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LATITUDINAL VARIATION IN PALATABILITY OF SALT-MARSH PLANTS: 
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Abstract. Biogeographic theory predicts that intense consumer-prey interactions at 
low latitudes should select for increased defenses of prey relative to high latitudes. In salt 
marshes on the Atlantic coast of the United States, a community-wide pattern exists in 
which 10 species of low-latitude plants are less palatable to a diverse suite of herbivores 
than are high-latitude conspecifics. Examination of proximate plant traits (toughness, pal- 
atability of polar and nonpolar extracts, nitrogen content) of high- and low-latitude con- 
specifics of nine plant species suggested that all these proximate traits had the potential to 
contribute to latitudinal differences in palatability of some plant species. Southern plants 
were tougher than northern plants (five species), had less palatable polar extracts (four 
species), and had lower N content (six species). Experimental evidence linking traits to 
latitudinal differences in palatability was strongest for polar extracts and lacking for N 
content. For one plant species, none of the traits we studied correlated with latitudinal 
variation in palatability. Because palatability differences may change when moving from 
fresh plants to freeze-dried plants to plant traits, studies of latitudinal variation in freeze- 
dried plants or plant traits are likely to under- or overestimate latitudinal variation in 
palatability of fresh plants. This study has begun to identify the proximate plant traits 
responsible for latitudinal variation in plant palatability in Atlantic coast salt marshes, but 
the ultimate evolutionary factors responsible for variation in these traits remain to be 
determined. 

Key words: Atlantic coast (USA) salt-marshi plants; biogeographic theory; chemical defense; 
herbivory; latitude and plant variation; palatability, affected by multiple plant traits; palatability, 
plant variaton across latitude; plant chemical defenses, latitudinal variation; plant-herbivore inter- 
actions. 

INTRODUCTION 

Biogeographic theory predicts that increased con- 
sumer pressure at low latitudes should select for in- 
creased defenses of prey relative to high latitudes 
(MacArthur 1972, Bakus 1974, 1981, Bakus and Green 
1974, Green 1977, Vermeij 1978, Jeanne 1979, Bert- 
ness et al. 1981, Gaines and Lubchenco 1982, Louda 
1982, Fawcett 1984, Heck and Wilson 1987, Coley and 
Aide 1991, Stiven and Gardner 1992, Jablonski 1993, 
Cronin et al. 1997). Because of the logistical difficulties 
inherent in working across geographic distances, most 
studies of latitudinal variation in plant palatability have 
not directly compared the palatability of high- and low- 
latitude plants (but see Steinberg et al. 1991, Swihart 
et al. 1994, Pennings et al. 2001). Instead, most studies 
have examined variation in plant traits such as tough- 
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ness, nutritional content, or the diversity, identity and 
concentration of secondary metabolites (e.g., Levin 
1976, Rodriguez 1977, Coley and Aide 1991), or have 
worked with processed lyophilizedd and pulverized) 
plant material (e.g., Bolser and Hay 1996). These ap- 
proaches have created three caveats in our current un- 
derstanding of latitudinal variation in plant palatability. 

First, variation in a particular trait (say, phenolic 
content) does not necessarily imply variation in pal- 
atability, because herbivores may not be sensitive to 
variation in a particular plant trait (Steinberg and van 
Altena 1992, Steinberg et al. 1995). Moreover, since 
many traits combine to produce "palatability," varia- 
tion in one trait (say, phenolics) might be counteracted 
by opposite trends in another (say, toughness) with the 
result that no overall difference in palatability exists. 
Although this concern can be partially allayed by mea- 
suring as many plant traits as possible (e.g., Coley and 
Aide 1991, Coley and Barone 1996), it is logistically 
difficult to measure every single trait that might matter 
to herbivores, and hard to know how to integrate mul- 
tiple trait measures into a single index of palatability. 

Second, although the majority of studies to date have 
been consistent with the hypothesis that plant defenses 
increase at low latitudes (Hay and Fenical 1988, Coley 
and Aide 1991, Bolser and Hay 1996), a significant 
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1976, Rodriguez 1977, Coley and Aide 1991), or have
worked with processed (lyophilized and pulverized)
plant material (e.g., Bolser and Hay 1996). These ap­
proaches have created three caveats in our current un­
derstanding of latitudinal variation in plant palatability.

