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 Working memory is a mental workspace which utilizes short and long-term 

memory to maintain and manipulate information. It is crucial in enabling cognitive 

control and is largely controlled by interactions within and between frontal and parietal 

cortices. Recent work has identified visual nonspatial, spatial, and visuospatial working 

memory spectral characteristics of the local field potential through simultaneous 

recordings from various areas across the monkey frontoparietal network. However, the 

reports are minimal in number, and there is no clear narrative tying together the 

heterogenous functionality of the characteristics. Here, a new spectral model of monkey 

visual working memory is proposed to address these shortcomings. It highlights 

functional roles for low, mid, and high frequency bands. Next, the organization of 

structural connectivity which gives rise to these spectral characteristics is investigated. A 

new binary association matrix representing connections in the frontoparietal network is 
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proposed. A graph theoretic analysis on the matrix found that a 3-node dynamical 

relaying M9 motif was a fundamental building block of the network. It is optimally 

structured for the synchrony found in the spectral model. The network was also found to 

have a small-world architecture, which confers the integration and specialization of 

function required by visual working memory. Afterwards, three hypotheses generated by 

the spectral model are tested on non-spatial data. The low and mid band hypotheses were 

supported by evidence, while the high band hypothesized activity was not observed. This 

adds credibility to the roles identified in the model for the low and mid band and 

identifies a need for further investigation of the high band role. Finally, opportunities to 

expand the spectral model, analyze the M9 motif, and further test the model are explored. 

In the future, the spectral model could evolve to apply its predictions to humans in the 

pursuit of treatments for neurological disorders.
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1 INTRODUCTION

A properly functioning memory is a key component of a healthy, productive life. 

One can simply examine the lives of those individuals who have suffered damage to their 

memory systems, such as Patient C (Clive Wearing) or Patient H.M. (Henry G. 

Molaison), to see this is true (Squire, 2009; B. A. Wilson et al., 1995). 

There are multiple memory systems which work together to enable healthy memory 

functioning: long-term memory, sensory memory, short-term memory, and working 

memory (Baddeley et al., 2015).  Long-term memory is a system which stores 

information for long periods of time, including both explicit and implicit material. 

Explicit long-term memory is understood as remembering things like facts, events, and 

places. Implicit long-term memory involves learning skills or priming (Squire, 1992). 

Sensory memory is synonymous with perception. It is mediated through the five senses 

and is fleetingly brief. It allows movies, which are images shown in rapid succession, to 

appear as one continuous stream. Short-term memory is a system which stores material 

temporarily over brief delays. Information may be retrieved from long-term memory, 

combined with sensory input, and loaded into the short-term system for task completion. 

However, it is important to note that tasks which require short-term memory involve only 

storage and retrieval of information, such as a repeating back sequences of digits (Jacobs, 

1887). When task-relevant information needs to be processed in some manner, such as in 

the N-back task, working memory is employed. The N-back task requires participants to 

decide whether a viewed stimulus matches one presented N items prior, where N is 
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typically 1-4 (Conway et al., 2005). Working memory is understood as a mental 

workspace which draws on both short and long-term memory in its maintenance and 

manipulation of information. It is crucial in enabling cognitive control and serves as a 

proxy for general intelligence (Baddeley, 2012; Engle & Kane, 2003). Accordingly, 

much focus has been devoted to understanding working memory through cognitive 

modeling.  

1.1 Working Memory Models 

Researchers model cognitive processes to develop a theory of their origination and 

function. The working memory process is challenging to model because it is likely 

comprised of multiple operations which interact with other kinds of memory systems 

simultaneously (Baddeley, 2012). The modal model was the first proposed model of 

working memory (Figure 1.1a) (Atkinson & Shiffrin, 1968). Input flows through three 

main stages after entering via the senses: a sensory register, a short-term store, and a 

long-term store. The sensory register holds a fleeting memory trace processed by the 

senses. Next, information flows to the short-term store, which is agnostic to the original 

communication medium. Finally, the information transfers between long and short-term 

stores until a decision is made.  
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Figure 1.1. Models of working memory.  
A. Modal model (Atkinson & Shiffrin, 1968). Input travels from the environment through the senses into 
the sensory register where it is temporarily stored until attentional mechanisms enable transfer into the 
short-term store. Input deemed sufficiently important is then transferred to the long-term store. The short-
term and long-term stores can interact as much as necessary. Working memory uses information in the 
short-term store along with input from the long-term store to complete tasks. B. Multicomponent model 
(Baddeley & Hitch, 1974). The short-term store from the modal model of WM was broken up into 3 
independent sub-systems: the visuospatial sketchpad, phonological loop, and central executive. The 
visuospatial sketchpad encodes information in WM using vision and space. The phonological loop is a 
mechanism for acoustically encoding information in WM. It relies on verbal rehearsal. The central 
executive is a system that functions as a command-and-control center which coordinates the interactions 
between the visuospatial sketchpad, phonological loop, and long-term memory. 
 

The modal model began to fall apart when it could not account for individuals 

with memory deficits. According to the model, patients with short-term memory 

impairments should have a severely impaired long-term system since the long-term store 

receives its input directly from the short-term store. However, that is not true. Patients 

with severe short-term memory deficits exhibit no signs of long-term deficits (Shallice & 

Warrington, 1970). This paved the way for the widely-used multicomponent model 

(Baddeley & Hitch, 1974) of working memory (Figure 1.1b). 

The multicomponent model breaks the short-term store of the modal model into 

three separate interacting systems: the visuospatial sketchpad, phonological loop, and the 

central executive. This permits patient-specific deficits within a single sub-system that do 

not impair the others, thereby addressing the shortcoming posed by the modal model. The 

multicomponent model has since been updated to include more parameters, but its overall 

structure has remained intact (Baddeley, 2012). The visuospatial sketchpad is used to 

process mental imagery comprising both visual and spatial properties. The sketchpad is 

thought to act as a temporary storage buffer of visuospatial information, but not 

necessarily the generation or maintenance of it (Pearson et al., 1999). It can be further 

decomposed into two separate subsystems: a passive store and an active device for 

repeating visuospatial information (Bruyer & Scailquin, 1998). The phonological loop, 
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when not utilized in service of a cognitive task, is simply a model of verbal short-term 

memory. It uses a temporary store of information as well as a verbal rehearsal process. It 

turns out the average capacity an individual can recall is around seven digits, plus or 

minus two (G. Miller, 1956). However, this is an example of simple passive reporting and 

does not involve more complex cognitive activities. The remembered information is not 

processed for learning, comprehension or reasoning, an indication of working memory 

(Baddeley et al., 2015). Thus, only verbal short-term memory is engaged. When the 

phonological loop is put to some cognitive use, like remembering the order of the digits 

(Jaeggi et al., 2010), then it becomes a function of working memory. From an 

evolutionary perspective, the phonological loop is thought to assist in language 

acquisition (Baddeley et al., 1988). It is also used in verbal self-instruction to control 

behavior. This was seen in developing children who would verbally cue themselves 

before performing a requested action (Luria, 1962). The central executive system directs 

working memory and is responsible for focusing and shifting attention (Engle & Kane, 

2003; Robbins et al., 1996), controlling, and monitoring behavior, and dividing attention 

between two or more tasks (Logie et al., 2004). The supervisory attention system is at the 

heart of the central executive, permitting a flexible control of action (Norman & Shallice, 

1986). These executive functions fall within the cognitive neuroscience domain of 

cognitive control (Braver, 2012). It is thought that the PFC is the seat of cognitive control 

and perhaps by extension, the central executive (E. K. Miller, 2000; E. K. Miller & 

Cohen, 2001).  

Extending beyond these cognitive models to establish biological models of 

working memory involves a search for neural mechanisms. One such model builds upon 
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the idea that the central executive originates in the PFC. It posits the central executive of 

the nonhuman primate is an emergent property of domain-specific processors 

concurrently activated in the PFC and connected with domain-relevant long-term storage 

in sensory posterior regions and motor pathways (Goldman-Rakic, 1996a). This provides 

a framework for the central executive to function in a biological system through its 

prefrontal and parietal interactions. In constructing these more biologically realistic 

models, researchers focus on whether the memories themselves are stored in single 

locations (Tonegawa et al., 2015) of the brain or are hierarchical and distributed (Fuster, 

1995). A more thorough review of this topic is covered by D’Esposito, (2007). In brief, 

the prefrontal and parietal cortical regions are identified as areas vital to facilitating 

models of working memory which link posterior sensory regions to higher-order 

association cortices in the active maintenance of sensory percepts (Figure 1.2). They can 

integrate perceptual representations through connections with unimodal association 

cortex. Ultimately, working memory is likely an emergent property of the functional 

interactions observed in networks involving the prefrontal and parietal cortices and other 

parts of the brain, such as the hippocampus. This review will focus on the prefrontal and 

parietal cortical contributions to working memory, both separately and combined as a 

large-scale network. 
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Figure 1.2“What” vs “Where” theory of functional specialization in nonhuman primate working memory. 
The visual system (V1) passes information to both the posterior parietal (PP) cortex, which is concerned 
with spatial perception, and the inferior temporal (IT) cortex, which is associated with object recognition. 
These regions are connected to the dorsolateral (DL) and inferior convexity (IC) prefrontal cortices where 
representations of spatial location and object identity have been observed during working memory 
(Goldman-Rakic, 1995, 1996a, 1996b). This theory extends the  original “what” and “where” pathways for 
non-spatial object identity projecting from occipital to inferior temporal cortex and object spatial 
information projecting from occipital to parietal cortex, respectively (Mishkin & Ungerleider, 1982). PS: 
principal sulcus; AS: arcuate sulcus. Originally published in: F. A. W. Wilson, Scalaidhe, & Goldman-
Rakic (1993), “Dissociation of object and spatial processing domains in primate prefrontal cortex”, 
Science, 260(5116). Reproduced with permission from The American Association for the Advancement of 
Science. 
 
1.2 Large-scale Networks Supporting Cognition 

It was traditionally thought that the seat of different types of cognition could be 

localized to specific static regions of the brain (Downing & Kanwisher, 2001; Kanwisher 

et al., 1997). The most extreme version of this doctrine can be found in phrenology, 

whose proponents thought that the shape of the skull dictated mental capacities (Parker 

Jones et al., 2018). However, recent work has shown that cognition is supported by 

distributed large-scale brain networks that include the prefrontal cortex (Buschman & 
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Miller, 2007b; Saalmann et al., 2007; Salazar et al., 2012; X.-J. Wang, 2010; Womelsdorf 

et al., 2007). Non-human primates have a well-developed prefrontal cortex and are 

evolutionarily closest to humans in comparison to other commonly used experimental 

animals such as rodents (Goldman-Rakic, 2011). Thus, they are the preferred model for 

animal studies on cognition, largely facilitated through invasive electrode recording 

during experimental tasks. 

1.3 Data Acquisition 

With technological advances over the years, it has become feasible to obtain large-

scale simultaneous recordings from electrodes inserted into distributed regions of the 

brain, comprising many gigabytes or terabytes of data (Dotson et al., 2015, 2017; Hong & 

Lieber, 2019; Steinmetz et al., 2018). The very latest technology combines optogenetic 

stimulation with electrode recording to provide both spatial and temporal dynamics of 

neural activity. However, there are tradeoffs made between preserving areas for optical 

stimulation and damaging tissue with penetrating electrodes. Further details can be 

explored elsewhere (Galvan et al., 2017; Kleinbart et al., 2018; Yazdan-Shahmorad et al., 

2016). This review will focus on studies which acquired data from large-scale distributed 

depth electrodes as this technology is more mature and widely used.  

The amount of data provided by distributed depth electrode recording is substantial. 

Thus, it can be challenging to analyze without appropriate methods. Time-frequency 

(Mike X Cohen, 2014) and graph theoretic (Zalesky et al., 2016) analyses are well-suited 

for characterizing large-scale neural networks using large datasets. Correlations between 

spike trains recorded concurrently from distributed regions of the brain are also used to 
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examine information flow in networks (Campo et al., 2015). Best practices have been 

identified for the application and interpretation of these methods (Pesaran et al., 2018). 

Signals must be sampled at regular intervals to apply spectral analysis, with 

frequencies of interest less than half of the sampling rate according to the Nyquist 

theorem (Mike X Cohen, 2014). Currently, the most effective method of sampling 

cognitive neural activity from electrodes is to obtain invasive electrophysiological 

recordings distributed throughout the brain of behaving non-human primates (Dotson et 

al., 2015, 2017). This technique provides large coverage of the brain with high spatial and 

temporal resolution adequate to capture cortical and subcortical dynamic coordination 

(Buzsáki, 2010; Tognoli & Kelso, 2014). It has resulted in the discovery of spectral 

characteristics of the frontoparietal network supporting a range of cognitive functions 

including attention (Fiebelkorn et al., 2018, 2019), categorization (Antzoulatos & Miller, 

2016), decision making  (Helfrich & Knight, 2016; Siegel et al., 2015) and the topic of 

this review, working memory (André M. Bastos et al., 2018; Buschman & Miller, 2007b; 

Compte et al., 2003; Lara & Wallis, 2014; Lundqvist et al., 2016; Pesaran et al., 2002; 

Salazar et al., 2012; Siegel et al., 2009). 

1.4 Time-Frequency Analysis 

Spectral characteristics of populations of neurons can be obtained by analyzing a 

continuous neural signal over time. The process of extracting frequency-specific 

information from temporal windows in the signal is known as time-frequency analysis. It 

is used to interpret signals that are non-stationary, which means they change over time 

(Mike X Cohen, 2014). Neuroscientists are primarily interested in changes in neural 

activity over time in relation to salient events such as stimulus processing, motor 
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planning or speech production. Thus, they have made use of the method to discover 

rhythmic patterns associated with a variety of perceptual, cognitive and motor functions 

(Buzsáki & Draguhn, 2004). However, it is important to keep in mind that 

methodological differences, such as the choice of time-frequency decomposition method 

or frequency band definition can impact results (X.-J. Wang, 2010). Typically, data used 

in the analysis is acquired from the electroencephalogram (EEG), 

magnetoencephalography (MEG), or electrodes in the brain. This review will explore the 

results of time-frequency analysis using the last, and most invasive, approach which 

provides two continuous signals: the neuronal firing rate (Compte et al., 2003) and the 

local field potential (LFP) (Pesaran et al., 2002). 

1.5 Working Memory Nonhuman Primate Tasks 

Traditionally, tests of working memory in the nonhuman primate are some variant 

of a delayed-response task. In the delayed-response task (Hunter, 1913), an animal is 

shown a stimulus, followed by a variable delay after which an action occurs that is 

informed by the previously observed stimulus. After the delay, the animal is not provided 

with any cues that would inform their response. Thus, they must use representational 

memory of what was presented during the stimulus to enable a correct response. This is 

different from tasks where the animal is shown something that immediately elicits a 

response using associational memory. The response here is driven by external stimuli in 

contrast to the inner model the animal uses in the delayed-response task (Goldman-Rakic, 

2011). 

The prefrontal cortex has been shown to be vital for correct performance of 

delayed-response tasks in non-human primates (Jacobsen & Nissen, 1936). Specifically, 
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the dorsolateral cortex is involved in tasks that require the integration of separate spatial 

and temporal elements of cognition. This describes most delayed-response or matching 

tasks used in cognitive studies. The ventral prefrontal cortex (vPFC) is involved in 

behavioral inhibition, which is used in delayed alternation tasks. These tasks require the 

non-human primate to alternate between two actions during each trial, resulting in an 

action opposite to that which was cued (Fuster, 2015). Lesions of the vPFC have been 

shown to induce deficits in the performance of visual delayed matching-to-sample tasks 

where the non-human primates have to match the object observed during stimulus, 

regardless of location, usually by saccade (Mishkin & Manning, 1978; R. Passingham, 

1975). Conversely, lesions of the dorsal prefrontal cortex (dPFC) have been shown to 

impair spatial delayed-response tasks (Goldman & Rosvold, 1970; Mishkin & Manning, 

1978; R. E. Passingham, 1985). These and other findings have motivated the hypothesis 

that the prefrontal cortex is responsible for coordinating the sustained activation of 

posterior cortical networks to support the visual and spatial short-term memory necessary 

for correct performance of delayed match-to-sample and response tasks, respectively 

(Fuster, 2015).  

Early studies attempted to understand the role of non-human primate prefrontal 

cells in short-term memory using spike train analysis on the delay period in these tasks. It 

is thought that changes during this period may be related to the retention of information 

encoded during the cue period (Fuster, 1973; Fuster & Alexander, 1971; Kubota et al., 

1974). Researchers used this approach to pursue a memory topography of the PFC. Areas 

8, 9 and 46 were found to contain direction-specific memory cells (Funahashi et al., 1989, 

1990, 1991). Moreover, cells were discovered dorsal to the principal sulcus that appeared 
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to respond preferentially during the delay period of spatial delayed-response tasks, while 

cells discovered ventral to the principal sulcus responded preferentially during the delay 

of non-spatial delayed-response tasks (Fuster et al., 1982; Goldman-Rakic, 1995; F. A. 

W. Wilson et al., 1993). This motivated a theory of prefrontal functional specialization 

(Goldman-Rakic, 1995, 1996a, 1996b) where spatial memory occurred in the dorsolateral 

portion and more ventral areas were responsible for non-spatial memory such as shape 

and color (Figure 1.2). The theory was an extension to the “what” and “where” visual 

pathways for non-spatial object identity projecting from occipital to inferior temporal 

cortex and object spatial information projecting from occipital to parietal cortex, 

respectively (Mishkin & Ungerleider, 1982). Transcranial magnetic stimulation has been 

used in support of this theory, establishing a separation between spatial and non-spatial 

deficits in dorsal and ventral lateral cortex, respectively (Mottaghy, 2002). However, 

other work in the human and non-human primate was not able to segregate identity and 

location in the lateral PFC based on spike-train analysis (N. G. Müller & Knight, 2006; 

Notger G. Müller et al., 2002; Rao et al., 1997).  

A different interpretation of the spatial delayed-response tasks used to establish the 

theory is that the cells were not preferentially responding to cue-related information. 

Instead, their activity reflects a preparation for the ensuing motor action. Thus, a 

prospective motor working memory is proposed to function alongside a non-spatial visual 

working memory in the prefrontal cortex which acts in concert with the spatial 

information provided by the parietal cortex (Sasaki et al., 2020) to guide successful 

performance in delayed-response tasks (Fuster, 2000; Quintana & Fuster, 1992, 1999). 
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1.6 Task-dependent Oscillations 

The preceding interpretation leads to the consideration of multiple networks 

activating concurrently during working memory. Some examples of networks purportedly 

active during the delay period include those that represent the rules of the task, the 

pending behavioral response, and reward expectation. These are enabled via interaction 

with long-term memory and are widely distributed throughout the brain (Fuster, 2015). 

