation of immunogold particles in EM images. The program was made accessible for users without prior programming experience and was also expanded to be used on different types of immuno-EM images.
Identifier: FA00013628 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2020.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Electron microscopy
Immunogold labeling
Image analysis
Deep learning
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013628
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.