First, variation in a particular trait (say, phenolic
content) does not necessarily imply variation in pal­
atability, because herbivores may not be sensitive to
variation in a particular plant trait (Steinberg and van
Altena 1992, Steinberg et al. 1995). Moreover, since
many traits combine to produce "palatability," varia­
tion in one trait (say, phenolics) might be counteracted
by opposite trends in another (say, toughness) with the
result that no overall difference in palatability exists.
Although this concern can be partially allayed by mea­
suring as many plant traits as possible (e.g., Coley and
Aide 1991, Coley and Barone 1996), it is logistically
difficult to measure every single trait that might matter
to herbivores, and hard to know how to integrate mul­
tiple trait measures into a single index of palatability.

Second, although the majority of studies to date have
been consistent with the hypothesis that plant defenses
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fraction of studies have found no, or the opposite, trend 
(Van Alstyne and Paul 1990, Steinberg 1992, Targett 
et al. 1992, Bryant et al. 1994, Swihart et al. 1994). 
Reconciling these divergent results is difficult because 
few studies have integrated direct measures of plant 
palatability with studies of plant traits that might affect 
palatability. 

Third, many geographic studies have compared un- 
related groups of plants, raising the possibility that phy- 
logeny, rather than latitude, is the primary driver of 
palatability (or traits). This concern can be avoided by 
comparing congeners within multiple genera (Bolser 
and Hay 1996) or making intraspecific comparisons 
(Bolser and Hay 1996, Pennings et al. 2001). 

Salt marshes offer an attractive system for examining 
latitudinal variation in plant palatability using ap- 
proaches that avoid the above caveats. Salt marshes are 
a dominant intertidal habitat along the Atlantic coast 
of the United States (Pennings and Bertness 2001). The 
plant community of coastal salt marshes is comprised 
of relatively few species (Chapman 1974), making it 
logistically possible to study virtually the entire com- 
munity. In addition, most of the plant species occur 
across a wide latitudinal range (Duncan and Duncan 
1987, Pennings and Bertness 1999), making it possible 
to make intraspecific comparisons across latitude. 

We studied latitudinal variation in plant palatability 
in salt marshes on the Atlantic coast of the United 
States, working with the majority of the plant and her- 
bivore species present in the community, comparing 
plants from New England with conspecifics from the 
South Atlantic Bight. We combined direct measures of 
plant palatability with measurements and experimental 
studies of plant traits in order to determine which traits 
might be responsible for observed variation in palat- 
ability. Results of palatability trials with fresh plants 
were published previously (Pennings et al. 2001), and 
demonstrated strong preferences for northern vs. south- 
ern individuals of all 10 plant species studied, regard- 
less of season of plant collection or geographic origin 
of herbivore used. Here, we assess the relative impor- 
tance of plant toughness, chemical defenses, and N 
content in producing this striking geographic pattern. 
Our experiments parallel those used by Bolser and Hay 
(1996) to study latitudinal variation in the palatability 
of seaweeds, and we draw comparisons between the 
results of the two studies in the discussion. 

METHODS 

Study sites 

To ensure that working at any one site did not bias 
the results, we collected plants from four northern 
(Rhode Island, USA) and six southern (Georgia, USA) 
sites. The northern sites, located near 41?40' N latitude, 
were Hundred Acre, Rumstick, Haffenreffer, and Long 
Neck Cove, coded H, R, F, and N, respectively, in the 
figures. The southern sites, located near 31?25' N lat- 

itude, were Airport, Shell, Island, Lighthouse, Marsh 
Landing, and Cabretta, coded A, S, I, L, M, and, C, 
respectively, in the figures. Long Neck is a protected 
cove of the Sakonnet River, near Common Fence Point, 
Rhode Island. All other sites are described in Pennings 
et al. (2001). 