Thus, it is reasonable to assume that working memory networks are embedded within 

larger cognitive networks which encode general aspects of the delay task. 

A brain rhythm observed during spectral analysis can be understood as a signature 

of one of the concurrently active networks during working memory whose elements fire 

in synchrony and periodically (Fuster, 2015). This hypothesis helps explain the 

heterogeneity of spiking activity observed during different delay tasks such as the visual 

match-to-sample and spatial response (Shafi et al., 2007). The different patterns of spikes 

reflect participation in different co-occurring networks. In the context of delay tasks, the 

multitude of networks occurring over time enable the initial sensory percept to result in a 

subsequent motor action thereby establishing the perception-action cycle (Ardestani et 

al., 2016; Fuster, 2000). 

The entirety of frequency-specific signatures of oscillatory networks observed 

during delay tasks can be interpreted as a “spectral fingerprint” of the underlying neural 

computation necessary to complete the task (Siegel et al., 2012). These fingerprints are 

useful for comparing the cognitive processes that are assumed to support experimental 

tasks. In this review, the spectral fingerprints of delayed-response, matching and more 

complex visuospatial tasks acquired by invasive, distributed electrophysiological 
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recordings will be identified to establish commonalities and differences between large-

scale frontoparietal visual spatial, non-spatial, and visuospatial working memory in the 

nonhuman primate (Figure 1.3). The local dynamics within frontal and parietal regions 

will be explored as well as the long-range interactions between them. 

 

Figure 1.3. Venn diagram of the topics covered in this review.  
The spectral characteristics reported in the monkey frontoparietal network during visual non-spatial, 
spatial, and visuospatial working memory tasks will be synthesized and explored. 
 
1.7 Methods 

1.7.1 Task Assignment 

 Experimental tasks were categorized according to whether visual non-spatial, 

spatial, or visuospatial working memory was utilized. Experiments where the monkey 

simply had to process the color or identity of an object over a delay period, irrespective 

of where it appeared during stimulus, were assigned as a visual non-spatial working 
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memory task. Tasks in which the monkey was required to process a spatial property, 

regardless of the object conveying it, over a delay period were categorized as relying on 

visual spatial working memory. Delayed-saccade tasks where the monkey had to saccade 

to a position identified during stimulus have traditionally been considered tests of spatial 

working memory. However, they may instead be facilitated by prospective motor 

working memory whereby the monkey stores the motor plan of where to move his or her 

eyes over a delay period (Fuster, 2015). For the purposes of this study, these tasks, which 

were identified as a test of spatial working memory originally, remained categorized as 

visual spatial working memory tasks. Finally, tasks that required the monkey to process 

both an identification property of an object and its place in space over a delay period 

were categorized as visuospatial working memory. One exception was a single study that 

pooled together visual non-spatial and spatial working memory tasks, as previously 

defined. This necessitated a visuospatial task assignment (André M. Bastos et al., 2018).  

1.7.2 Frequency Bands 

 Low, mid, and high range frequency bands appear to support spatial, non-spatial 

and visuospatial working memory (Table 1.2 and Table 1.3). However, the ranges differ 

between visuospatial and spatial/non-spatial tasks. For the spatial and non-spatial tasks, 

the low frequency band is comprised of components under 15hz, typically in the 1-10Hz 

range consisting of delta (1-4Hz), theta (4-8Hz) and alpha (8-12Hz). The middle 

frequency band generally comprises components between 12-35Hz. Traditionally, this 

range is referred to as beta. The high frequency band is any component above 35Hz, also 

known as gamma. These are canonical bands which require empirical validation. 
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For the visuospatial tasks, the low frequency band is again mostly comprised of 

components under 20Hz (Table 1.3). The mid band ranges from 15-50Hz. There is a 

slight overlap based on the reported band boundaries, with the majority of the 

components falling within a single category (Table 1.1). The high frequency band is 

comprised of components greater than 50Hz. It is interesting that the empirical reports of 

high band visuospatial activity are 15 Hz higher than the spatial/non-spatial empirical 

reports. 

Not all reported bands fit neatly into these categories (Table 1.1). When the 

beginning or ending frequency of a reported band in a study spanned two categories, the 

median component determined the category for the result. The median is a good proxy 

for how most components are categorized. For example, the 8-25Hz range (Dotson et al., 

2014) starts within the range established by the spatial/non-spatial tasks for the low 

frequency band, but ends in the mid. Its median component is 16.5, which is in the mid 

band. This qualifies the 8-25hz band as belonging to the mid-band category. Indeed, most 

of its components (12-25Hz) fall in the 12-35Hz spatial/non-spatial mid-band range. 

Three additional reported ranges, 5-20Hz (Compte et al., 2003), 10-30Hz (Jacob et al., 

2018) and 25-90Hz (Pesaran et al., 2002), spanned the spatial/non-spatial bands and were 

categorized as low, mid, and high, respectively. Only two reported ranges spanned the 

visuospatial categories, 4-22Hz (André M. Bastos et al., 2018) and 8-50Hz (Kornblith et 

al., 2016), which were categorized as low and mid, respectively.  

 Range (Hz)   
 Start End Median Category 

Spatial vs 
Non-spatial 

5 20 12.5 low 
8 25 16.5 mid 
10 30 20 mid 
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25 90 57.5 high 

Visuospatial 4 22 13 low 
8 50 29 mid 

Table 1.1. Reported frequency band outliers.  
The median of each range was used to categorize them into appropriate spatial/non-spatial or visuospatial 
frequency bands. Spatial/non-spatial outlier reported ranges: 5-20Hz (Compte et al., 2003), 8-25Hz (Dotson 
et al., 2014), 10-30Hz (Jacob et al., 2018), and 25-90Hz (Pesaran et al., 2002). Visuospatial outlier reported 
ranges: 4-22Hz (André M. Bastos et al., 2018) and 8-50Hz (Kornblith et al., 2016). 
 
1.7.3 Limitations 

The preference in most investigations of working memory is to focus on 

examining just a single area of the brain. This is likely partly due to the relatively easier 

surgery and subsequent recording from a single area versus multiple. Many studies target 

the PFC to characterize its spiking activity or oscillations, ignoring the rest of the brain 

and its potential role (Barbosa et al., 2020; Funahashi, 2006; Lundqvist et al., 2016; 

Markowitz et al., 2015; X. L. Qi & Constantinidis, 2012). Others do record from multiple 

regions that can function together as a working memory network, but only analyze the 

activity within areas, not between (Katsuki & Constantinidis, 2013; X.-L. Qi, 2010; 

Quintana & Fuster, 1999). Until there is technology that is able to provide all neural 

activity from the entire brain during a task, studies will likely fail to report the specific 

contribution of all brain areas necessary for the successful completion of the experimental 

task. 

Furthermore, there are several different parcellation schemes used by various 

groups. Parcellation boundaries between areas differ based on whether they were derived 

using cytoarchitecture or functional considerations (D. Pandya et al., 2015). Many studies 

in this review relied on functionally established boundaries using techniques like 

microstimulation. Accordingly, some areas may take up more cortical real estate than 

others, like lateral prefrontal cortex (lpFC) (Antzoulatos & Miller, 2016). The areas may 
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have latent specialization which can only be uncovered if split into dorsal and ventral 

components, such as areas 46d and 46v (Michael Petrides & Pandya, 2007), respectively. 

Researchers should specify which atlas, or parcellation scheme, they are using. It would 

be ideal if all labs could agree on a preferred atlas for experimentation. 

The low number of studies finding high frequency activity in strictly spatial and 

non-spatial working memory tasks makes it difficult to draw any meaningful conclusions. 

This could mean high frequency activity does not influence working memory processes 

in these tasks. 

There were only two studies which focused on frontal cortex and found low 

frequency activity during a visuospatial task (André M. Bastos et al., 2018; Lara & 

Wallis, 2014). Furthermore, only one study explored parietal and frontoparietal directed 

connectivity in visuospatial tasks (Kornblith et al., 2016). More studies utilizing 

visuospatial tasks must be conducted before meaningful conclusions can be made about 

the support provided by different frequency bands. 

1.8 Frequency Band Activity in Spatial vs Non-spatial Working Memory 

As previously noted, three frequency bands can be observed supporting spatial and 

non-spatial visual working memory tasks: a low (1-15Hz), mid (12-35Hz), and high 

(35Hz+) band (see Methods and Table 1.2).  

1.8.1 Low Frequency Band 

Within frontal and parietal cortices, low frequency spiking power was suppressed 

during the delay period via inhibitory interneurons (Compte et al., 2003; Joelving et al., 

2007). Conversely, low frequency LFP power increased within frontal and parietal 
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cortices during the memory delay of non-spatial tasks (Jacob et al., 2018). Thus, the low 

frequency network appears to be differentially activated during the delay period in 

separate frontal and parietal regions according to whether the nonhuman primate is 

completing a spatial or non-spatial task. 

Whereas there was a difference in the power of separate regions between spatial 

and non-spatial tasks, there is a consistent connectivity found across tasks between 

frontal and parietal regions. Specifically, directed functional connectivity in the low 

frequency band from frontal area PMd/F2 to parietal PRR/MIP was observed during the 

retrieval of spatial goals in response to a “go” cue, after the delay period but before a 

movement response. This suggests a top-down retrieval of goal information from spatial 

working memory (Martínez-Vázquez & Gail, 2018). Directed feed-back connectivity was 

also found in the low frequency band from prefrontal cortex (pFC) to VIP during the 

memory delay of a non-spatial task. Upon further investigation, a phase-dependent code 

between pFC spikes from sample-encoding neurons and the LFP in VIP during the delay 

was found to differentiate between task-relevant and distracting stimuli (Jacob et al., 

2018). In both cases, a top-down control signal was transmitted from frontal to parietal 

cortices during and after delay periods to enable successful completion of both spatial 

and non-spatial working memory tasks in the low frequency band. Thus, this may be the 

preferred channel for top-down communication in support of these tasks. 

1.8.2 Mid Frequency Band 

LFP power and synchrony in the mid frequency band of separate frontal and 

parietal regions increased during the epoch of a spatial task when a category was 

encoded, part sample and part delay (Antzoulatos & Miller, 2016). This stands in contrast 
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to non-spatial tasks where mid frequency power in separate frontal and parietal regions 

was observed to decrease during the delay period (Jacob et al., 2018; Lundqvist et al., 

2018). Additionally, a 32Hz mid frequency component was found to optimally encode 

objects at different phases of its cycle during the memory delay of a non-spatial task 

(Siegel et al., 2009). Therefore, like the low frequency network, the mid frequency 

network also appears to be differentially activated in separate frontal and parietal cortices 

depending on whether a spatial or non-spatial task is being performed. In the non-spatial 

task specifically, it may be used to encode objects at different phases. 

The mid frequency band’s involvement across frontal and parietal regions is more 

heterogeneous in its support of spatial and non-spatial tasks. Directed functional 

connectivity in the mid band from parietal PRR/MIP to frontal PMd/F2 was observed 

when the monkey was holding a state during the delay period of a spatial task, 

independent of working memory content. This points to a potential role in withholding 

movement (Martínez-Vázquez & Gail, 2018). In another spatial task, synchrony between 

frontal 8A/FEF and parietal AIP was observed during category encoding. After further 

inspection, it was discovered that spiking neurons in frontal 8A/FEF synchronized to 

parietal AIP’s mid band LFP suggesting a directed influence from frontal to parietal 

cortices during spatial categorization (Antzoulatos & Miller, 2016). Thus, the mid band 

has been shown to exhibit both top-down and bottom-up neural activity across different 

frontoparietal pairs in support of spatial working memory tasks. 

The mid frequency band has been observed serving a range of functional roles 

supporting non-spatial working memory tasks. Undirected connectivity in the mid band 

between frontal FEF/lpFC and parietal LIP around the time of saccade was stronger in a 
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top-down visual search non-spatial task when compared with a bottom-up salient pop-out 

task. The top-down visual search task likely required more working memory resources 

(Buschman & Miller, 2007b). A later study also found undirected synchrony during the 

delay period in the mid band between frontoparietal pairs including frontal areas 6DR, 

8Ad, 8B, dPFC and vPFC and parietal areas PEC, PE, PG, MIP and LIP which encoded 

the identity of the object presented as stimulus. The synchrony patterns were discovered 

to be regulated by activity arising in the posterior parietal areas, suggesting a feed-

forward encoding mechanism (Salazar et al., 2012). Additionally, the LFP relative phase 

of the mid band exhibited simultaneously in-phase and anti-phase correlations between 

the same frontoparietal pairs during the delay period suggesting that the integration and 

segregation of the large-scale frontoparietal network is dynamically regulated (Dotson et 

al., 2014). Finally, in a numerosity non-spatial task, directed connectivity from parietal 

VIP to frontal pFC increased in the mid band during cue and distractor presentations 

suggesting a feed-forward processing of the most recently viewed numerical input (Jacob 

et al., 2018).  

Based on the results above, the mid band has a clear role in supporting non-spatial 

working memory through frontoparietal synchrony occurring at different times 

throughout the trials. Further, it appears processing travels in a feed-forward mid-band 

channel from parietal to frontal cortical areas. This stands in contrast to the dual feed-

forward and feed-back mid-band processing observed in spatial tasks. The mid band may 

function across the frontoparietal network in a bidirectional capacity in support of spatial 

working memory and unidirectional in support of non-spatial working memory. 
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1.8.3 High Frequency Band 

 In frontal cortex, high frequency bursting activity was observed in the LFP of the 

lpFC at the end of the delay period of a non-spatial task as the monkey prepared to use a 

working memory object to compare against test objects. When the working memory 

object was no longer needed after the trial ended the bursting decreased (Lundqvist et al., 

2018). In parietal LIP, high frequency LFP power increased during the memory delay of 

a spatial task and was able to decode direction and timing of the planned movement 

(Pesaran et al., 2002). Perhaps bursting is a unique feature of non-spatial frontal working 

memory activity. More studies are needed to test this hypothesis. Regardless, results from 

these studies suggest activity in the high frequency band within frontal and parietal 

regions increases during the delay period of both spatial and non-spatial tasks. 

 Stronger high frequency synchrony was observed in the LFP between parietal LIP 

and frontal FEF/lpFC during the delay and around the time of saccade in a bottom-up 

non-spatial task when compared with a top-down visual search task. The synchrony was 

likely unrelated to working memory processes as the bottom-up task tested salience and 

did not require the monkey to remember anything (Buschman & Miller, 2007b). Thus, 

the high frequency power observed within frontal and parietal regions may support 

spatial and non-spatial working memory processes, but the synchrony observed between 

non-spatial frontoparietal pairs may not. 
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Table 1.2. Summary of all spatial and non-spatial visual working memory studies on nonhuman primates 
The first two rows summarize spectral characteristics reported as power and synchrony found within frontal and parietal regions for the type of working memory 
labeled in each column. The third row summarizes spectral characteristics reported as synchrony and directed connectivity measures between frontal and parietal 
regions for the type of working memory labeled in each column. Low band results are in purple, mid band is in blue and high band is in green. 
 

  Spatial Non-spatial 

Frontal  Across areas FEF/46, spiking power in low band (5-20Hz) was 
suppressed during delay, along with elevated firing. 
o Power suppression facilitated through inhibitory 

interneurons (Compte et al., 2003) 
 In 8A/FEF and 8A/FEF<->45/46, increased LFP power and 

synchrony in the mid band (15-32Hz) band occurred during 
category encoding (sample & delay) and was associated with 
category selectivity (Antzoulatos & Miller, 2016) 

 In vlpFC, Spike-LFP synchrony during delay in low 3Hz & mid 32Hz (Siegel et 
al., 2009) 

 First of two objects optimally encoded at earlier 32Hz phase (Siegel et al., 2009) 
o Different objects encoded at different phases 

 In lPFC, LFP high band (50-120Hz) power bursts increased, and mid band (20-
35Hz) decreased at end of delay, when monkey anticipated a need to use WM 
object to compare against test objects. When WM object no longer needed post-
trial, high band power decreased and mid band increased (Lundqvist et al., 
2018) 

 Mid band may regulate high band and information content of WM, clearing it 
out post-trial by suppressing high band 

 In lpFC, increased LFP power during delays in low band (2-8Hz), while mid 
band (10-30Hz) decreased (Jacob & Daniel, 2018) 

Parietal  In 7a (PG/PFG), spiking power suppressed in low band (5-10Hz) 
during delay, increased mid band (15-20Hz) during fixation 
(Joelving et al., 2007)  

 In LIP, LFP high band (25-90Hz) power increased during delay 
o Decode direction & timing of planned movement from LFP 

(Pesaran et al., 2002) 
 In AIP, increased LFP synchrony in low band (2-4Hz) and 

increased LFP power and synchrony in mid band (15-32Hz) 
during category encoding (sample & delay) related to category 
selectivity (Antzoulatos & Miller, 2016) 

 In VIP, increased LFP power found during memory delays in low band (2-8Hz), 
while mid band (10-30Hz) decreased (Jacob & Daniel, 2018) 

Frontoparietal  Directed FC in mid band (12-32Hz) from PRR (MIP) to PMd 
(F2) while holding current state during delay, independent of 
WM content 
o Indicates role in states where animal withholds 

movement(Martínez-Vázquez & Gail, 2018) 
 Directed FC in low band (1-10Hz) from PMd (F2) to PRR (MIP) 

during retrieval of spatial goals in response to “go” cue, after 
delay, prior to movement response 
o Suggests top-down retrieval of goal information from 

spatial WM in 1-10Hz low band (Martínez-Vázquez & 
Gail, 2018) 

 Stronger LFP coherence between LIP and FEF/lpFC in high band (35-55Hz) 
during bottom-up pop-out task in memory delay and around time of saccade 
(before and after) vs top-down visual search task, which req’d more WM.  
o Mid band (22-34Hz) coherence stronger in top-down visual search task vs 

bottom-up pop-out task around time of saccade 
o Suggests different frequency bands differentially support the tasks and 

may be responsible for top-down (frontal neurons show selectivity before 
parietal) and bottom-up (parietal neurons show selectivity before frontal) 
processes (Buschman & Miller, 2007b) 
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 In AIP<->8A/FEF, increased LFP synchrony in mid band (15-
32Hz) band during category encoding (sample & delay) 
associated with category selectivity 
o 8A/FEF spiking neurons synchronized to AIP mid band at 

same time, suggesting unidirectional PFC influence on 
PPC(Antzoulatos & Miller, 2016) 

 Directed FC feed-back signaling from pFC to VIP increased in low band (2-
8Hz) during memory delays, while feed-forward signaling from VIP to pFC 
increased in mid band (10-30Hz) during cue/distractor  
o Suggests feedforward of most recently viewed numerical input and 

feedback differentiated between multiple memorized inputs (Jacob & 
Daniel, 2018) 

 Phase dependent low band (4-8Hz) code between pFC spikes from sample-
encoding neurons and LFP in VIP during memory delay separates between task-
relevant and distracting stimuli (Jacob & Daniel, 2018) 

 Mid band (12-22Hz) coherence during delay between frontoparietal pairs 
including frontal areas 6DR, 8Ad, 8B, dPFC and vPFC and parietal areas PEC, 
PE, PG, MIP and LIP found to encode object identity 
o Also synchrony patterns governed by activity arising first in the posterior 

parietal areas (Salazar et al., 2012)  
 LFP relative phase in mid band (8-25Hz) exhibits simultaneous in-phase and 

anti-phase correlations within and between regions of frontoparietal network 
comprised of frontal areas 6DR, 8Ad, 8B, dPFC and vPFC and parietal areas 
PEC, PE, PG, MIP and LIP during delay period. 
o Suggests task-dependent integration and segregation of large-scale 

frontoparietal network is dynamically regulated (Dotson et al., 2014)  
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1.9 Frequency Band Activity in Visuospatial Working Memory 

 Some studies used experimental tasks that incorporated aspects of both spatial and 

non-spatial working memory. These tasks were considered to test visuospatial working 

memory function. With contributions from both types of visual working memory, it was 

expected that the low, mid, and high band signatures explored earlier would appear in 

varying degrees in the visuospatial results. 

