You are here

Hydrodynamic Interactions of Pitching Hydrofoils in Close Formation

Download pdf | Full Screen View

Date Issued:
2020
Abstract/Description:
Hydrodynamics interaction is a factor in the performance of fish schooling or underwater vessels in close formation. In this work, we visualized the wake structure of pitching hydrofoils using an inclined soap film. We considered one-, two-, three- and nine-foil configurations with different spacing and actuation parameters: amplitude (A), frequency (f), phase difference (), and flow speed (U). The wake structures were recorded with a high-speed camera and analyzed to measure the vortex angle created. The wake structure of two- and three-foil configurations were compared with the Strouhal number, St = fA/U, of a single foil. For the nine-foil configuration, the wake velocity and the standard deviation of the velocity were used to interpret the hydrodynamic interaction. It was found that both spacing and phase difference between foils are relevant in the hydrodynamic interaction. Qualitative observations are also made, and vortex street behavior characteristics are identified.
Title: Hydrodynamic Interactions of Pitching Hydrofoils in Close Formation.
71 views
45 downloads
Name(s): Boltri, Michael A. , author
Curet, Oscar M., Thesis advisor
Florida Atlantic University, Degree grantor
Department of Ocean and Mechanical Engineering
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2020
Date Issued: 2020
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 77 p.
Language(s): English
Abstract/Description: Hydrodynamics interaction is a factor in the performance of fish schooling or underwater vessels in close formation. In this work, we visualized the wake structure of pitching hydrofoils using an inclined soap film. We considered one-, two-, three- and nine-foil configurations with different spacing and actuation parameters: amplitude (A), frequency (f), phase difference (), and flow speed (U). The wake structures were recorded with a high-speed camera and analyzed to measure the vortex angle created. The wake structure of two- and three-foil configurations were compared with the Strouhal number, St = fA/U, of a single foil. For the nine-foil configuration, the wake velocity and the standard deviation of the velocity were used to interpret the hydrodynamic interaction. It was found that both spacing and phase difference between foils are relevant in the hydrodynamic interaction. Qualitative observations are also made, and vortex street behavior characteristics are identified.
Identifier: FA00013627 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2020.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Hydrodynamics
Hydrofoils
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013627
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.