Plants and herbivores 

We worked with most plant species common at both 
northern and southern sites: Aster tenuifolius; Iva fru- 
tescens and Solidago sempervirens (Asteraceae); Dis- 
tichlis spicata, Spartina alterniflora, and Spartina pat- 
ens (Poaceae); Salicornia europaea and Salicornia vir- 
ginica (Chenopodiaceae); and Limonium carolinianum 
(Plumbaginaceae). These nine species represented the 
majority of the species and >75% of the total plant 
biomass in both geographic locations (authors personal 
observation), and included 9 of the 10 species studied 
by Pennings et al. (2001). Feeding trials were con- 
ducted using three grasshopper and one crab species, 
selected because they were common at Sapelo Island, 
Georgia, and adapted well to laboratory conditions. 
The majority of the trials were conducted with the crab 
Armases cinereum (Grapsidae), coded Ac in the figures, 
because it was highly omnivorous and thus facilitated 
comparisons by allowing us to examine all the plants 
using a single consumer. A small number of additional 
trials were conducted with the grasshoppers Orcheli- 
mumfidicinum (Tettigoniidae), Orphulellapelidna (Ac- 
rididae), and Paroxya clavuliger (Acrididae), coded Of, 
Op and Pc respectively in the figures, to confirm that 
results from crab trials were typical of other consumers. 
In previous work, both northern and southern consum- 
ers preferred northern vs. southern plants, and results 
from crab trials were similar to results from 12 other 
consumers (Pennings et al. 2001). See Pennings et al. 
(2001) for additional information on the plants and 
consumers. 

To ensure that our results did not vary over the grow- 
ing season, we collected plants twice in each of two 
years (June and early September of 1997 and of 1998) 
for toughness, nutrient, and phenolic analyses. Feeding 
trials were conducted using plants collected in 1997. 
We will refer to June and September as "early" and 
"late" seasons, respectively. 

Toughness measurements 

To compare the toughness of northern and southern 
plants, we measured toughness using two different 
techniques. These techniques, the penetrometer test and 
the ripping test, mimic different modes of herbivory, 
give similar rankings among plant species, and are de- 
scribed in Pennings et al. (1998). Briefly, the pene- 
trometer test measures the force needed to penetrate a 
leaf with a thin rod, and the ripping test measures the 
force needed to rip a pin through a vertically oriented 
leaf. We did not use the ripping test with D. spicata 
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proaches that avoid the above caveats. Salt marshes are
a dominant intertidal habitat along the Atlantic coast
of the United States (Pennings and Bertness 2001). The
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munity. In addition, most of the plant species occur
across a wide latitudinal range (Duncan and Duncan
1987, Pennings and Bertness 1999), making it possible
to make intraspecific comparisons across latitude.

We studied latitudinal variation in plant palatability
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States, working with the majority of the plant and her­
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South Atlantic Bight. We combined direct measures of
plant palatability with measurements and experimental
studies of plant traits in order to determine which traits
might be responsible for observed variation in palat­
ability. Results of palatability trials with fresh plants
were published previously (Pennings et al. 2001), and
demonstrated strong preferences for northern vs. south­
ern individuals of all 10 plant species studied, regard­
less of season of plant collection or geographic origin
of herbivore used. Here, we assess the relative impor­
tance of plant toughness, chemical defenses, and N
content in producing this striking geographic pattern.
Our experiments parallel those used by Bolser and Hay
(1996) to study latitudinal variation in the palatability
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results of the two studies in the discussion.
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cove of the Sakonnet River, near Common Fence Point
Rhode Island. All other sites are described in Penning~
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tescens and Solidago sempervirens (Asteraceae); Dis­
tichlis spicata, Spartina alterniflora, and Spartina pat­
ens (Poaceae); Salicornia europaea and Salicornia vir­
ginica (Chenopodiaceae); and Limonium carolinianum
(Plumbaginaceae). These nine species represented the
majority of the species and >75% of the total plant
biomass in both geographic locations (authors personal
observation), and included 9 of the 10 species studied
by Pennings et al. (2001). Feeding trials were con­
ducted using three grasshopper and one crab species,
selected because they were common at Sapelo Island,
Georgia, and adapted well to laboratory conditions.
The majority of the trials were conducted with the crab
Armases cinereum (Grapsidae), codedAc in the figures,
because it was highly omnivorous and thus facilitated
comparisons by allowing us to examine all the plants
using a single consumer. A small number of additional
trials were conducted with the grasshoppers Orcheli­
mumjidicinum (Tettigoniidae), Orphulella pelidna (Ac­
rididae), and Paroxya clavuliger (Acrididae), coded Of,
Op and Pc respectively in the figures, to confirm that
results from crab trials were typical of other consumers.
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ers preferred northern vs. southern plants, and results
from crab trials were similar to results from 12 other
consumers (Pennings et al. 2001). See Pennings et al.
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and S. patens because the force required to rip these 
plants was below the detection limit of the apparatus. 