 Accordingly, a low (1-20Hz), mid (15-50Hz), and high (50Hz+) frequency band 

emerged again in support of visuospatial working memory tasks (Table 1.3). However, 

their ranges are different from the spatial/non-spatial bands (see Methods).  

1.9.1 Low Frequency Band 

There were only reports of low frequency activity in visuospatial tasks in the 

frontal cortex. In frontal PMd, 8a, 8B, SMA/ACC, dlpFC and vlpFC, peaks in the low 

frequency band of the LFP from 200ms before and 500ms after stimulus, during the 

delay, of three pooled spatial and non-spatial tasks were observed in deep laminar layers 

5 and 6. It was thought that this deep low band regulates the high band to maintain the 

contents of working memory (André M. Bastos et al., 2018). In a separate study, 

increased low frequency LFP power in frontal vlpFC upon cue presentation and during 

the early delay period of a visuospatial task was observed at electrodes with spatially 

selective neurons relative to non-spatial electrodes (Lara & Wallis, 2014). 

The low frequency network was identified earlier as being stronger in the LFP 

during the delay of non-spatial tasks while the spiking power was weaker for spatial tasks 

in the frontal cortex. However, the visuospatial results explored above also provide a role 

for the low frequency network in the LFP during the delay period of the spatial 
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component of the task. Further, it appears the network may originate from layers 5 and 6 

of the frontal cortex. Taken together, this suggests that the low frequency network in the 

LFP supports both spatial and non-spatial tasks, likely originating in the deep layers of 

frontal cortex. 

1.9.2 Mid Frequency Band 

 The mid frequency band was observed within and across frontal and parietal 

regions during two separate visuospatial studies. In frontal FEF and lpFC, bursting in the 

mid band increased during the early and mid-delay period and decreased during the cue 

and late delay of a visuospatial task (Lundqvist et al., 2016). During the cue period of a 

different visuospatial task in frontal FEF and lpFC and parietal LIP, LFP power in the 

mid band decreased with contralateral visuospatial stimulus load (Kornblith et al., 2016). 

During the delay period in the same areas, LFP power in the mid band increased with 

contralateral visuospatial load. Also during the delay period, LFP power in the mid band 

in vlpFC increased in both 1 and 2-item trials. Within frontal lpFC, synchrony in the mid 

band decreased during the delay period with contralateral load. Finally, long-range 

synchrony in the mid band between frontal FEF and parietal LIP and frontal lpFC and 

parietal LIP during the cue period increased with contralateral load. 

Whereas the mid band network was observed primarily during the delay period of 

spatial and nonspatial tasks, power within frontal and parietal areas in the LFP in the mid 

band appears to be differentially modulated throughout the trial in support of visuospatial 

working memory, based on the results above. Synchrony within frontal and across frontal 

and parietal areas in the mid-band LFP also modulates according to the epoch of the trial 

in support of visuospatial working memory.  
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1.9.3 High Frequency Band 

High frequency activity has been observed within frontal and parietal cortices 

while nonhuman primates perform visuospatial working memory tasks. In frontal FEF 

and lpFC, high frequency bursting in the LFP increased during the cue period and 

throughout a visuospatial trial, especially at the end of the delay period as the monkey 

anticipated decoding working memory content. It was thought that this high frequency 

activity may gate working memory content by activating or suppressing spiking in 

encoding and decoding neurons (Lundqvist et al., 2016). Another study which pooled 

spatial and nonspatial tasks found high frequency power peaks in frontal PMd, 8a, 8B, 

SMA/ACC, dlpFC and vlpFC during the cue and delay periods in layers 1-3 (André M. 

Bastos et al., 2018). Furthermore, most of the delay period activity was found in the high 

frequency band in layers 1-3. The researchers suggested that this superficial high 

frequency band encoded stimulus information during the delay. As stated earlier, the deep 

low band may regulate this superficial high band. In frontal lpFC and FEF and parietal 

LIP, high frequency power in the LFP increased during cue presentation with 

contralateral visuospatial stimulus load (Kornblith et al., 2016). Recall, the mid band 

power in the same areas decreased during this epoch. This led the researchers to propose 

that the mid frequency activity observed during the delay may contribute to top-down 

processing and higher frequency activity observed during the cue may promote bottom-

up sensory processing. 

As reported in the spatial and non-spatial tasks, the high frequency network observed 

in frontal and parietal LFP power supports visuospatial working memory as well. Most 

studies above observed the high frequency power during the cue or delay periods of the 
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task, likely originating in superficial laminar layers of the frontal cortex. It would be 

helpful if future studies analyzed the direction of information transfer to discover whether 

a primarily top-down or bottom-up role emerges for the network. 
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Table 1.3. Summary of all visuospatial studies on nonhuman primates 
The first two rows summarize spectral characteristics reported as power and synchrony found within frontal and parietal regions at different points throughout the 
visuospatial working memory trials. The third row summarizes the synchrony reported by a study between frontal and parietal regions during a visuospatial 
working memory task. Low band results are in purple, mid band is in blue and high band is in green. 
 

 Visuospatial 
Frontal  In FEF (8Ad & 8Av) and lPFC (46d/v, 9/46d/v, 45), LFP high band (45-100Hz) burst rate increased during cue period and throughout trial, esp at end of 

delay in anticipation of decoding WM content (Lundqvist et al., 2016) 

 LFP mid band (20-35Hz) burst rate increased during delay period, esp early and mid and decreased during cue and late delay 
o High band bursts may gate/protect WM content by activating/suppressing spiking in encoding/decoding neurons (Lundqvist et al., 2016) 

 In frontal PMd, 8a, 8B, SMA/ACC, dlPFC and vlPFC, LFP high band (50-250Hz) power peaks found in power from -200 – 500ms post stimulus 
(during delay) in superficial layers 1-3 and low band (4-22Hz) peaks in deep layers (5-6) (André M. Bastos et al., 2018) 
o Delay period activity largely in superficial layers (André M. Bastos et al., 2018) 

 Superficial high band encoded stimulus information during delay (André M. Bastos et al., 2018) 
o Deep low band phase modulates superficial high band 

 Suggests deep may regulate superficial high band to maintain contents of WM (André M. Bastos et al., 2018) 
 In lPFC and FEF, during stimulus presentation, LFP power in high band (50-100Hz) increased and mid band (8-50Hz) decreased with contralateral 

visuospatial stimulus load (Kornblith et al., 2016) 
 In lPFC and FEF, during delay period, LFP power in mid band (15-50Hz) increased with contralateral visuospatial stimulus load (Kornblith et al., 2016) 
 Within lPFC, during delay period, synchrony in mid band (15-50Hz) decreased with contralateral visuospatial stimulus load (Kornblith et al., 2016) 
 In vlpFC, during delay period, LFP mid band (20-35Hz) power increased in 1 and 2-items trials.  

o Also, on stimulus presentation and at beginning of delay period, increased low band (2-7Hz) power at electrodes with spatially selective neurons 
relative to nonspatial channels  

o Suggests a mechanism whereby PFC may maintain color information in posterior sensory cortex (Lara & Wallis, 2014) 
Parietal  In LIP, during stimulus presentation, LFP power in high band (50-100Hz) increased and mid band (8-50Hz) decreased with contralateral visuospatial 

stimulus load (Kornblith et al., 2016) 
 In LIP, during delay, LFP power in mid band (15-50Hz) increased with contralateral visuospatial stimulus load (Kornblith et al., 2016) 

Frontoparietal  In FEF<->LIP and lPFC<->LIP, during stimulus presentation, synchrony in mid band (16-30Hz) increased with contralateral visuospatial stimulus load 
(Kornblith et al., 2016) 
o Support the view that mid band oscillations may contribute to top-down processing and high band oscillations (observed during cue presentation) 

to bottom-up sensory processing (Kornblith et al., 2016) 
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1.10 Conclusion 

Generally, low, mid, and high frequency bands of activity support spatial, non-

spatial and visuospatial working memory in a similar manner (Table 1.2 and Table 1.3). 

The low frequency network within frontal and parietal regions emerges in the LFP power 

in support of both spatial and non-spatial tasks. The frontal components appear to 

originate in the deep layers of cortex (André M. Bastos et al., 2018). It also serves as a 

channel for frontal cortex to send signals to parietal to complete either non-spatial or 

spatial tasks.  

The low frequency network’s role may be to sustain attention and target selected 

stimuli. Studies have shown low frequency components serve as the basis for the 

environmental sampling which constitutes visual attention (Fiebelkorn et al., 2018; 

Helfrich et al., 2018). Furthermore, the low frequency band enables stimulus selection 

during the cue period either by signal enhancement or suppression of competing stimuli 

(Foster & Awh, 2019). A sustained internal attention to the targeted stimulus is essential 

for the completion of both spatial and non-spatial working memory tasks.   

Mid band activity was observed in a variety of roles in support of spatial, non-

spatial and visuospatial working memory. Within frontal and parietal regions, the LFP 

power was differentially modulated between spatial and non-spatial tasks during the 

delay period. However, in a visuospatial task, it was modulated throughout the entire 

trial. Additionally, the mid band serves as a channel for feedforward parieto-frontal 

activity supporting non-spatial working memory, while it supports spatial working 

memory through both feedforward and feedback processes between frontal and parietal 

cortices. Finally, like the power, LFP synchrony within frontal and across frontal and 
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parietal regions modulates through the entire trial in support of visuospatial working 

memory. 

The mid band network may act as a filter, protecting working memory content from 

degradation from competing stimuli over time (Engel & Fries, 2010). Spatial category 

maintenance (Antzoulatos & Miller, 2016) and non-spatial object encoding (Salazar et 

al., 2012) provide ways in which the mid band maintains working memory content over 

time in order to complete a task. It is critical that the monkey can maintain a spatial, non-

spatial or visuospatial working memory representation for successful task performance. 

The mid band may fulfill this role in a task-dependent manner utilizing synchrony, 

feedback, and feedforward processing as necessary in order to protect and filter relevant 

working memory content. 

The high frequency band within frontal and parietal regions supported spatial, non-

spatial and visuospatial working memory tasks in a largely similar fashion. However, 

evidence is lacking for a role for the high frequency band in linking frontal and parietal 

regions in support of these tasks. The high frequency network emerged during the delay 

of spatial, non-spatial and visuospatial tasks in the LFP power. Additionally, it was 

observed during the cue period of a visuospatial task and arises from the superficial 

layers of frontal cortex. 

The high frequency band may be responsible for transferring working memory 

information within the frontal and parietal areas (André M. Bastos et al., 2015). It was 

observed in the coherence of a bottom-up task where parietal neurons exhibited rule-

selectivity prior to frontal neurons (Buschman & Miller, 2007b). It also emerged in the 

LFP power of electrodes with bottom-up task-relevant information about stimulus 
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location (Kornblith et al., 2016). Transferring working memory content using the high 

band within the PFC, visual sensory and association areas is essential for the completion 

of any visual non-spatial, spatial, or visuospatial working memory task. 

 In summary, each band has a distinct role which can be illustrated with a spectral 

model of monkey visual working memory (Figure 1.4). The low band sustains broad 

attention by selecting relevant content through long-range communication between 

frontal and parietal cortices. Furthermore, the low frequency network manifests in the 

power locally within frontal and parietal regions.  The mid band protects and categorizes 

content in working memory through additional long-range frontoparietal interactions. Its 

network is also expressed in the power within frontal and parietal regions. The high band 

transfers working memory content within local regions for subsequent action. Thus, the 

bands act in a distributed, coordinated, and concurrent manner with specialized functions. 
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Figure 1.4. Spectral Model of Visual Working Memory in the Monkey. 
A. Attentional selection. The monkey initiates a working memory task by selecting among competing 
stimuli using the low frequency band (purple). B. Maintenance of working memory content. The stimulus 
is maintained over a delay, protected from noise and distracting stimuli by the mid frequency band (blue). 
C. Frontoparietal transfer of working memory information. The low and mid bands enable long-range 
communication between frontal and parietal regions in support of the task. D & E. Local synchrony and 
power in frontal and parietal regions, respectively. Within each region (rectangles), the circles represent 
nodes and the lines connecting them represent edges in a hypothetical network. The high frequency band 
(green) enables transfer of the working memory content between local brain areas (circles). Differential 
power in low and mid bands within frontal and parietal regions also support the task. These bands function 
and interact in this manner throughout the trial in support of visual non-spatial, spatial, and visuospatial 
working memory. 
 

The spectral model supports the idea that the central executive emerges as a result 

of simultaneous processors in the frontal and parietal regions (Goldman-Rakic, 1996a). It 
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serves as a mechanistic model, defining how each frontal and parietal domain-specific 

processor functions. It extends the theory by explaining how the regions could transfer 

information over such long distances and for what purpose. Specifically, information 

theory has established that effective information transfer over long distances is achieved 

at greater fidelity with lower frequencies. Joining these two areas to enable both the 

selection and protection of visual stimulus information is crucial for visuospatial working 

memory performance. The model also poses more questions concerning the nature of the 

interaction between the bands. How do they coordinate to ensure temporally effective 

activation? Does one band emerge as controller over another? How do these bands 

malfunction in pathologies? All these questions remain to be explored through further 

experimentation. 

To expand upon the question concerning temporal coordination, it is likely the 

bands act in concert with one another, facilitating the complex interactions necessary to 

complete a task. It has already been proposed that the mid band regulates the high band, 

utilizing it to load in the information content of working memory and clearing it out when 

finished (Lundqvist et al., 2018). Correspondingly, the low band may enable the original 

content selection, which is subsequently transferred via the high band, under the direction 

of the mid band. With such dependence between bands, any perturbation during the trial 

could either have deleterious consequences or serve to enhance performance, subject to 

the timing and nature of the disruption. In fact, it is well-established that timely low 

frequency stimulation improves visual working memory performance in humans (Hsueh 

et al., 2016; Polanía et al., 2012; Reinhart & Nguyen, 2019; Reis et al., 2016). Efforts to 
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better understand the coordination amongst these bands would yield a more complete 

mechanistic understanding of visuospatial working memory. 

In conclusion, the low, mid, and high bands dynamically organize in support of 

spatial, non-spatial and visuospatial working memory tasks. A new spectral model 

detailing their respective roles was proposed. Opportunities for future exploration include 

the temporal coordination between bands and how their malfunction contributes to 

pathologies. Establishing a detailed understanding of the spectral components underlying 

visuospatial working memory is important in proposing treatments for memory disorders 

and shedding light on related aspects of cognition. 
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2 ORGANIZATION OF AREAL CONNECTIVITY IN THE MONKEY 

FRONTOPARIETAL NETWORK

2.1 Introduction 

The mammalian brain engages cortical neural networks during behavior (Bressler 

& Menon, 2010; Buzsáki & Draguhn, 2004). The networks are composed of brain areas, 

or nodes, connected via axonal projections, or edges (Newman, 2018; Sporns et al., 

2004). This structural organization of the network permits a set of functional interactions 

observed in neural signals recorded during behavior (Z. Wang et al., 2015). 

A prominent functional interaction observed in neural signals is that of 

synchronous activity (Varela et al., 2001). Recent studies have explored the structure-

function relationship as it relates to synchrony through theoretical computational 

modeling. Vicente, Gollo, Mirasso, Fischer, & Pipa (2008) established that an apex node 

reciprocally connected to two unconnected nodes could foster zero-lag synchrony via 

dynamical relaying between the two unconnected nodes despite axonal conduction 

delays. This provided a topological mechanism for previously published findings from 

multicellular electrophysiological recordings which found distributed synchronous 

discharge in different structures of the cortex, hippocampus and thalamus (Contreras et 

al., 1996; Traub et al., 1996). Gollo, Mirasso, Sporns, & Breakspear (2014) extended this 

line of work by showing that a just a single resonance pair, two reciprocally connected 

nodes, could foster zero-lag synchrony in 3-node motifs. Further, they showed that the 

dynamical relay M9 motif, which has two resonance pairs, was optimally structured to 
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provide both zero and non-zero phase lag synchrony. Finally, they found that the 

synchrony initiated locally with a resonance pair could propagate through the entire 

network, thereby impacting global network dynamics. These studies provide candidate 

topological mechanisms for the neural synchrony that has been reported to support 

cognitive functioning. 

It is thought that an impaired structure-function relationship results in, or 

contributes to, various cognitive impairments. This phenomenon has been explored in 

aging, schizophrenia and autism (Anderson et al., 2011; Ben Bashat et al., 2007; Fornito 

et al., 2012; Nakagawa et al., 2013; Persson et al., 2006). A better understanding of the 

connectivity patterns that arise in mammals without mental health disorders can allow for 

comparison with the patterns which characterize impairments observed in disorders 

within the context of connectomics (Polanía et al., 2012; Reinhart & Nguyen, 2019). 

