You are here

SPATIAL NETWORK BIG DATA APPROACHES TO EMERGENCY MANAGEMENT INFORMATION SYSTEMS

Download pdf | Full Screen View

Date Issued:
2020
Abstract/Description:
Emergency Management Information Systems (EMIS) are defined as a set of tools that aid decision-makers in risk assessment and response for significant multi-hazard threats and disasters. Over the past three decades, EMIS have grown in importance as a major component for understanding, managing, and governing transportation-related systems. To increase resilience against potential threats, the main goal of EMIS is to timely utilize spatial and network datasets about (1) locations of hazard areas (2) shelters and resources, (3) and how to respond to emergencies. The main concern about these datasets has always been the very large size, variety, and update rate required to ensure the timely delivery of useful emergency information and response for disastrous events. Another key issue is that the information should be concise and easy to understand, but at the same time very descriptive and useful in the case of emergency or disaster. Advancement in EMIS is urgently needed to develop fundamental data processing components for advanced spatial network queries that clearly and succinctly deliver critical information in emergencies. To address these challenges, we investigate Spatial Network Database Systems and study three challenging Transportation Resilience problems: producing large scale evacuation plans, identifying major traffic patterns during emergency evacuations, and identifying the highest areas in need of resources.
Title: SPATIAL NETWORK BIG DATA APPROACHES TO EMERGENCY MANAGEMENT INFORMATION SYSTEMS.
67 views
20 downloads
Name(s): Herschelman, Roxana M., author
Yang, KwangSoo, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Computer and Electrical Engineering and Computer Science
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2020
Date Issued: 2020
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 156 p.
Language(s): English
Abstract/Description: Emergency Management Information Systems (EMIS) are defined as a set of tools that aid decision-makers in risk assessment and response for significant multi-hazard threats and disasters. Over the past three decades, EMIS have grown in importance as a major component for understanding, managing, and governing transportation-related systems. To increase resilience against potential threats, the main goal of EMIS is to timely utilize spatial and network datasets about (1) locations of hazard areas (2) shelters and resources, (3) and how to respond to emergencies. The main concern about these datasets has always been the very large size, variety, and update rate required to ensure the timely delivery of useful emergency information and response for disastrous events. Another key issue is that the information should be concise and easy to understand, but at the same time very descriptive and useful in the case of emergency or disaster. Advancement in EMIS is urgently needed to develop fundamental data processing components for advanced spatial network queries that clearly and succinctly deliver critical information in emergencies. To address these challenges, we investigate Spatial Network Database Systems and study three challenging Transportation Resilience problems: producing large scale evacuation plans, identifying major traffic patterns during emergency evacuations, and identifying the highest areas in need of resources.
Identifier: FA00013576 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2020.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Emergency management
Big data
Emergency management--Information technology
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013576
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.