For each test, 10-20 individual leaves of each plant 
species were collected from each of two sites, returned 
on ice to the laboratory, and measured within 4 h. Val- 
ues for individual leaves were averaged to yield a single 
value per species per site per season. Latitudinal dif- 
ferences in toughness were examined using a three- 
way ANOVA, with sites as replicates and latitude, sea- 
son and year as main effects. Data for Salicornia vir- 
ginica were analyzed with a two-way ANOVA because 
no plants of this species were collected early in 1997. 
Data were log transformed when appropriate to satisfy 
assumptions of ANOVA. 

Reconstituted-plant feeding trials 

To determine if variation in toughness influenced 
variation in palatability, we offered consumers a choice 
between reconstituted-plants from each geographic re- 
gion. We reasoned that breaking down the physical 
structure of plants and reconstituting them into artificial 
diets would allow a comparison of plant chemical com- 
position in the absence of differences in toughness. 
Thus, if consumers no longer discriminated between 
northern and southern plants in reconstituted form, it 
would suggest that toughness played a role in differ- 
ences in palatability of fresh plants. This conclusion, 
however, would come with the caveat that chemical 
changes might have occurred during the processing of 
the plant material (see Discussion, below). Alterna- 
tively, if consumers still preferred reconstituted north- 
ern plants over southern conspecifics, it would suggest 
that differences in plant chemistry were responsible for 
differences in palatability. 

Plants were frozen, lyophilized, and ground to a pow- 
der using a Wiley mill (mesh size = 40 [um). Plant 
powder from a northern site was reconstituted (0.2 g/ 
mL) into a 4% agar diet and poured into one of two 
rectangular templates resting on mesh screen (mesh 
size = 1 mm2). Conspecific plant powder from a south- 
ern site was similarly reconstituted and poured into the 
second rectangular template. After the agar solidified, 
strips of mesh screen containing paired diets were pre- 
sented to consumers in a two-choice feeding trial. 

Consumers were housed within replicate glass jars 
containing water and the two nonspecific diets. Rep- 
licates (n = 20) were checked twice daily and termi- 
nated when substantial consumption of at least one diet 
occurred. Replicates in which neither diet was eaten 
after 72 h, or in which both diets were completely 
consumed between observations, provided no infor- 
mation on the relative palatability of northern vs. south- 
ern diets, and were omitted from the analysis. Con- 
sumption was measured as the area of each diet con- 
sumed (in square millimeters). Differences in con- 
sumption were compared between geographic locations 
using paired t tests, or, when assumptions of normality 

or equal variance were not met, with Wilcoxon signed- 
rank tests. 

Chemical extract feeding trials 

To directly determine if differences in plant chem- 
istry contributed to latitudinal variation in palatability, 
we compared the palatability of northern and southern 
plant extracts. Two solvent mixtures were used in the 
extractions in order to obtain compounds with a wide 
range of polarity. Plants were collected and frozen. 
Approximately 1 kg of plant material from each site 
in each season was macerated and extracted twice in 
2:1 dichloromethane: methanol, followed by three ex- 
tractions in 70:30 methanol: water. Each extraction 
used 300 mL of combined solvents. The solvent mix- 
tures from the five extractions were combined and par- 
titioned in a separatory funnel into one polar (methanol 
: water) and one nonpolar (dichloromethane) extract. 
The extracts were reduced to dryness using rotary evap- 
oration and lyophilization. 