Cognitive processing can occur through neural interactions both within and 

between regions of the cortex, forming large-scale cortical networks (Bressler & Menon, 

2010; Mesulam, 1990; Mishkin & Ungerleider, 1982). The frontoparietal network (FPN) 

is one-such large-scale network comprised of sub-networks characterized by functional 

oscillatory dynamics that support aspects of cognition such as attention, cognitive control 

and working memory in both humans and non-human primates (Corbetta, 1998; 

Fiebelkorn & Kastner, 2019; Lundqvist et al., 2016; Marek & Dosenbach, 2018; Salazar 

et al., 2012; Zanto & Gazzaley, 2013). These dynamics exhibit unique spectral power and 

near-zero (König et al., 1995; Singer, 1999; Singer & Gray, 1995) and non-zero (Andre 

M. Bastos et al., 2015) phase-lag synchrony properties (Antzoulatos & Miller, 2016; 

Fries et al., 1997, 2008; Jacob et al., 2018; Kornblith et al., 2016; Salazar et al., 2012). 
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However, it is not understood how the unique structure of the FPN enables these 

properties to occur in the patterns required to support cognitive processing. The 

topological properties of this network remain to be elucidated.  

Here the anatomical connections of the FPN are identified based on collated tract-

tracing studies and examine the ways in which the topology acts as a reliable, integrative 

substrate while contributing to the reported neuronal dynamics which support varied 

cognitive functions. A new association matrix is proposed that uses a more finely detailed 

parcellation scheme than previous studies (Markov et al., 2014) with enough nodes for 

future analyses which require a high level of resolution (Cavada & Goldman-Rakic, 

1989). A graph theoretic topological analysis (Albert & Barabási, 2002; Newman, 2018) 

was conducted to discover connectivity patterns in the 399 connections that make up the 

FPN and how they support cognitive functioning. The FPN is shown to be made up of 

relatively homogeneous connectivity between areas with an apparent lack of hub nodes 

controlling information flow. Further, the FPN utilizes a structural motif known for 

optimally promoting near-zero and non-zero neural synchrony (Gollo et al., 2014). 

Finally, the FPN is discovered to be a small-world network, conferring both functional 

specialization and topological integration. Therefore, the FPN leverages a distributed 

connectivity architecture useful for critical information processing. It is optimally 

structured to support various aspects of cognition through neural synchrony and 

integration into coherent streams which support overall behavior. 
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2.2 Results 

2.2.1 The Frontoparietal Connectome 

To identify the structural connectivity of the FPN, axonal projections between and 

within the frontal and parietal regions of the monkey were collated using the results of 

tract-tracing studies on non-human primates (Methods and Table 5.1) according to the 

parcellation scheme established by Petrides & Pandya (2007) (Figure 2.1).  



 

39 

 

Figure 2.1. Lateral, orbital, and medial views of macaque cortex. 
Areas delineated by architectonic characteristics identified for the prefrontal cortex by Petrides & Pandya 
(1994), the posterior parietal cortex by Pandya & Seltzer (1982), the superior temporal gyrus by Pandya & 
Sanides (1973), the inferotemporal and superior temporal sulcus cortex by Seltzer & Pandya (1978), and 
the posterior parahippocampal gyrus by Rosene & Pandya (1983). The 17 frontal areas and 13 parietal 
areas that make up the frontoparietal network under examination in this study are colored blue and pink, 
respectively. Originally published in Petrides & Pandya (2007), “Efferent Association Pathways from the 
Rostral Prefrontal Cortex in the Macaque Monkey”, Journal of Neuroscience 27(43) Adapted with 
permission from Society for Neuroscience. Copyright 2007 Society for Neuroscience. 
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These connections were assembled into a binary, directed adjacency matrix 

comprised of 30 nodes, 17 frontal and 13 parietal (Figure 2.2). 

 

Figure 2.2. Binary, directed adjacency matrix describing the connectivity of the frontoparietal monkey 
network. 
The rows of the matrix represent source nodes, and the columns represent projection target nodes. All 
nodes represent architectonic areas from the Petrides & Pandya (2007) parcellation scheme. Connections 
are indicated with a black square. White squares represent connections that were not reported in the 
collated studies. Grey squares on the diagonal represent within-area connections and are not considered in 
the graph analysis. The 17 frontal areas are in blue, while the 13 parietal areas are in pink. 
 

The adjacency matrix can be used to visualize network topology as a graph to better 

understand connectivity patterns (Figure 2.3). Here, nodes are sized according to their 

total degree, with bigger nodes representing areas with a greater number of incoming and 

outgoing connections than smaller nodes. Apart from a few parietal areas and one frontal, 

most of the areas in the FPN are of a similar size, representing similar total connectivity. 

The strength of connections does not factor into this calculation because the adjacency 

matrix is binary. 
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Figure 2.3. A graph representation of the frontoparietal network generated from the adjacency matrix. 
Frontal nodes are colored in blue and parietal in pink. The 399 directed edges between nodes represent 
projections between sources and targets. Node size is determined by total degrees, which is the sum of in-
degree and out-degree connectivity. Bigger nodes represent a greater total degree than smaller nodes. The 
spatial distribution of the nodes is a function of the ForceAtlas layout in Gephi, a network visualization and 
analysis open-source software tool (Methods) The layout controls clustering and dispersion of nodes via 
attraction and repulsion strength parameter values (Cherven, 2015). Most nodes are of a similar size, 
representing relatively homogeneous connectivity. 
 
2.2.2 Graph Theoretic Analysis 

Degree distributions convey information about how connectivity is allocated 

across the network (Zalesky et al., 2016). The FPN’s in and out degree distributions can 

be characterized as either single-scale, scale-free or broad-scale. Single-scale 

distributions are highly unlikely to contain hubs, while scale-free and broad-scale 

distributions have a high likelihood of hub nodes (Barabási & Albert, 1999).  

The topology of some brain networks (Eguíluz et al., 2005; van den Heuvel et al., 

2008; Varshney et al., 2011) present with hub nodes which serve to coordinate the 

majority of information transfer in the network (Newman, 2018). These scale-free degree 

distributions are fit by a power law (Barabási & Albert, 1999) with no node exhibiting 
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connectivity typical of other nodes. However, other studies have reported networks of the 

brain which do not follow power laws (Humphries et al., 2006; Modha & Singh, 2010; 

Sporns & Zwi, 2004).  

Both tails of the degree distributions of the FPN were tested according to the 

Clauset, Shalizi, & Newman (2009) recipe to determine whether they were fit by a power 

law (Methods) (Clauset et al., 2009). The following parameter values were calculated for 

the in-degree distribution fit: a = 3.375, xmin = 12 and L = -62.197 and for the out-degree 

distribution fit: a = 3.2521, xmin = 10 and L = -70.3376. 

The degree distributions were visualized by plotting their complementary cumulative 

distribution functions (cCDF) on logarithmic axes (Zalesky et al., 2016) with their 

estimated power-law fits (Clauset et al., 2009) (Figures 2.4a & b). The cCDF conveys the 

probability of finding a node with degree larger than some random value, x. Scale-free 

networks will approximate a straight line in these plots (Amaral et al., 2000).  

 

Figure 2.4. Complementary cumulative distribution function (cCDF) of the in-degree distribution (A & C) 
and out-degree distribution (B & D) for the FPN plotted on a logarithmic scale. 
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Tail fits calculated according to the recipe proposed by Clauset et al., (2009) are shown in A & B and fits 
over the entire distribution are shown in C & D. Black circles represent the empirical distribution, the red 
dotted line represents a power-law fit, blue dotted line represents an exponential fit and the purple dotted 
line represents a Gaussian fit (C & D only). A. The tail fit begins from a lower bound estimate of x=12 
(xmin). However, it is not likely that the in-degree distribution follows a power law (D = 0.2097, p = 
0.0158)(Clauset et al., 2009). Rather, a log-likelihood ratio shows an exponential distribution is a better fit 
to the tail of the distribution (R = -3.386, p = 0.00071)(Alstott et al., 2014). B. The tail fit begins from a 
lower bound estimate of x=10 (xmin). The goodness-of-fit test does not rule out the possibility that the out-
degree data may have been drawn from a power-law distribution (D = 0.1446, p = 0.1728)(Clauset et al., 
2009). However, a log-likelihood ratio shows that an exponential fit may be just as good, or bad (R = -
1.676, p = 0.094)(Alstott et al., 2014). C. A Gaussian model (adj R2 = 0.9740), fits the in-degree empirical 
data better than an exponential (adj R2 = 0.8293) or power law (adj R2 = 0.5660). D. A Gaussian model (adj 
R2 = 0.9909), fits the out-degree empirical data better than an exponential (adj R2 = 0.8981) or power law 
(adj R2 = 0.0.6988). 
 

Next, the Kolmogorov-Smirnov statistic was used to test the goodness-of-fit 

between the empirical data and that drawn from a power-law distribution (Clauset et al., 

2009). The in-degree data is not likely to have been drawn from a power-law distribution 

(D = 0.2097, p = 0.0158). However, a power-law distribution cannot be ruled out for the 

out-degree data (D = 0.1446, p = 0.1728). The data needs to be compared with other 

distributions to determine whether they match the data as well, or better. 

Finally, different distributions were tested to see whether they were better fits to 

the tail of each distribution (Alstott et al., 2014). The log-likelihood ratio was calculated 

between the two candidate distributions. It was positive if the data was more likely in the 

first distribution and negative if more likely in the second distribution. Using this ratio, 

the exponential distribution was found to fit the tail of the in-degree data significantly 

better than a power-law distribution (R = -3.386, p = 0.00071). However, this does not 

mean the exponential distribution is an objectively good fit for the data. The ratio showed 

no significant difference between a power-law fit of the tail of the in-degree data and the 

following distributions: log-normal (R = -1.6299, p = 0.103), log-normal positive (R = -

4.40, p = 0.1031) and truncated power-law (R = 3.693, p = 0.082). Despite the support for 

a power-law fit of the tail of the out-degree distribution based on the goodness-of-fit test 
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in the previous step, the ratio showed the following distributions were no better or worse: 

exponential (R = -1.676, p = 0.094), log-normal (R = -0.978, p = 0.328), log-normal 

positive (R = -1.798, p = 0.328) and truncated power-law (R = -1.918, p = 0.083). It may 

be that all these distributions describe the data equally poorly. 

Due to the poor fits to the candidate distributions using  the tail-fitting recipe 

proposed by Clauset, Shalizi, & Newman (2009), the entire empirical in-degree (Figure 

2.4c) and out-degree (Figure 2.4d) distribution data was also fit to power, exponential and 

gaussian models (Methods). These distributions qualify as potential fits based on their 

success in real-world connection distribution data (Amaral et al., 2000; Humphries et al., 

2006). The in-degree data was most consistent with a Gaussian distribution (adj R2 = 

0.9740), in contrast to the exponential (adj R2 = 0.8293) and power law (adj R2 = 0.5660) 

distributions. The out-degree data was also most consistent with a Gaussian distribution 

(adj R2 = 0.9909), in contrast to the exponential (adj R2 = 0.8981) and power law (adj R2 

= 0.6988) distributions. 

2.2.3 Motifs  

Most studies analyze subgraphs of the larger monkey FPN due to technological 

limitations (Antzoulatos & Miller, 2016; Jacob & Daniel, 2018; Kornblith et al., 2016; 

Salazar et al., 2012). Some subgraphs may carry more importance in establishing the 

topological organization of the larger FPN than others. These subgraphs are known as 

structural motifs that serve as essential building blocks for the larger system (Milo, 2002; 

Sporns & Kötter, 2004). They enable a variety of transient connection dynamics known 

as functional motifs (Zalesky et al., 2016). Motifs of size 3 (M=3) are typically studied 

(Sporns & Kötter, 2004). They are the most computationally tractable. The studies of the 
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monkey FPN usually have at least 3 recording sites spanning the network. Additionally, 

the modeling work detailing the structure-function relationship through neural synchrony 

was based on size 3 motifs (Gollo et al., 2014; Vicente et al., 2008). Accordingly, the 

FPN was analyzed to determine which structural motifs of size 3 were overrepresented in 

comparison with benchmark null networks. Any overrepresented motifs serve as the 

anatomical building block(s) of the network and give rise to specific functional 

interactions which can be observed in the literature. Further, regional areas that 

participate in these essential structural motifs can be important recording targets in 

electrophysiological studies that aim to describe cognitive behavior supported by the 

FPN. 

To discover the anatomical building blocks used to create the FPN, structural 

motifs comprised of 3 areas or nodes were analyzed to determine which occurred with a 

significantly greater frequency than would be expected by chance. There are 13 possible 

motif classes of size three (Sporns & Kötter, 2004).  

As reported in other studies of cortical connectivity (Harriger et al., 2012; Honey et 

al., 2007; Sporns & Kötter, 2004), motif class ID 9 (M9) was found to be significantly 

overrepresented (p = 0, z = 12.0322 random networks, p = 0.0489, z = 1.6121 lattice 

networks) (Table 5.2) in the empirical FPN (Figure 2.5). It forms an open triangle where 

two nodes are bidirectionally connected to a third apical node but are not connected to 

each other. The M9 motif is known as the dynamical relaying motif due to the unique 

functional capabilities it provides (Gollo et al., 2011; Vicente et al., 2008). The M13 

motif also appeared to be overrepresented, but not to a statistically significant extent (p = 

0, z = 19.1224 random networks, p = 0.0538, z = 1.6108 lattice networks) (Table 5.2). 
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Figure 2.5. Comparison of the structural motif frequency spectrum for the empirical FPN with random and 
lattice benchmark networks. 
Motif class ID 9 was overrepresented in comparison to 100,000 random benchmark networks (p = 0, z = 
12.032) and lattice networks (p = 0.049, z = 1.612). This dynamical relaying motif serves as a fundamental 
anatomical building block of the network, conferring a repertoire of functional dynamics such as neural 
synchrony that can be used to support various aspects of cognition. Empirical structural motifs counts are in 
green. Motif counts for random networks are in dark grey and the counts for lattice networks are in light 
grey. 
 
2.2.4 Small world 

Networks demonstrating topology simultaneously consistent with a small 

characteristic path length and a high degree of clustering are called “small-world” 

networks (Watts & Strogatz, 1998). These networks cluster nodes into modules thereby 

minimizing wiring costs and efficiently integrating the topology. The result is an optimal 

information processing paradigm marked by fast transmission speeds and successful 

integration. There have been reports of many networks in neuroscience qualifying as 

small-world, such as the neural network of C. elegans, the brain-stem reticular formation 

and the mouse connectome (Humphries et al., 2006; Rubinov et al., 2015).  
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Two indicators of “small-worldness” were calculated for the FPN using 100,000 null 

networks. First, Humphries’ index, σ (Methods), was estimated as 1.1429. A value 

greater than 1 is considered an indication that the network is small-world. Second, 

Telesford’s alternative index, ω, was estimated as 0.0297. A value close to 0, specifically 

one that falls within the range of -0.5 ≤ ω ≤ 0.5, is considered an indication that the 

network is small-world. Negative values indicate a graph with more lattice-like 

characteristics and positive values indicate more random characteristics. Both metrics 

provide strong support for classifying the FPN as a small-world network with Telesford’s 

index showing a very slight skew towards random characteristics. 

2.3 Discussion 

The tail of the in-degree distribution of the FPN does not appear to follow a power-

law (Clauset et al., 2009), which can only occur in the presence of hub nodes. 

Additionally, because it is more likely to have been drawn from an exponential 

distribution, it is not considered heavy-tailed (Alstott et al., 2014; Asmussen, 2003). 

Heavy tailed distributions have many outliers. Exponential distributions are not likely to 

have outliers. Exponential decay in the tail of the degree distribution of neural networks 

has also been reported elsewhere (Amaral et al., 2000; Modha & Singh, 2010). It is 

important to keep in mind that this result only states the tail of the data is better fit by an 

exponential distribution than a power law. It does not imply that the exponential 

distribution is an objectively good fit. 

The tail of the out-degree distribution of the FPN had moderate support for a power 

law fit. However, it was not significantly different from an exponential, log-normal, log-

normal positive or truncated power-law fit either. These distributions may all be bad fits. 
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At minimum, the results support the view that neither degree distribution follows a power 

law.  

The entire in and out degree distributions yielded strong results for both a Gaussian 

and exponential fit (Mathworks®, 2019). The Gaussian fit may be stronger because it 

uses an extra parameter. 

Notably, with both procedures yielding either Gaussian or exponential fits for the 

data, it is highly likely both distributions have a single, characteristic scale (Amaral et al., 

2000). Single-scale systems have a very low probability of large deviations from a 

characteristic modal value, resulting in a relatively homogenous distribution of 

connectivity across nodes (Zalesky et al., 2016). 

Thus, the FPN is organized in such a way that the total number of incoming and 

outgoing connections to and from each of its nodes is relatively consistent across areas. 

There are only a small number of areas that greatly differ in the number of their total 

incoming and outgoing connections. Strategically, this could mean that information is 

diffused throughout the network, enabling concurrent or redundant processing. This 

creates a reliable substrate over which neural representations can be formed, maintained, 

and communicated (Moreno et al., 2004).  

Conversely, scale-free networks with hub nodes contribute to a heterogenous 

connectivity profile. Simulations have shown that scale-free networks are more resilient 

against random node failures than single-scale networks (Albert et al., 2000; Albert & 

Barabási, 2002). This is because there are a much greater number of low-degree nodes in 

the scale-free networks leading to a greater likelihood that the random failures occur in 



 

49 

these nodes. Therefore, there is little to no impact on overall network functionality. A 

disease that successfully impairs cognitive function supported by the single-scale FPN 

may owe its effectiveness to a random attack strategy. 

The simulations also show that scale-free networks are much more vulnerable to 

targeted attacks on their highly connected hub nodes than the single-scale networks. The 

hub nodes represent single points of failure in the network. It is possible that serious 

diseases have evolved to target hub nodes, resulting in important cell death. This 

behavior may be what enables rapid disease progression in some patients. In a single-

scale topology, if disease or other form of neural insult negatively impacts a single area, 

other similarly connected areas can pick up the slack, salvaging the integrity of the 

network and thereby supporting appropriate function.  

The M9 dynamical relaying motif was statistically overrepresented in the FPN, 

establishing its importance as an anatomical building block of the network. Previous 

studies have established that its structure is ideal for providing both zero-lag synchrony 

between its driven nodes and non-zero phase synchrony between its relay and either 

driven node (Gollo et al., 2014; Vicente et al., 2008). 

The synchrony initiated by M9’s resonance pair can extend to nodes upwards of 

four steps removed with very little synchrony decay (Gollo et al., 2014). Therefore, it 

may serve as the mechanism for zero and non-zero lag synchrony throughout the entire 

FPN. Crucially, this establishes the M9 motif as a proposed generative topology which 

likely gives rise to the synchrony previously reported in subgraphs of the FPN supporting 

attention (Fiebelkorn & Kastner, 2019), categorization (Antzoulatos & Miller, 2016), 
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working memory (Jacob et al., 2018; Salazar et al., 2012) and cognitive control (Stokes et 

al., 2017). 

Finally, of the 3-node motifs with resonance pairs, the M9 class was observed to be 

the most robust to large conduction delays and delay mismatches (Gollo et al., 2014), 

which are a defining feature of the long-range cortical FPN. 

Overall, the M9 motif is a maximally versatile building block for the FPN, 

conferring global near-zero and non-zero synchrony, enabling robust streams of 

communication and binding which support multiple aspects of cognition. 

The FPN’s small-world architecture provides an economic (Bassett & Bullmore, 

2017) substrate for the brain to process information while minimizing wiring cost. 

Information can flow efficiently due to a low global path length and integrate in 

functionally specialized modules due to high clustering. This serves as an elegant 

solution to the problem of integrating function while allowing for concurrent 

specialization. The simultaneous specialization and integration of function has been 

observed empirically in studies of cognition in both humans and non-human primates 

(Fiebelkorn & Kastner, 2019; Watson & Chatterjee, 2012).  

Notably, despite a relatively homogeneous degree distribution with no clear 

evidence of hub nodes, there was enough dispersed integration to qualify the network as 

small world. The Telesford index did identify slightly random characteristics for the 

network, which supports the degree distribution findings. Ultimately, this suggests that 

small-world networks do not need to have nodes with much larger degrees relative to the 
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rest of the network. If the nodes all have a sufficiently large relative number of 

connections, this provides the necessary integration to qualify as small-world. 

Finally, small-world characteristics have been shown to better support oscillatory 

synchronization in contrast to random or lattice networks(Lago-Fernández et al., 2000; 

Masuda & Aihara, 2004). Thus, in addition to the synchrony advantage afforded by the 

over-represented M9 motif, the small-world qualification permits the FPN to optimally 

conduct neural synchrony in support of cognition. 

In conclusion, the monkey FPN is uniquely anatomically constructed to support 

various important cognitive functions. Its fundamental building block is a dynamical 

relaying motif which confers the optimal 3-node connectivity profile for the synchrony 

necessary to support types of cognition like working memory and attention. Its small-

world architecture provides the integration and specialization of function that complex 

cognitive tasks require. Finally, the degree of connectivity in the network is dispersed, 

establishing a reliable substrate for engaging in complex cognitive tasks. 

Understanding the structural mechanism which gives rise to the functions a 

network is known to support provides a pathway to examine various neurological 

disorders. In diseases such as schizophrenia, Parkinson’s disease or Alzheimer’s disease, 

aspects of cognition that the FPN is known to support such as working memory and 

attention are impaired. Using the results of this study, scientists can examine the ways in 

which the organization of anatomical connectivity between areas in the FPN are different 

in pathological animal models or patients suffering from these disorders. Treatments 

could be devised that impact the pathological network in order to bring it closer to 
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exhibiting the properties that networks in healthy individuals show (Bassett & Sporns, 

2017).  

Additionally, engineers interested in exploring the mechanisms of cognition at a 

network level can use these results to explore their physical instantiation in machines. It 

would be interesting to see how the FPN may be realized in a neuromorphic circuit which 

emphasizes homogeneous connectivity in a small-world architecture using a dynamical 

relaying motif as its core building block (Schuman et al., 2017). 

Finally, future empirical studies may want to use the FPN connectivity matrix 

presented here to identify subgraph regions of interest for recording during cognitive 

tasks. For instance, a research team interested in studying working memory neural 

dynamics may want to target areas that form the M9 motif so that the origination of any 

near-zero or non-zero phase lag synchrony contributing to working memory function is 

more likely to be identified. 

The author hopes that in the future this level of graph theoretic analysis will be 

applied to other large-scale cortical networks supporting complex functions. 

2.4 Methods  

2.4.1 Parcellation Scheme 

Non-human primate parcellation schemes are numerous and varied. Some of the 

ways they are derived include establishing boundaries based on cytoarchitecture, 

myeloarchitecture, or function (Bonin & Bailey, 1947; Brodmann, 1909; Economo & 

Koskinas, 1925; Felleman & Van Essen, 1991; Markov et al., 2014; D. N. Pandya & 

Yeterian, 1985; Vogt & Vogt, 1919; Walker, 1940). This study uses the parcellation 
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scheme identified in Petrides & Pandya (2007) (Figure 2.1). In this scheme, there are 

sixteen prefrontal areas: 10, 9, 32, 14, 25, 8B, 8Ad, 9/46d, 46d, 46v, 9/46v, 8Av, 45, 

47/12, 13, 11, one frontal area 6DR and thirteen parietal areas: PE, PEci, PEc, PEa, PF, 

PFop, PFG, IPd, POa, PG, PGm, PGop, Opt. The prefrontal areas were delineated based 

on architectonic characteristics identified by Petrides & Pandya (1994) and the posterior 

parietal areas based on Pandya & Seltzer (1982). Area 6DR was included for its 

hypothesized involvement in the FPN (Salazar et al., 2012). 

This scheme was chosen because it allows for a level of granularity sufficient for 

exploring possible functional implications (Goldman-Rakic, 2011; M. Petrides, 2005) and 

it provides enough areas (30) for a graph theoretic analysis (Bullmore & Sporns, 2009). 

For instance, analyses such as the Clauset, Shalizi, & Newman (2009) recipe for 

analyzing power-law distributed data require enough nodes to ensure the accuracy of the 

technique(Alstott et al., 2014). Each delineated area is considered a node. The 

connections between them are called edges. 

2.4.2 Connections 

Published tract-tracing studies were collated, and results were interpreted 

according to the Petrides & Pandya (2007) parcellation scheme. The studies utilized both 

retrograde and anterograde tracing techniques. Retrograde tracers injected into an area 

migrate back along axons to the neuronal somas they originate from (Lavail & Lavail, 

1972). Anterograde tracers injected into an area are transported away from the soma to 

their site of termination (Cowan et al., 1972). The resulting labeled neurons or boutons 

can then be seen under a microscope allowing for statements to be made about direct 

axonal projections between areas. 
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If a tracer clearly had uptake into adjacent areas, its results were not considered in 

the analysis. Tracer injection sites were defined according to the author’s interpretation of 

a mapping to the selected parcellation scheme. Many connections were present in 

multiple studies. However, others were only reported in a single study due to the small 

number of tract-tracing investigations on particular areas of cortex represented in the 

parcellation scheme (Table 5.1).  

It is important to keep in mind that most studies involved Old World macaque 

monkeys (Macaca fascicularis, Macaca mulatta, or Macaca nemestrina) (Cawthon, 

2005c, 2005b, 2006a), but a small number also involved New World monkeys such as 

squirrel monkeys (Saimiri sciureus) (Cawthon, 2006b) or owl monkeys (Aotus 

trivirgatus) (Cawthon, 2005a). Both kinds are of the infraorder Simiiformes. Furthermore, 

the connections were collated from both hemispheres, across sexes and age groups. The 

intention was to provide a broad overview of the connections comprising the non-human 

primate frontoparietal network irrespective of variables such as non-human primate 

species, sex, age, or hemisphere.  

Existing resources for obtaining connectivity information on the FPN were 

analyzed for efficacy. First, the work presented in Markov et al. (2014) served as an 

excellent example of a comprehensive whole-brain network analysis and provided 

valuable connectivity information. However, there were not enough unique areas injected 

to be useful to examine the frontoparietal network, specifically. 

Next,  the Collation of Connectivity data for the Macaque (CoCoMac) database 

was considered for obtaining connectivity information (Bakker et al., 2012; Stephan et 

al., 2001). This database serves as a repository for macaque neural connections reported 
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in the tract-tracing literature. To deal with the problem of inconsistently named areas, 

boundary conflicts and differing resolutions from parcellation schemes chosen by 

researchers, CoCoMac uses a routine that attempts to automatically map connections 

between schemes. This gives CoCoMac the ability to make connection statements which 

apply to specific parcellation schemes. Unfortunately, the accuracy of these statements is 

questionable, making them unreliable for use in analysis. For instance, if a study using a 

parcellation scheme different from that proposed by Petrides & Pandya (2007) reports 

that area 46 projects to area LIP (lateral intraparietal sulcus), CoCoMac won’t be able to 

make a reliable statement about whether the connection should be from 46d, 46v, 9/46d 

or 9/46v to area POa, the area which corresponds to LIP (Medalla & Barbas, 2006). 

Clearly, the original study in this example lacks the specificity necessary to report a 

connection which applies to the selected parcellation scheme. The only solution is to re-

interpret the finding from the original study using the selected parcellation scheme. 

Accordingly, all tract-tracing studies were re-interpreted, as necessary.  

Unfortunately, there is no universally accepted method for defining connection 

strength between areas, despite recent interesting approaches (Markov et al., 2014). The 

studies used in this analysis reported binary or qualitative descriptions of axonal 

connectivity. This results in the unfortunate situation where a dense connection between 

two areas is treated the same as a sparse connection. The binary directed matrix that 

results from this scenario, however, is still more informative than its undirected version, 

which is primarily used in fMRI studies with diffusion tensor imaging. The binary 

directed matrix reports a connection as either existing (with a 1) or not discovered (with a 

0). It is important to note that the absence of a connection does not mean there is no 
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projection between the two areas. Rather, it means that a connection between the areas 

was not reported. 

2.4.3 Graph Visualizations 

The spacing of the nodes in Figure 2.3 is controlled by the ForceAtlas layout in 

Gephi, an open-source network visualization and analysis software tool (Bastian et al., 

2009). Force-directed layouts, like that used in the ForceAtlas layout, quantify levels of 

spatial attraction and repulsion for the nodes based on some measure of pair-wise node 

distance like topological path length, the minimum number of edges between any two 

nodes (Zalesky et al., 2016). These layouts minimize edge crossings, enhance symmetry, 

keep edge lengths uniform, spatially distribute nodes in a uniform manner and correlate 

node position with their topological adjacency. 

2.4.4 Graph Measures 

All graph theoretic analyses were conducted using the publicly available Brain 

Connectivity Toolbox (Rubinov & Sporns, 2010). 

2.4.5 Degree Distribution 

To determine whether the FPN’s degree distributions were scale-free or broad-

scale, an analysis was conducted to test whether its in or out-degree distributions follow a 

power law. The recipe for evaluating the existence of power-law scaling proposed by 

Clauset, Shalizi, & Newman (2009) was followed using the publicly available MATLAB 

and Python (Alstott et al., 2014) scripts. The recipe is to first fit a power-law to the data 

above some lower bound, xmin, using maximum likelihood estimation, then test its 

goodness of fit and finally to compare the power law with alternative distributions using a 

likelihood ratio test. A lower bound is used because it is typical for empirical data to only 
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follow a power law for values above some level of x (Clauset et al., 2009). This results in 

a fit for the tail of the distribution. 

First, the data is fit to a power-law using maximum likelihood estimation using 

the publicly available MATLAB function ‘plfit’.  

The fitting procedure estimates parameter values for Equation 2.1: 

𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑥𝑥)~𝑥𝑥−𝑎𝑎 𝑓𝑓𝑓𝑓𝑑𝑑 𝑥𝑥 ≥  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 

Equation 2.1 Power-law fit 
Where a  is the maximum likelihood estimate of the scaling exponent, xmin is the estimated degree of the 
lower bound of power-law behavior and L is the log-likelihood (equation 3.5 in Clauset et al., 2009) of the 
data x ≥ xmin under the fitted power law. 
 

Next, the goodness of fit between the empirical data and that drawn from a 

power-law distribution is tested using the Kolmogorov-Smirnov statistic in the publicly 

available MATLAB function ‘plpva’. There were 5,000 semiparametric repetitions of the 

fitting procedure. The statistic provides a p-value that allows a determination to be made 

about whether the power-law hypothesis can be ruled out. If p ≤ 0.1, the power law can 

be ruled out 

Finally, the power law fit is compared with alternative distributions using a log-

likelihood ratio test enabled via the Powerlaw Python package (Alstott et al., 2014). The 

distributions’ tails are compared to see which is a better fit to the data. If the log-

likelihood ratio is positive, the data was more likely in the first distribution. If it is 

negative, the data was more likely in the second distribution. The p-value indicating 

directional significance is also provided. 
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Additionally, the entire in and out-degree distribution data were fit to power, 

exponential and gaussian models using MATLAB’s method of nonlinear least squares 

error minimization (Mathworks®, 2019), which minimizes the following: 

𝑆𝑆 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

Equation 2.2 Nonlinear least squares fit 
Where n is the number of empirical data points, yi is the probability of a node’s degree being greater than or 
equal to a random degree (the cCDF), ŷi is the predicted probability value and S is the summed square of 
residuals. 
2.4.6 Null Models 

The FPN was rewired using two different algorithms to generate null distributions 

used in the motif and small world analyses. Each algorithm creates networks at either end 

of the topological spectrum: random and lattice based (Watts & Strogatz, 1998). The first 

algorithm functions by rewiring two random connections involving four nodes to a new 

connection scheme involving the same four nodes ensuring the connections in the new 

scheme do not already exist. If they do exist, the process is abandoned and begun anew 

with two different random connections. The algorithm proceeds in this fashion, 

maintaining the same network size, connection density and in and out-degree 

distributions as the original network, resulting in a random network (Maslov & Sneppen, 

2002). It has been shown that completing the rewiring process at least 10 times the 

number of edges in the network is a long enough time to wait to ensure sufficient mixing 

(Milo et al., 2003). The FPN has 399 edges. So, there were 3,990 iterations used to 

generate each null network. 

The second algorithm functions in much the same way as the first. After rewiring the 

two random connections and ensuring they are novel, it must also be confirmed that they 
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are now closer to the diagonal of the adjacency matrix than they were previously. This 

ensure connections only link nearby nodes. If this is not the case, the process is 

abandoned and begun anew with two different random connections. Just like the first 

algorithm, the network size, connection density and degree distributions are maintained. 

The result is a latticed network (Sporns & Zwi, 2004). 

2.4.7 Motifs 

All 13 classes of structural motifs of size three (Sporns & Kötter, 2004) were 

tested for overrepresentation in the empirical FPN. The number of instances of each motif 

class were counted in the FPN, yielding a motif spectrum. These empirical frequencies 

were compared to 100,000 random and lattice benchmark networks’ motif spectra. P-

values for each motif class were calculated as the fraction of times the frequency count of 

a benchmark network was higher than the count in the empirical FPN. If the p-value was 

less than 0.05 for both the random and lattice benchmark networks, the motif class was 

considered to be significantly overrepresented in the empirical FPN.  

The amount of times each area participated across the 13 classes was quantified in 

the empirical FPN and compared to the frequency observed in the 100,000 random and 

lattice benchmark networks as well. P-values were calculated as the fraction of times the 

frequency count of each area’s participation in motif classes exceeded that observed in 

the empirical FPN. If the p-value was less than 0.05 for both the random and lattice 

benchmark networks, the area was considered to be significantly overrepresented in the 

empirical FPN. 
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2.4.8 Small world 

The small-world topology of a network can be quantified by comparing its observed 

characteristic path length, L, and clustering coefficient, C, with their distributions in null 

networks. 

Average path length measures how efficiently information can be routed in a 

network. For any nodes i and j, the shortest path length, li,j, between them is defined as 

the total number of edges one must traverse in navigating from node i to node j along the 

quickest route in the binary directed graph of the network. This can be computed for each 

node in a network algorithmically (Dijkstra, 1959). Next, each node’s shortest path length 

is averaged to quantify the average path length of the entire network, the characteristic or 

global path length: 

𝐿𝐿 =
1
𝑥𝑥
�𝑙𝑙𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑖𝑖=1

 

Equation 2.3. Characteristic path length of a graph 
 

The clustering coefficient measures a network’s level of integration in terms of 3-

node subgraphs. For any node i, its clustering coefficient is calculated using the following 

ratio: 

𝐶𝐶(𝑥𝑥) =
𝑄𝑄𝑄𝑄𝑄𝑄𝑥𝑥𝑄𝑄𝑥𝑥𝑄𝑄𝑦𝑦 𝑓𝑓𝑓𝑓 𝑐𝑐𝑓𝑓𝑥𝑥𝑥𝑥𝑑𝑑𝑐𝑐𝑄𝑄𝑑𝑑𝑑𝑑 𝑥𝑥𝑓𝑓𝑑𝑑𝑑𝑑 𝑝𝑝𝑄𝑄𝑥𝑥𝑑𝑑𝑝𝑝 𝑄𝑄ℎ𝑄𝑄𝑄𝑄 𝑄𝑄𝑑𝑑𝑑𝑑 𝑐𝑐𝑓𝑓𝑥𝑥𝑥𝑥𝑑𝑑𝑐𝑐𝑄𝑄𝑑𝑑𝑑𝑑 𝑄𝑄𝑓𝑓 𝑥𝑥

𝑄𝑄𝑄𝑄𝑄𝑄𝑥𝑥𝑄𝑄𝑥𝑥𝑄𝑄𝑦𝑦 𝑓𝑓𝑓𝑓 𝑥𝑥𝑓𝑓𝑑𝑑𝑑𝑑 𝑝𝑝𝑄𝑄𝑥𝑥𝑑𝑑𝑝𝑝 𝑄𝑄ℎ𝑄𝑄𝑄𝑄 𝑄𝑄𝑑𝑑𝑑𝑑 𝑐𝑐𝑓𝑓𝑥𝑥𝑥𝑥𝑑𝑑𝑐𝑐𝑄𝑄𝑑𝑑𝑑𝑑 𝑄𝑄𝑓𝑓 𝑥𝑥
 

Equation 2.4. Clustering coefficient ratio 
 

Next, each node’s clustering coefficient is averaged to quantify the clustering of 

the entire network: 



 

61 

𝐶𝐶 =
1
𝑥𝑥
�𝐶𝐶(𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

 

Equation 2.5. Clustering coefficient of entire network 
 

There are two metrics used to quantify the small-worldness of a network: 

Humphries’ index of small-worldness, σ (Humphries et al., 2006) and Telesford’s 

alternative index, ω (Telesford et al., 2011). The calculation of Humphries’ index 

requires the characteristic path length and clustering coefficient be normalized to their 

average values in appropriately randomized null networks. The following normalized 

values are obtained: 

𝛾𝛾 =
𝐶𝐶

𝐶𝐶𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟
 

Equation 2.6. Normalized clustering coefficient 
Where Crand is the average clustering coefficient calculated for an ensemble of appropriately randomized 
null networks. 
 

𝜆𝜆 =
𝐿𝐿

𝐿𝐿𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟
 

Equation 2.7. Normalized characteristic path length 
Where Lrand is the characteristic path length calculated for an ensemble of appropriately randomized null 
networks. 

Next, the normalized values are divided, providing the following index: 

𝜎𝜎 =
𝛾𝛾
𝜆𝜆

 

Equation 2.8. Humphries’ index of small-worldness 
 

From Equation 2.8, if λ ~ 1 (low path length) and γ > 1 (high clustering), then σ > 

1. Values of σ > 1 are typically considered an indicator of a network’s small-world 

organization. 
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The calculation of Telesford’s alternative index stems from the idea that 

appropriately matched lattice networks are better suited to normalize the clustering 

coefficient metric than randomized networks. This is because a lattice network presents 

with maximal clustering, while a random network presents with minimum global path 

length. Hence, Telesford et al. (2011) propose the following index: 

𝜔𝜔 =
𝐿𝐿𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟
𝐿𝐿

−
𝐶𝐶

𝐶𝐶𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙
 

Equation 2.9. Telesford’s alternative index of small-worldness 
Where Clatt and Lrand are the average clustering coefficient and characteristic path length calculated for an 
ensemble of appropriately matched lattice and randomized null networks, respectively. 
 

The index ranges between -1 and 1. A value close to 0 is typically considered an 

indicator of a network’s small-world organization. 
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3 SPECTRAL CHARACTERISTICS OF NON-SPATIAL VISUAL WORKING 

MEMORY IN THE MACAQUE FRONTOPARIETAL NETWORK

3.1 Introduction 

Working memory is thought to be largely controlled by interactions both within 

and between frontal and parietal cortices (Fuster & Alexander, 1971; Goldman-Rakic, 

1995, 2011). Recent attempts have been made to characterize aspects of the spatial 

(Antzoulatos & Miller, 2016; Martínez-Vázquez & Gail, 2018; Pesaran et al., 2002), 

nonspatial (Dotson et al., 2014; Jacob et al., 2018; Lundqvist et al., 2018; Siegel et al., 

2009), and visuospatial (André M. Bastos et al., 2018; Lara & Wallis, 2014; Lundqvist et 

al., 2016) spectral characteristics of the local field potential (LFP) through simultaneous 

recordings from various areas across the monkey frontoparietal network. However, the 

reports are minimal in number, and there is no clear narrative tying together the 

heterogenous functionality of the characteristics. A new effort at forming a spectral 

model of monkey visual working memory has been proposed to address these 

shortcomings, but it remains largely untested (Conklin Chapter 1). In this study, three 

hypotheses generated by the spectral model are tested on previously examined visual 

working memory data (Dotson et al., 2014; Salazar et al., 2012). LFP activity is analyzed 

from simultaneous recordings in frontal and parietal regions during a delayed-response 

oculomotor non-spatial visual working memory task.  

According to studies that went into the creation of the spectral model of visual 

working memory, it is likely that low (1-15Hz), mid (12-35Hz) and high (35Hz+) 
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frequency band LFP activity will be observed both within and between frontal and 

parietal regions. First, frontal and parietal regions should show increased low-band LFP 

power during the delay period (Jacob et al., 2018), likely related to attentional selection 

(Fiebelkorn et al., 2018; Foster & Awh, 2019; Helfrich et al., 2018). Second, the mid-

band LFP power within frontal and parietal regions should decrease during the delay 

period (Jacob et al., 2018; Lundqvist et al., 2018), potentially serving to protect and filter 

task-relevant working memory content, maintaining it over time (Conklin Chapter 1; 

Engel & Fries, 2010). It may also be used to encode objects at different phases (Siegel et 

al., 2009). Indeed, a previous analysis of this dataset found that objects were encoded in 

the mid-band across regions (Salazar et al., 2012). Moreover, the synchrony was 

regulated by activity arising first in posterior regions. This parieto-frontal directed 

connectivity role for the mid band network was supported in later work where it was 

observed during the presentation of stimuli (Jacob et al., 2018). Since the mid-band 

activity between frontoparietal areas has been sufficiently explored on this dataset 

(Dotson et al., 2014; Salazar et al., 2012), it will not be a focus here. Third, high 

frequency band LFP power bursts should be observed within frontal areas near the end of 

the delay period (Lundqvist et al., 2018), possibly enabling the transfer of working 

memory content necessary for completion of the task (André M. Bastos et al., 2015). 

High-band synchrony between frontal and parietal areas should also increase around the 

same time. However, this activity is likely unrelated to working memory processes and 

will not be investigated here (Buschman & Miller, 2007b).  

Time-frequency decomposition was used to enable this analysis. The time-domain 

LFP signal during correct trials was transferred to the time-frequency domain through 
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complex Morlet wavelet convolution. The average frontal and parietal signals from each 

recording session were used to test each hypothesis using three directional single-sample 

t-tests with Bonferroni correction (Methods). Monkeys A and B showed increased low-

band and decreased mid-band dB baseline normalized LFP power across frontal and 

parietal regions during the delay period. No power bursts were observed in the dB 

baseline normalized LFP power within frontal areas of either monkey. Thus, the visual 

working memory spectral model generated correct hypotheses for the low and mid bands, 

but not for the high band. The absence of high-band activity may be a result of the time 

frequency decomposition method and chosen parameters. It could also suggest a more 

nuanced role for the high band in the model. Additional analyses using different time-

frequency decomposition methods could be beneficial. Furthermore, future studies are 

needed to test the generalizability of the model’s predictions. 

3.2 Methods 

3.2.1 Recording 

 Two female rhesus macaques (Monkey A and Monkey B) were implanted with a 

post for head-restraint, scleral search coils to track saccades (Judge et al., 1980) and two 

recording chambers (Gray et al., 2007) over frontal and parietal regions (see more details 

in Dotson et al., 2014; Salazar et al., 2012) (Figure 3.1a & b). Specifically, recordings in 

the right hemisphere of Monkey A were obtained from frontal areas dPFC, vPFC, 8B, 

and 9L and parietal areas PEC, LIP, MIP, and PG. Recordings in the left hemisphere of 

Monkey B were obtained from frontal areas dPFC, 8B, 6DR, and 8Ad and parietal areas 

PG, LIP, PE, and PEC. 
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Figure 3.1. Recorded areas & experimental design 
A. Recording locations in the right hemisphere of Monkey A: frontal areas dPFC, vPFC, 8B, 9L and 
parietal areas PEC, LIP, MIP, PG. B. Recording location in the left hemisphere of Monkey B: frontal areas 
dPFC, 8B, 6DR, 8Ad and parietal areas PG, LIP, PE, PEC. C. Experimental design. Each trial began with a 
500ms fixation period followed by a 500ms sample period during which the monkey was presented with a 
stimulus. The sample period was followed by a variable delay period lasting 800-1,200ms. The trial ended 
during the match period, after the delay, when a distractor and correct object was presented. The monkey 
had to saccade to the object observed during the sample period if the identity rule was in-play (as shown) or 
to the location observed during the sample period if the location rule was in-play (not shown). Fixation had 
to be maintained throughout the trial until the monkey made a saccade during the match period. 
 

Each recording session was obtained in a single day. Monkey A had recording 

sessions over 23 days. Monkey B had recording sessions over 24 days. 

Broadband signals were simultaneously recorded from electrodes in both regions. 

The signals were amplified by 5k, filtered to 1k-10kHz and digitized to 30kHz. Laminar 

information was not obtained. However, the maximum recording depth reached around 

10mm from the surface of the cortex. 
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Each electrode’s broadband signal was down-sampled to 1kHz and low-pass 

filtered to remove frequency components above 250hz to obtain the local field potential 

(LFP) for further analysis. This study focuses solely on dynamics in the LFP (Figure 3.2).  

 

Figure 3.2. Example of LFP signals across all recording channels from a single trial. 
This is from a recording in Monkey B on day 17, trial 1,164. Three channels were in frontal area 8B, three 
in frontal dPFC, two in parietal PEC, PG, and PE and a single channel in parietal area PEC. The vertical 
and horizontal eye channels are shown from the beginning of fixation up until a saccade was made in the 
match period ~200ms in. The vertical scale of each trace is shown on the right. Trial epochs are labeled 
along the top axis. 
 

After recording, each monkey was euthanized (pentobarbital, 100 mg/kg i.v.), and 

the brains were removed. A Nissl stain was used to identify electrode tracks marking the 

actual recording areas. The areas were classified according to the Paxinos et al. (1999) 

parcellation scheme. 
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3.2.2 Task 

 A more detailed description of the task and basic analysis methods is available in 

the original manuscript (Salazar et al., 2012). A delayed match-to-sample visual 

oculomotor task was used to test visual working memory (Figure 2.1c). The monkey 

needed to acquire fixation on a cross presented on the screen of a 19-inch monitor for 

500ms to initiate the trial (baseline period). Afterwards, a stimulus was presented at one 

of three locations and remained on the screen for 500ms (cue period). One of three 

possible samples served as the stimulus at one of three possible locations at the vertices 

of an invisible triangle around the fixation cross. A variable delay of 800-1200ms 

followed the cue period during which the stimulus disappeared, and the monkey had to 

maintain fixation on the remaining cross (delay period). The delay was variable to control 

for expectation effects. Finally, following the variable delay, matching and distractor 

objects were presented at two locations on the screen (match period). If the identity rule 

was in play, the monkey had to saccade to the object which matched the identity of the 

object presented during the cue period, regardless of where that object was located during 

the match period. If the location rule was in play, the monkey had to saccade to the 

location where the original object was presented during the cue period, regardless of the 

identity of the object in that location during the match period. Correct responses triggered 

a juice reward for the monkey. Fixation was held throughout the trial until the match 

period necessitated a saccade response.  

 Rules were switched when the monkey achieved greater than 80% performance 

after 300 consecutive trials using a sliding window of 100 trials. The rule-switch occurred 

with no cue to the monkey. It had to recognize the novel context to restore the juice 
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reward. Rule switches generally happened once or twice in a recording session. The 

positions and identities of objects were chosen with equal probability in a pseudo random 

sequence. Object locations were rotated 180 degrees every other day and a different set of 

objects was chosen each day to reduce bias for object location and identity. MonkeyLogic 

(Asaad & Eskandar, 2008) and custom software were used to provide experimental 

control and visualizations. (more details can be found in Salazar et al., 2012).  

The rules were established to permit an examination of visual working memory by 

way of the identity rule versus spatial working memory thought to facilitate the location 

rule. However, the nature of the location rule permitted the possibility that the monkey 

was simply storing a motor plan of the pending saccade over the delay period. This 

means that instead of experimentally observing the intended usage of spatial working 

memory, the monkey would have relied on a prospective motor working memory (Fuster, 

2015). Hence, only the identity rule trials, which presume to be a reliable test of visual 

working memory, were used in the analyses for this study (Salazar et al., 2012). 

3.2.3 Trial rejection 

There were electrical artifacts in certain LFP signals that needed to be removed. 

They appeared as major transient or sustained fluctuations in the amplitude distributions 

of the signals. Trials with transient artifacts were identified by observing when the 

maximum amplitude of the LFP exceeded 12 standard deviations computed across all 

trials. Trials with sustained artifacts were identified by calculating the Kurtosis of the 

distribution of spectral power at each frequency across all trials. If the Kurtosis exceeded 

a threshold of eight, the trial with the largest power value was removed and Kurtosis was 

recalculated. This process continued until the residual distribution dropped below the 
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Kurtosis threshold or the rate of change of the Kurtosis evaluated over all previous 

iterations was not significantly different from zero, p > .0001. This method was applied 

to each frequency in the spectrum to remove trials with both narrow and broadband 

artifacts. Channels were removed from analysis when more than four percent of their 

associated trials exhibited artifacts (for further details see Salazar et al., 2012). 

3.2.4 Time-frequency Decomposition Using Complex Morlet Wavelets 

 Time-frequency analysis was implemented by convolving the LFP signal with a 

set of complex Morlet wavelets, defined as complex sine waves tapered by a Gaussian. 

The frequencies of the wavelets ranged from 4 Hz to 100 Hz in 35 logarithmically spaced 

steps. The full-width at half-maximum (FWHM) ranged from 400 ms to 100 ms with 

increasing wavelet peak frequency. This resulted in a spectral FWHM range of 2 Hz to 8 

Hz (Figure 3.3). The FWHM is a more informative and computationally efficient method 

of defining the width of the Gaussian window than the traditionally used number-of-

cycles parameter (Michael X Cohen, 2018). 
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Figure 3.3. Temporal and spectral resolutions for each complex Morlet wavelet. 
The resolution is a function of the FWHM in ms for the temporal domain and Hz for the spectral. As the 
frequencies increase, the temporal resolution increases (400-100ms) (A), (B) while the spectral resolution 
decreases (2-8Hz) and vice-versa as the frequencies decrease. This illustrates the fundamental trade-off 
between temporal and spectral precision inherent in time-frequency analyses. It is not possible to have 
arbitrarily good precision in both. Instead, it is considered an advantage to smooth over some aspect of time 
and frequency to visualize non time-locked and non phase-locked neural activity averaged over individuals 
and/or trials 
 

Complex Morlet wavelets are complex sine waves tapered by a Gaussian. They 

can be defined as the product of a complex sine wave and a Gaussian window: 

𝜔𝜔 = 𝑑𝑑2𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑑𝑑
−4 ln(2)𝑙𝑙2

ℎ2  

Equation 3.1. Complex Morlet wavelet 

where 𝑑𝑑2𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 defines the complex sine wave and 𝑑𝑑
−4 ln(2)𝑡𝑡2

ℎ2   defines the Gaussian window. Further, 𝑥𝑥, 𝑓𝑓, and 
𝑄𝑄 are the imaginary operator, frequency in Hz, and time in seconds, respectively. The parameter ℎ is the 
FWHM in seconds (Michael X Cohen, 2018). 
 

The family of wavelets created for this analysis is well-formed. They taper to zero 

on both ends in the time-domain and their representation in the frequency domain is 

Gaussian (Figure 3.4). These properties are necessary to avoid edge artifacts during 

convolution with the LFP signal (Mike X Cohen, 2014). 
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Figure 3.4. Set of 35 complex Morlet wavelets ranging in frequency from 4 to 100 Hz in 35 
logarithmically spaced steps 
A. The wavelets in the temporal domain must taper to 0 on each end so they can be convolved with the LFP 
signal to create the analytic signal containing power and phase. B. Wavelets in the frequency domain 
present as Gaussians with resolution decreasing as frequencies increase. This effect is a result of the width 
of the Gaussian window used in their creation. 
 

In a further attempt to avoid edge artifacts, signals were reflected about their origin 

and termination prior to wavelet convolution (Figure 3.5). Wavelet convolution produces 

estimates based on the time point measurements occurring directly before and after in the 

original plot. Since the beginning and end of the recording have no time points before or 

after them, respectively, edge artifacts are introduced during convolution. Thus, reflecting 

the signal provides additional points for the convolution, permitting a smoother resulting 

estimate (Mike X Cohen, 2014). 
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Figure 3.5. Example trial prior to convolution 
The signal was reflected about the beginning and ending axes to provide more samples for the convolution 
step to minimize edge artifacts (Mike X Cohen, 2014). 
 

Additionally, the beginning and end of each trial was cut off to minimize artifacts. 

Instead of the trial beginning 504ms before cue onset, trials started at 400ms prior to cue 

onset.  and ended 150ms after match onset, just prior to the monkey’s response saccade. 

The signal, prior to trimming, contained samples through 274ms after match onset, which 

included the monkey’s response saccade artifact. The trimmed signal should have 

minimal, if any, artifacts related to edge or saccades. 

3.2.5 Baseline Normalization 

 The time-frequency power spectrum was normalized using the decibel metric 

according to Equation 3.2: 
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𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖 =  10 log10
𝑄𝑄𝑐𝑐𝑄𝑄𝑥𝑥𝑎𝑎𝑥𝑥𝑄𝑄𝑦𝑦𝑙𝑙𝑖𝑖
𝑏𝑏𝑄𝑄𝑝𝑝𝑑𝑑𝑙𝑙𝑥𝑥𝑥𝑥𝑑𝑑𝑖𝑖

 

Equation 3.2. Time-frequency decibel baseline normalization 
where activity is a vector comprised of raw power values for each time point within a single frequency 
component, baseline is a scalar representing the average raw power value over the entire baseline period 
within a single frequency component and dB is the decibel representation of power over time within a 
single frequency component. 
 

A new baseline was computed for each day across conditions from 400ms to 

100ms prior to stimulus onset. Averaging over conditions maximizes the number of 

baseline timepoints to produce a smoother baseline estimate. The baseline was applied to 

the trial average for each channel.  

There are several advantages to normalizing the time-frequency power spectrum to 

baseline using the dB metric (Mike X Cohen, 2014). First, it enables comparison of the 

results with other studies from different animals with anatomical, experimental, and data 

quality differences. This is vital to validating the model, which was built using the results 

of other monkey studies. Second, it removes the 1/f dynamic which biases low 

frequencies with higher power and high frequencies with lower power, making them 

difficult to detect. Third, it enables the separation of activity directly related to the task 

from ongoing background activity. This permits the analysis of task-relevant spectral 

characteristics of visual working memory. Finally, baseline normalization yields power 

values that approximate a normal distribution, which is ideal for applying parametric 

statistical analyses. To test the hypotheses generated by the spectral visual working 

memory model, parametric statistics are applied to the data. Accordingly, the baseline 

normalization step enables compliance with the assumption of normality required by 

standard tests of parametric statistics.  
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3.2.6 Window Selection for T-test 

 The visual working memory spectral model yielded hypotheses for frequency 

bands defined as low (1-15Hz) during the delay in frontal and parietal regions, mid (12-

35Hz) during the delay in frontal and parietal regions, and high (35Hz+) near the end of 

the delay in frontal regions. Thus, the timeframes to consider for the t-test are established. 

However, there are a couple issues with the frequency bands. First, each monkey has 

slightly different frequency band ranges. This can be addressed by establishing bounds 

unique to each monkey based on where the power is observed on an average spectrogram 

that is orthogonal to the condition being tested. It is important the average spectrogram is 

orthogonal to avoid double-dipping for the t-test. Second, the band boundaries must be 

sufficiently spaced to minimize leakage from neighboring frequencies introduced by the 

convolution step. The empirical FWHM can be used to ensure the bands are adequately 

distanced. To minimize outside contributions to a target frequency, the distance of the 

next component chosen should be about as much as the empirical FWHM of the target 

(Michael X Cohen, 2018). 

The delay period of average spectrograms for each monkey was inspected across 

frontal and parietal regions and across correct and incorrect responses to determine what 

range would qualify as low, mid, and high when applying statistical tests (Figure 3.6 & 

Figure 3.7). This served as an appropriate orthogonal spectrogram for the t-test. Areas 

with distinct power increases or decreases largely within the band boundaries proposed 

by the spectral visual working memory model were used to establish band boundaries for 

each monkey. The borders of Monkey A’s frequency bands were about 4Hz higher than 

the model, with the low band beginning around 8Hz and ending around 18Hz (Figure 
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3.6a). The FWHM is 4Hz (Figure 3.3b) at this frequency. Hence, the mid band starts at 

22Hz and ends around 39Hz. The FWHM is 6Hz at this component. Accordingly, the 

high band starts around 46Hz and ends around 91Hz (Figure 3.6b). The average 

spectrogram across frontal and parietal channels was used for the low and mid band 

window selection to test hypotheses 1 and 2. These bands were sampled from 75ms after 

cue offset to 86ms prior to match onset, resulting in 650ms of band-limited activity. This 

comprises most of the delay period while avoiding the beginning and end to ensure edge 

artifacts related to epoch switches are not included. The average spectrogram across all 

frontal channels was used for the high band window selection testing hypothesis 3. The 

high band was sampled from 515ms after cue offset up to 86ms prior to match onset, 

resulting in 210ms of band-limited activity.  

The borders of Monkey B’s frequency bands fell within the original bounds 

established by the model. The low band begins around 5Hz and ends around 12Hz 

(Figure 3.7a) where the FWHM is 4Hz (Figure 3.3b). The mid band begins at 15Hz and 

ranges up to 32Hz where the FWHM is about 6Hz. So, the high band starts around 38Hz 

and ends around 91Hz (Figure 3.7b). The same time ranges identified for Monkey A 

above were selected for Monkey B. 



 

77 

 

Figure 3.6. Monkey A Average Spectrograms Across All 23 Days & Across Correct & Incorrect 
Responses 
A. Spectrogram averaged over all frontal and parietal channels. Rectangular windows of interest were 
drawn based on the timescales and frequencies identified in the visual working memory spectral model and 
visual observation of power emergence. The lower and upper windows represent the low band and mid 
band, respectively, for Monkey A. B. Spectrogram averaged over all frontal channels. A rectangular 
window of interest was drawn based on the timescales and frequencies identified in the visual working 
memory spectral model. The window represents the high band for Monkey A. 
 

 

Figure 3.7. Monkey B Average Spectrograms Across All 24 Days & Across Correct & Incorrect 
Responses 
A. Spectrogram averaged over all frontal and parietal channels. Rectangular windows of interest were 
drawn based on the timescales and frequencies identified in the visual working memory spectral model and 
visual observation of power emergence. The lower and upper windows represent the low band and mid 
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band, respectively, for Monkey B. B. Spectrogram averaged over all frontal channels. A rectangular 
window of interest was drawn based on the timescales and frequencies identified in the visual working 
memory spectral model. The window represents the high band for Monkey B. 
 
3.2.7 One-way t-tests 

A one-way single-sample t-test was used to test each hypothesis. Hypotheses 1 

and 3 required a right-tailed t-test and hypothesis 2 required a left tailed t-test. Bonferroni 

correction was used to correct for the three tests at p=0.05, yielding an adjusted p-value 

of 0.0167.  

First, all trials were averaged together for each channel, creating a single trial-

averaged channel signal. Next, to address the issue of potential correlation between 

channels, all trial-averaged channels within each recording region were averaged together 

separately, yielding two regional signals per recording session: a frontal component and a 

parietal component. Thus, over 23 recording days, Monkey A produced 46 distinct 

regional components, treated as subjects for the t-test. Conversely, Monkey B produced 

48 subjects for the t-test over its 24 recording days. 

Finally, average power was calculated across time and frequencies within the 

rectangular window of interest for each regional component. The t-test was applied at the 

group level, testing the average of the regional components in order to generalize to 

neural populations in a single monkey. This process was completed for each monkey 

separately. The ttest function in MATLAB was used to run the test.  

3.3 Results 

 Three Bonferroni-corrected single-sample one-way t-tests were conducted on 

each monkey to evaluate three hypotheses generated by the visual working memory 

spectral model (Figure 3.8 & Figure 3.9). The first test evaluated whether frontal and 
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parietal cortical regions presented with increased low band LFP power during the delay 

period of the experimental task. The test was significant in Monkeys A and B, t(45) = 

7.26, p = 2.12e-09 and t(47) = 2.80, p = 0.004, respectively. Specifically, the area in 

Monkey A with strongest power appears to start at 0.72s and last until 1.2s with a 

beginning frequency of 11.33Hz and an ending frequency of 16.55Hz (Figure 3.8a). The 

area in Monkey B with strongest power appears to start slightly earlier at 0.69s and last 

until 1.22s with a beginning frequency around 8Hz and an ending frequency of 12.46Hz 

(Figure 3.9a). Surprisingly, the length of each monkey’s low band delay-period activity is 

almost the same, just off by a few milliseconds. The low band is shifted up by about 3-

4Hz in Monkey A. 

The second test evaluated whether areas in frontal and parietal cortical regions 

presented with decreased mid band LFP power during the delay period of the task. This 

test was also significant in Monkeys A and B, t(45) = -3.00, p = 0.002 and t(47) = -5.90, 

p = 1.87e-07, respectively. The area in Monkey A showing the strongest delay-period 

power decrease appears to extend throughout the epoch beginning with frequency 

component 32.10Hz and ending around 37Hz (Figure 3.8a). There appears to be two 

areas in Monkey B showing strong delay-period power decreases. The first starts just 

after cue offset around 0.53s and is very brief, lasting only until 0.71s with beginning 

frequency at 13.69Hz and ending around 18Hz. The second starts shortly after cue offset 

around 0.59s and lasts until 1.2s beginning around frequency 26Hz and extending up 

around 33Hz (Figure 3.9a). Again, the boundary of the mid band is shifted up by about 

4Hz in Monkey A relative to B. The second window of decreased power in Monkey B is 

similar in timescale to the decreased power window in Monkey A. 
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The third test evaluated whether frontal areas contained high band bursts of LFP 

power near the end of the delay period of the task. This test was not significant in either 

monkey, t(22) = -3.62, p = 0.999 for Monkey A and t(23) = -14.17, p ~ 1 for Monkey B. 

Indeed, there are no power increases visually observable in the high band near the end of 

the delay in Monkey A (Figure 3.8b) or Monkey B (Figure 3.9b). Instead, it appears 

slightly decreased during this time. 
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Figure 3.8. Monkey A time-frequency spectrograms showing dB baseline-normalized LFP power with 
rectangular windows of interest highlighted for each hypothesis generated by the visual working memory 
spectral model 
A. The time-frequency spectrogram averaged across 143 total channels recorded over 23 days in frontal 
and parietal areas of Monkey A. The lower rectangle represents the window of interest for hypothesis 1. It 
ranges from time 0.58s to 1.23s and frequency 8.53Hz to 18.19Hz during the delay period. The upper 
rectangle represents the window of interest for hypothesis 2. It ranges from time 0.58s to 1.23s and 
frequency 21.99Hz to 38.80Hz during the delay period. Both lower and upper windows were significant 
t(45) = 7.26, p = 2.12e-09 and  t(45) = -3.00, p = 0.002, respectively. B. The time-frequency spectrogram 
averaged across 69 frontal channels recorded over 23 days for Monkey A. The dashed rectangle represents 
the window of interest for hypothesis 3. It ranges from time 1.02s to 1.23s and frequency 46.89Hz to 
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90.97Hz during the delay period. It was not significant t(22) = -3.62, p = 0.999. See Methods for additional 
details. 
 

 

Figure 3.9. Monkey B time-frequency spectrograms showing dB baseline-normalized LFP power with 
rectangular windows of interest highlighted for each hypothesis generated by the visual working memory 
spectral model 
A. The time-frequency spectrogram averaged across 318 total channels recorded over 24 days in frontal 
and parietal areas of Monkey B. The lower rectangle represents the window of interest for hypothesis 1. It 
ranges from time 0.58s to 1.23s and frequency 5.32Hz to 12.46 during the delay period. The upper 
rectangle represents the window of interest for hypothesis 2. It ranges from time 0.58s to 1.23s and 
frequency 15.06Hz to 32.11Hz during the delay period. Both lower and upper windows were significant 
t(47) = 2.80, p = 0.004 and  t(47) = -5.90, p = 1.87e-07, respectively. B. The time-frequency spectrogram 
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averaged across 146 frontal channels recorded over 24 days for Monkey B. The dashed rectangle represents 
the window of interest for hypothesis 3. It ranges from time 1.02s to 1.23s and frequency 38.80Hz to 
90.97Hz during the delay period. It was not significant t(23) = -14.17, p ~ 1. See Methods for additional 
details. 
 
3.4 Conclusion 

 The monkey visual working memory spectral model generated three predictions 

relevant for the non-spatial visual working memory task analyzed in this study. 

Hypothesis 1 stated that there should be an increase relative to baseline in the low band 

LFP power during the delay period across frontal and parietal cortical regions. 

Hypothesis 2 stated that there should be a decrease relative to baseline in the mid band 

LFP power also during the delay period across frontal and parietal regions. Hypothesis 3 

stated there would be high band power bursts observed in the LFP power near the end of 

the delay period in frontal cortical areas. Hypotheses 1 and 2 proved correct and 

hypothesis 3 was incorrect for both monkeys. 

 There are likely underlying recurring neural dynamics which give rise to the low 

and mid band oscillations reported here and elsewhere (Jacob et al., 2018; Lundqvist et 

al., 2018). It is to be expected that the band ranges differed per monkey. In fact, the very 

studies that went into the creation of the spectral model of visual working memory in the 

monkey were comprised of results with heterogeneous bands. For instance, in some 

studies the mid band was as narrow as 12-22Hz (Salazar et al., 2012) or 15-32Hz 

(Antzoulatos & Miller, 2016) or as wide as 15-50Hz (Kornblith et al., 2016). While the 

band ranges within monkeys may differ, the general theme of 3 different overall bands: a 

low, mid, and high is retained.  

 It was especially intriguing to see such similarity in the low and mid band 

timescales between monkeys. This lends support to the low band’s role in visual attention 
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identified in the model and other studies (Fiebelkorn et al., 2018; Foster & Awh, 2019; 

Helfrich et al., 2018). Because it occurs during the delay, when the monkey is not 

presented with any external stimulus, the attention can be understood as internally 

focused, in service of the working memory process (Fuster, 2015). Moreover, the mid 

band’s sustained decreased activity in both monkeys during the delay also supports a 

consistent functional role. The model proposes the mid band is maintaining the working 

memory content across the delay, which is vital for successful completion of the task. 

 The absence of power bursts near the end of the delay leaves open the explanation 

for how the working memory content is transferred within the frontal region, according to 

the model. There are two possibilities: either the bursts are there and were just not picked 

up by the current time-frequency analysis choice of decomposition method and group-

level statistical test, or the model needs further studies to test the generalizability of LFP 

frontal high-frequency directed connectivity during non-spatial visual working memory 

tasks. Considering the first scenario, the complex Morlet wavelet convolution applied 

here is ideal for identifying lower frequencies found in the low and mid bands. It’s 

possible higher frequencies could be better identified using the multi-taper method (Mitra 

& Bokil, 2009), which averages multiple higher frequency basis functions to yield a 

better representation of high frequency components. Furthermore, it is also possible that 

the power bursts occurred on a trial-by-trial basis in transient periods, much shorter than 

the kernel window. Because the trials were averaged to be used in a group-level statistical 

test, this activity may have been lost in the process. A within-subject test could be applied 

to test each channel grouped by the day of its recording. The second scenario simply 
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requires more studies to make further claims on whether the effect is a true spectral 

characteristic. 

In addition to the hypotheses tested in this study, the visual working memory 

spectral model predicts a top-down low-band control signal from frontal to parietal areas 

both during and after the delay period. A future analysis can test this hypothesis using a 

directed functional connectivity measure such as phase-slope index (Nolte et al., 2008). 

Moreover, an overall exploratory directed functional connectivity analysis across all 

bands throughout the trial would be interesting. The results could further inform the 

model and motivate future studies. 

In conclusion, the low and mid bands in the baseline normalized LFP power 

appear to have a role in support of non-spatial visual working memory in the monkey. 

This is predicted by the spectral monkey model of visual working memory. Further 

analysis and future studies have the potential to shed further light on the model’s validity. 
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4 FUTURE DIRECTIONS AND OPPORTUNITIES IN MONKEY 

FRONTOPARIETAL NETWORK RESEARCH ON VISUAL WORKING 

MEMORY

This dissertation examined the spectral characteristics of the frontoparietal 

network supporting monkey visual working memory and the organization of the 

anatomical structure enabling it. 

In chapter 1, studies reporting spectral characteristics of non-spatial, spatial, and 

visuospatial visual working memory in the monkey frontoparietal network were 

examined and synthesized into a new model. It highlighted how low, mid, and high 

frequency bands dynamically organize in support of spatial, non-spatial and visuospatial 

working memory tasks. The low band is responsible for attentional selection of the 

working memory content. The mid band maintains the content, protecting it from 

competing stimuli and distractors. Finally, the high band serves to transfer information 

within frontal and parietal regions related to the working memory content for successful 

completion of the task. Together, they enable the overall working memory process to 

transpire. The model is an important step in developing a better understanding of the 

spectral components underlying visual working memory.  

 In chapter 2, the organization of structural connectivity between areas of the 

monkey frontoparietal network was explored to better understand how it may be capable 

of supporting cognitive processes like visual working memory. A new binary association 
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matrix was proposed as a result of the collation of many tract-tracing studies. A graph 

theoretic analysis on the matrix found that the frontoparietal network’s fundamental 

building block was the 3-node M9 dynamical relaying motif. This motif is optimally 

structured for the synchrony found in the spectral model and which was reported to 

support visual working memory (Antzoulatos & Miller, 2016; Buschman & Miller, 

2007a; Salazar et al., 2012). Furthermore, the network was found to have a small-world 

architecture which provides both the integration and specialization of function required 

by visual working memory (Dotson et al., 2014). Finally, the degree of connectivity was 

diffused throughout the network, creating a reliable substrate for sustaining visual 

working memory dynamics. 

 In chapter 3, hypotheses generated by the spectral model of monkey visual 

working memory were tested on a real dataset from an experiment studying non-spatial 

visual working memory in two rhesus macaques. Two of the three hypotheses were 

supported by evidence. Specifically, there was an increase in the low band and decrease 

in the mid band LFP power relative to baseline during the delay period across frontal and 

parietal cortical regions. The third hypothesis that there would be high band power bursts 

near the end of the delay period responsible for transferring working memory content in 

the frontal region was not supported. This was due to the type of time-frequency 

decomposition method used, the amount of averaging imposed, or the low number of 

non-spatial visual working memory studies that went into the creation of the model.  

Despite the efforts put forth to report on the structural organization and functional 

spectral characteristics of visual working memory in the monkey frontoparietal network, 
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much work remains to be done. Opportunities to expand on the topic of each chapter will 

be addressed in-turn below. 

4.1 The Spectral Model of Visual Working Memory in the Monkey 

Chapter 1 reviewed the literature reporting spectral characteristics of visual 

working memory in the monkey frontoparietal network. The results of 15 studies were 

aggregated and distilled to create a model comprising the spectral characteristics of 

spatial, non-spatial, and visuospatial working memory tasks. However, much remained to 

be explored with the model. First, the time-frequency decomposition method was not the 

same across studies. This can impact which frequency components are observed or 

deemed statistically significant as some methods bias lower frequencies while others bias 

higher frequencies (Mike X Cohen, 2014). As a result, each study may have reported 

only certain aspects of the data. It would be optimal if all visual working memory studies 

leveraged a standard, preferably open-source, analysis pipeline to identify spectral 

characteristics in a uniform and comprehensive manner. For instance, if they all applied 

complex Morlet wavelet convolution for frequencies under 60Hz and the multi-taper 

method for frequencies above 60Hz, that would provide a greater likelihood that all 

frequencies were represented by the optimal method. This would take much more 

computation time as there are two decompositions Adding to the complexity, the results 

would need to be combined afterwards for visualizations on the same scale. There are 

further considerations at this point concerning what power or phase-based connectivity 

analyses to apply to the complex signal. These decisions would be made by the 

researchers, contingent on the question they are exploring. However, the main point is 

that they will have decomposed their simultaneously recorded electrophysiological visual 
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working memory data into the time-frequency domain using a standardized, open-source 

pipeline. 

Second, the model was limited by the results of the 15 studies from which it was 

created. It is likely that the low, mid, and high bands interact in some manner to 

coordinate the visual working memory process. However, measures of cross-frequency 

coupling and other dynamic cross-band techniques were not tested. Simulations which 

identify the ways in which the bands could interact within the spatial constraints imposed 

by the monkey frontoparietal network would be illuminating. To avoid the significant 

temporal and financial restrictions imposed by empirical studies, software such as The 

Virtual Brain (Sanzleon et al., 2013) could be used to simulate activity in the low, mid, 

and high bands from separate neural mass models representing frontal and parietal 

regions. Much may be learned from simulated data testing aspects of the model. 

4.2 The M9 Dynamical Relay Motif 

 In Chapter 2, the organization of areal connectivity in the monkey frontoparietal 

network was explored. This involved generation of a new connectivity matrix based on 

collated results of around 40 tract-tracing monkey studies. A graph theoretic analysis was 

applied to the connectivity matrix which found that the 3-node M9 dynamical relay motif 

was overrepresented. This means it occurred in the frontoparietal network to a 

statistically greater degree than was expected in a random or lattice-based network. The 

M9 motif is comprised of an apex node and two driven nodes. It is ideal for generating 

zero-lag and non-zero phase synchrony, which is an important aspect of the spectral 

model of visual working memory. Subsequently, questions were raised concerning how 

the areas were involved in the motif. Did some areas participate more than others as the 
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apex node, serving to drive two others? It would be beneficial to perform a follow-up 

analysis to better understand this question. The analysis could explore each node’s M9 

apex ratio (Sporns et al., 2007). An apex ratio is used to quantify the amount of time a 

node participates as the apex in any open triangle motif. Investigations building on the 

apex ratio have been performed elsewhere  to better characterize networks (Gollo et al., 

2015) and examine novel star-like structures (Harriger et al., 2012). It would be ideal to 

report the apex ratio and propose a new “driven-node” ratio to quantify the number of 

times a node participates in the M9 motif in a non-apical fashion. This will further 

characterize each node’s role in the M9 motif in a quantifiable manner. As a follow-up, 

the closeness and betweenness centrality can be calculated for those nodes which have a 

high apex ratio. This is an effective method to identify if any nodes qualify as hubs, a 

point that was not addressed in Chapter 2 (Sporns et al., 2007). 

4.3 Spatial vs Non-spatial Visual Working Memory Spectral Characteristics 

 Chapter 3 focused on an experiment where two monkeys had to perform an 

oculomotor delayed match-to-sample task which tested non-spatial visual working 

memory in some trials and spatial in others, depending on the rule currently in-play. 

Under the identity rule, the monkey was required to remember the identity of the object 

shown during the cue period over a delay. Under the location rule, the monkey had to 

remember where the object appeared during the cue period over a delay. It was assumed 

that visual non-spatial working memory was utilized under the identity rule and spatial 

under the location rule. A rule switch was not done until the monkey established 

proficiency under the current rule and had accumulated enough trials. The switch was not 

cued. Accordingly, there was a period where the monkey had to figure out which rule 
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was in play, prior to establishing proficiency. Further details can be found in the original 

manuscript (Salazar et al., 2012). 

 The spectral model (Chapter 1) was constructed from studies on visual non-

spatial, spatial, and visuospatial working memory in monkeys. There was much overlap 

in the spectral characteristics for each type of visual working memory. However, there 

were also subtle differential spectral characteristics unique to the type of visual working 

memory employed by the monkey. Specifically, for spatial working memory, the spectral 

model generates several hypotheses regarding the roles of low (1-15Hz), mid (12-35Hz), 

and high (35Hz+) frequency band spiking and LFP activity both within and between 

frontal and parietal regions. First, frontal and parietal regions should show decreased low-

band spiking power during the delay period. Additionally, there should be a top-down 

low-band control signal from frontal to parietal areas both during and after the delay 

period, prior to a response movement (Martínez-Vázquez & Gail, 2018). Second, frontal 

and parietal regions should each separately show increased power and synchrony within 

region during the cue and part of the delay period (Antzoulatos & Miller, 2016). Also, a 

bi-directional bottom-up signal during the delay (Martínez-Vázquez & Gail, 2018) and 

top-down signal during the cue and part of the delay (Antzoulatos & Miller, 2016) 

between frontal and parietal areas should be observed in the mid-band. The top-down 

signal was previously associated with spatial categorization and the bottom-up with a role 

in withholding movement, unrelated to working memory. Finally, parietal regions should 

show increased high-band LFP power during the delay period (Pesaran et al., 2002). 

 These five hypotheses can be tested using the dataset from Chapter 3 by focusing 

only on correct trials while the location rule was in play. The results of the analysis could 
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shed further light on the efficacy of the model and highlight areas of divergence. It would 

be valuable to compare the results with the non-spatial findings. It can be shown if and 

whether the model is better at predicting non-spatial or spatial characteristics. 

 There is debate as to whether the task during the location rule is really a test of 

spatial visual working memory. Instead of the monkey remembering the location of the 

cue over a delay period, the monkey may just be storing a motor plan of its intended 

saccade. The delay is short enough for this be feasible. In this case, the monkey would be 

using a prospective motor working memory (Fuster, 2015). Other studies that were used 

in the creation of the spectral model also utilize this version of the task and consider it a 

test of spatial visual working memory. So, the spectral characteristics predicted by the 

model should still be valid hypotheses. It is just a matter of interpreting the results as 

characteristics of spatial visual or prospective motor working memory. One way to 

reduce the likelihood of a reliance of prospective motor working memory is to modify the 

task by adding nonmatch cues (Constantinidis & Steinmetz, 2001). This has the effect of 

increasing difficulty and raises the probability of spatial visual working memory usage. 

4.4 Non-spatial Visual Working Memory Task Performance  

Like chapter 3, most studies typically focus on analyzing the activity of correct 

trials to derive purported mechanisms of working memory (Jacob et al., 2018; Johnson et 

al., 2017; Kornblith et al., 2016; Salazar et al., 2012). However, this signal may contain 

temporally coincident confounds related to the task such as reward expectation and 

attentional motor set (Fuster, 2015). To obtain a signal with activity which more 

accurately depicts task relevant visual working memory, it may be important to contrast 

the correct trials with the incorrect, where working memory may have been impaired or 
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not utilized at all. Hence, to the extent that they populate the incorrect signal, the 

confounds are stripped away. The resulting signal should have a higher likelihood of 

containing elements that were relevant for correct performance of the task. Additionally, 

the experimental task should have already been established as a reliable test of visual 

working memory (Paule & Rodriguez, 2009). Consequently, the correct vs incorrect 

signal should have a higher likelihood than the correct signal of exhibiting characteristics 

useful for processing of task-relevant information resulting in correct visual working 

memory performance.  

In Chapter 3, three hypotheses generated by the spectral visual working memory 

model on the role of the low, mid, and high frequency bands were tested for each 

monkey. While this analysis focused on time-frequency spectral characteristics, it 

remains to be established whether there is information in the time domain from the raw 

LFP signal related to task performance. The task performance signal could be tested 

using the same previously generated hypotheses for spatial and non-spatial visual 

working memory. The results of such an analysis would shed light on whether the model 

is effective at predicting spectral characteristics related to task performance. 

4.4.1 Time Domain Task Performance Preliminary Analysis 

It is necessary to first establish whether a task performance signal contains any 

useful information. This can be accomplished qualitatively by observing event-related 

potentials (ERP) in the time domain. ERPs are useful in identifying differences between 

two conditions, correct and incorrect trials in this case, with high temporal precision and 

accuracy (Mike X Cohen, 2014; Luck, 2014). A preliminary analysis was conducted with 

results below. 
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To calculate the event-related potential (ERP), the length of each epoch had to be 

the same across trials. Accordingly, timepoints -504ms through -1ms prior to sample 

onset were designated as the baseline period, while the monkey maintained fixation (504 

samples). The stimulus was shown at time 0ms. The timepoints up to and including 504 

ms after the stimulus was shown, just prior to it disappearing, make up the cue epoch 

(505 samples). Timepoints up to and including 810 ms after the sample was turned off 

comprise the delay epoch (811 samples). Finally, time points up to and including 200ms 

after the matching and distractor object were shown make up the match epoch (201 

samples). So, the ERP was comprised of 2,021 samples or ms. 

The task performance signal in the time domain is created by computing the 

difference between correct and incorrect trials at each time point of each trial. The raw 

LFP activity during the delay period of the resulting signal can be subsequently explored 

to discern whether meaningful non-spatial visual working memory activity related to task 

performance can be observed. 

The average task performance signal was taken across all trials for each monkey, 

day, and channel combination to provide channel-level ERPs comparing correct vs 

incorrect responses. Next, the average across all trials and channels was calculated for 

each monkey and day to provide day-level ERPs comparing correct vs incorrect 

responses: 23 for Monkey A and 24 for Monkey B. Finally, the average across all trials, 

channels and days was calculated to provide overall monkey-level ERPs comparing 

correct vs incorrect responses (Figure 4.1). The correct and incorrect traces look similar 

for Monkey A. However, there appears to be a low frequency difference between correct 
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and incorrect trials in Monkey B during the delay period. This was explored further 

because it did not appear physiological in origin. 

Suspicious days for Monkey B were identified by visual observation of the 

potentially non-physiological low frequency (~1Hz) component during the delay period 

of correct trials. As a result, 7 recording sessions from days 17-22 and 24 were flagged as 

suspicious. The non-physiological component is easily observable in the suspicious day 

ERPs (Figure 4.2a). A new overall Monkey B ERP comparing correct and incorrect 

responses was re-calculated with recordings from the suspicious days removed (Figure 

4.2b). There is still an observed difference between correct and incorrect signals during 

the delay period of correct trials. This means the task performance signal from Monkey B 

is more likely than A to exhibit characteristics useful for processing of task-relevant 

information resulting in correct visual working memory performance. Thus, to the extent 

that the model is appropriate for predicting spectral characteristics related to task 

performance, it may do so more successfully for Monkey B rather than Monkey A. 
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Figure 4.1. Event-related potentials (ERPs) for correct (blue solid) and incorrect (red dashed) trials across 
all recording days and channels 
A. Monkey A ERPs calculated from the averages of 12,578 correct trials and 3,392 incorrect trials. 
Visually, there does not appear to be a difference. B. Monkey B ERPs calculated from the averages of 
14,284 correct trials and 4,115 incorrect trials. There appears to be a large low frequency difference 
between correct and incorrect trials during the delay period for Monkey B. 
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Figure 4.2. ERPs for correct (blue) and incorrect (red) trials from Monkey B 
A. Example of a suspicious day distinguished by the potentially non-physiological ~1Hz component 
observable during the delay period of correct trials. This represents the average over all channels for day 
17, comprising 784 correct and 231 incorrect trials. B. The revised Monkey B overall ERP calculated from 
the averages of 9,439 correct and 2,557 incorrect trials across all channels from all days. There is still an 
observable difference between correct and incorrect signals during the delay period that no longer looks 
non-physiological in origin. 
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4.5 Spectral Model of Monkey Visual Working Memory 

 The spectral model is the first attempt, to this author’s knowledge, at a qualitative 

description of the spectral characteristics associated with non-spatial, spatial, and 

visuospatial types of visual working memory. Contrary to the traditional EEG bands, it 

proposes new, more general, broad bands to functionally separate spectral activity. This 

establishes a more appropriate framework to report and interpret time-frequency analyses 

on electrophysiological visual working memory data. It also attempts to assign a role to 

each band, functionally linking them together in the overall visual working memory 

process, based on the literature. It can serve as a starting point for our understanding of 

how the monkey brain accomplishes visual working memory in the spectral domain. 

Future studies are expected to make the model more robust and generalizable through 

refinements and modifications. 

It is important to point out that the model represents the synthesis of 15 different 

studies on spatial, nonspatial, and visuospatial visual working memory. Experiments on 

visual working memory typically use a task that falls into one of these three categories. 

Accordingly, to generate the most accurate task-appropriate predictions, the summary 

tables and corresponding interpretation that went into constructing the model should be 

referenced (Table 1.2 and Table 1.3). For instance, the model does not specify how low-

band LFP power is differentially modulated within frontal and parietal regions according 

to whether the monkey is performing a spatial or non-spatial task. It merely illustrates a 

general role for the low band power in these regions. It also does not provide clear 

boundaries for each of the bands. Based on the data in the tables, they appear to differ 

slightly by monkey and potentially by the type of visual working memory tested. 



 

99 

Ultimately, the table and corresponding interpretation must be referenced to generate 

testable hypotheses on task-appropriate roles for the bands. 

 The solution may be to break the visual working memory model up into three 

separate models, one for each type: spatial, non-spatial and visuospatial. The new models 

could identify spectral characteristics reported for each type including boundaries and 

more specific roles for the bands. Examples may include explicitly stating the direction of 

power modulation and/or connectivity. The drawback is that instead of a model based on 

15 studies, each model would be based on a handful. This does not engender confidence 

in their ability to successfully generalize. Therefore, more studies need to be conducted 

testing all three types of visual working memory in the monkey with reports of associated 

spectral characteristics. This would serve to further inform the current visual working 

memory model and motivate the move to break it up into three separate models once 

enough findings had accumulated. 

4.6 Conclusion 

 Working memory is an important cognitive process central to higher level 

executive functions like cognitive control. It is best studied in the monkey, a mammal 

with a well-developed prefrontal cortex and the human’s closest evolutionary relative 

which can serve as an experimental animal.  

 It should be clear from the ideas explored earlier that the spectral model has the 

potential for much further testing and expansion. It could even be broken up into three 

more focused models, given enough future studies on monkey visual working memory. In 

the long-term, it is this author’s hope that the model evolves to accommodate future 
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results and eventually applies its predictions to humans in the pursuit of treatments for 

neurological disorders where visual working memory is impaired. 
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5 APPENDIX A

5.1 Supplementary Discussion for Chapter 2 

The FPN’s connection density is 45.86%. This qualifies it as a moderately dense 

network, with almost half of all possible interareal connections existing. 

The binary directed adjacency matrix of the FPN provides both in and out-degree 

distributions which detail the number of incoming and outgoing connections to each area, 

respectively (Figure 5.1). Each distribution has an average degree of 13.3. Most of the 

nodes have an in-degree similar in quantity to their out-degree. However, 8 of the nodes 

have a large difference between incoming and outgoing connections, potentially signaling 

functional specialization. The ratios of in-to-out-degree and out-to-in-degree were 

calculated to identify those areas exhibiting a disparity greater than 1.5x. Frontal area 

6DR and parietal areas PGop, IPd and PFop have in-to-out-degree ratios of 1.73, 1.88, 

1.83 and 2.67, respectively. Frontal area 46v and parietal areas PEc, PEa and PE have 

out-to-in-degree ratios of 1.53, 1.71, 2.5 and 3.5, respectively. 

A Pareto chart is used to quantify the portion each factor contributes to an overall 

distribution. When applied to a total degree distribution, the chart can identify the portion 

each area contributes to overall connectivity. In this way, a Pareto chart of the total 

degree distribution provides a qualitative assessment of whether specific areas contribute 

more to the overall connectivity, thereby suggesting these areas may qualify as hubs 

(Figure 5.2). In the FPN, the 80th percentile of total connectivity is not reached until 20 of 
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the 30 nodes of the network are accounted for, or 67.7% of the total network. In a 

network with hubs, the 80th percentile would generally be reached much earlier in the 

chart, indicating that a small number of nodes account for a large percentage of the 

connectivity in the network. These are the nodes which would qualify as potential hubs. 

Therefore, there do not appear to be any hubs in the FPN according to this qualitative 

assessment. 

Areas 45, 47/12 and PGm were found to participate in the M9 motif with a 

significantly greater frequency in the empirical FPN than in random (p = 0, 0 and 0, z = 

5.189, 8.358 and 8.060) and lattice (p = 0.046, 0.014 and 0.029, z = 1.878, 2.440 and 

2.109) networks (Table 5.3). Interestingly, the structural connectivity profile of these 

areas form the M9 motif as well, with area 45 serving as the apex node and areas 47/12 

and PGm serving as the outer nodes (see Figure 2.5 for M9 example). 

5.1.1 Areal Specialization 

Areas which have a great disparity between their total number of incoming and 

outgoing connections may have developed this topology through functional 

specialization. Specifically, nodes which have a high in-to-out-degree ratio suggest the 

node may be an information aggregator and distiller, acting as a filter for the nodes it 

sends projections to. Frontal area 6DR likely would be aggregating and disseminating 

information related to ocular motor movements to its target areas (Luppino & Rizzolatti, 

2000).  

Nodes which have a high out-to-in-degree ratio suggest the node may be an 

information source for the nodes it sends projections to. Frontal area 46v has been 
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reported to provide information to its target areas supporting a range of cognitive 

functions including visuospatial working memory (Goldman-Rakic, 2011).  

The parietal areas identified may provide visual, visuospatial and sequential 

processing of somatosensory information in support of cognition such as visual and 

visuospatial working memory (Cavada & Goldman-Rakic, 1989; Cavada & Goldman‐

Rakic, 1989; Goldman-Rakic, 2011; D. N. Pandya & Seltzer, 1982; Rozzi et al., 2006). 

Parietal areas PGop, IPd and PFop may compile and filter the information while areas 

PEa, PEc and PE may act as information sources, thereby providing functional 

specialization in service of cognition. It is worth pointing out that 6 of the 8 areas which 

had a high difference between their incoming and outgoing connections were in the 

parietal region. This region may be under-explored as a result of not having enough tract-

tracing studies with injections in the parietal areas of Pandya & Seltzer (1982). As a 

result, additional projections simply may not have been discovered yet.   

5.1.2 Connectivity 

There did not appear to be any areas servings as hubs in the FPN according to the 

Pareto chart. Hub areas would have produced a Pareto chart which reached the 80th 

percentile much earlier, while only a small percentage of the network was accounted for. 

For instance, the 50th percentile of the degree distribution of the incoming hyperlinks in 

the Web is reached after just 1.1% of the nodes in the network are accounted for. These 

nodes are considered hubs in the Web network (Newman, 2018). A more quantitative 

analysis was needed to properly classify the degree distributions of the FPN, which 

would yield insight into the likelihood of hubs (Alstott et al., 2014; Clauset et al., 2009). 
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5.1.3 Motifs 

Synchrony in the FPN may originate from the over-represented frontal areas 45 

and 47/12 and parietal area PGm. If all three areas were inactivated, it could be 

speculated that performance on cognitive tasks requiring synchrony in the FPN would be 

impaired. This would serve as an interesting follow-up experiment.  

The M13 motif was very close to being significantly overrepresented. This motif 

differs from M9 through the addition of a reciprocal connection between its driven nodes. 

This serves to encourage non-zero lag synchrony and fails to promote zero lag synchrony 

due to frustration (Gollo et al., 2014). If the M13 motif had been significant, it would be 

interpreted as providing the FPN further topological flexibility to establish the kind of 

synchrony necessary for cognition. 

5.1.4 Small World 

This work focused on an established neural network observed in isolation from 

the rest of the brain. When whole-brain connectomes are analyzed at the macroscale, they 

generally present with hub nodes and power-law scaling of their degree distributions (Oh 

et al., 2014; Watts & Strogatz, 1998). This is likely because the heterogeneity of 

connectivity is much greater at the level of the whole brain. When analyzed in this way, 

there are a smaller number of highly connected nodes compared with a larger number of 

nodes with few connections. 
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5.2 Supplementary Figures for Chapter 2 

 

Figure 5.1. The degree distributions for the frontoparietal network 
Out-degree is on the left and in-degree is on the right. The average degree for both distributions is 13.3. 
Frontal areas are colored blue and parietal areas are pink. 
 

 

Figure 5.2. Pareto chart of the total degree for each node in the frontoparietal network. 
Totaling the degree counts for 20 of the 30 areas, up to area 11, accounts for 80% of overall connectivity in 
the network. This represents a traversal of about 67% of the network before reaching 80% total 
connectivity, which means it is unlikely that there are any hub nodes. 
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Table 5.1. Association matrix for the frontoparietal network 
The matrix uses the Petrides & Pandya (2007) parcellation scheme. The fields are populated with the 
references where a connection was identified. References related only to this table directly follow. Empty 
fields signify the absence of any reports of connectivity. However, this does not imply that there is no 
connection between those areas. 
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Table 5.2. Permutation test results by motif class 
Results from a permutation test comparing the frequency of occurrence of motif classes in the empirical FPN with their frequency in 100,000 
random and lattice networks. Motif class ID 9 (bolded) was found to be significantly overrepresented in the empirical FPN in comparison to 
both random (p = 0, z = 12.032) and lattice null networks (p = 0.049, z = 1.612). 
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Table 5.3. Permutation test results by area 
Results from a permutation test comparing the frequency of participation of areas in motif classes in the empirical FPN with their frequency in 
100,000 random and lattice networks. Random network p-values are represented in plain font and lattice network p-values are represented in 
italics. Bolded text highlights areas 45, 47/12 and PGm which were found to participate in motif class 9 with a significantly greater frequency 
in the FPN than in random (p = 0.0, z = 5.189, 8.358 and 8.060) and lattice networks (p = 0.046, 0.014 and 0.029, z = 1.878, 2.440 and 2.109). 
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