Polar and nonpolar extracts were tested separately. 
Extracts from northern and southern plants were in- 
corporated at natural concentrations (mass per volume) 
into a 4% agar diet, and presented to herbivores in two- 
choice feeding trials; trials were conducted and data 
analyzed as described above (see Reconstituted-plant 
feeding trials). Because we lacked detailed information 
on how various aspects of nutritional quality varied 
among plant species and geographic regions, we chose 
to incorporate the extracts into an agar diet that lacked 
additional nutritional constituents. The agar + extract 
diets were readily eaten by the consumers; however, 
results should be interpreted with caution because con- 
sumers may be more sensitive to secondary metabolites 
in diets with low nutritional quality (Duffy and Paul 
1992, Hay et al. 1994). 

Nitrogen and phenolic concentrations 

Because geographic differences in plant N content 
might mediate palatability, we measured total N con- 
tent of northern and southern plants. Plants were col- 
lected, lyophilized, and pulverized using an amalgam- 
ator. CHN analysis was performed at the University of 
Georgia Chemical Analysis laboratory using a Perkin- 
Elmer 240C elemental analyzer (Perkin-Elmer, Welles- 
ley, Massachusetts, USA). Nitrogen content (propor- 
tion of dry mass) was arcsine (square-root) transformed 
and compared for each species with a three-way AN- 
OVA (latitude X season X year). Individual plants (n 
= 4) were nested within sites (n = 2 plants per region 
per season per year), which were the unit of replication. 

For most of the plant species that we studied, bio- 
assay-guided fractionation experiments have not been 
performed to identify the secondary metabolite(s) that 
mediate palatability. In the case of Spartina alterniflo- 
ra, however, there is evidence that the primary sec- 
ondary metabolites are simple phenolics such as ferulic 
and coumeric acid (Valiela et al. 1979, Buchsbaum et 
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and S. patens because the force required to rip these
plants was below the detection limit of the apparatus.

For each test, 10-20 individual leaves of each plant
species were collected from each of two sites, returned
on ice to the laboratory, and measured within 4 h. Val­
ues for individual leaves were averaged to yield a single
value per species per site per season. Latitudinal dif­
ferences in toughness were examined using a three­
way ANDVA, with sites as replicates and latitude, sea­
son and year as main effects. Data for Salicornia vir­
ginica were analyzed with a two-way ANDVA because
no plants of this species were collected early in 1997.
Data were log transformed when appropriate to satisfy
assumptions of ANDVA.

Reconstituted-plant feeding trials

To determine if variation in toughness influenced
variation in palatability, we offered consumers a choice
between reconstituted-plants from each geographic re­
gion. We reasoned that breaking down the physical
structure of plants and reconstituting them into artificial
diets would allow a comparison of plant chemical com­
position in the absence of differences in toughness.
Thus, if consumers no longer discriminated between
northern and southern plants in reconstituted form, it
would suggest that toughness played a role in differ­
ences in palatability of fresh plants. This conclusion,
however, would come with the caveat that chemical
changes might have occurred during the processing of
the plant material (see Discussion, below). Alterna­
tively, if consumers still preferred reconstituted north­
ern plants over southern conspecifics, it would suggest
that differences in plant chemistry were responsible for
differences in palatability.

Plants were frozen, lyophilized, and ground to a pow­
der using a Wiley mill (mesh size = 40 f.Lm). Plant
powder from a northern site was reconstituted (0.2 g/
mL) into a 4% agar diet and poured into one of two
rectangular templates resting on mesh screen (mesh
size = 1 mm2). Conspecific plant powder from a south­
ern site was similarly reconstituted and poured into the
second rectangular template. After the agar solidified,
strips of mesh screen containing paired diets were pre­
sented to consumers in a two-choice feeding trial.

Consumers were housed within replicate glass jars
containing water and the two conspecific diets. Rep­
licates (n = 20) were checked twice daily and termi­
nated when substantial consumption of at least one diet
occurred. Replicates in which neither diet was eaten
after 72 h, or in which both diets were completely
consumed between observations, provided no infor­
mation on the relative palatability of northern vs. south­
ern diets, and were omitted from the analysis. Con­
sumption was measured as the area of each diet con­
sumed (in square millimeters). Differences in con­
sumption were compared between geographic locations
using paired t tests, or, when assumptions of normality

or equal variance were not met, with Wilcoxon signed­
rank tests.

Chemical extract feeding trials

To directly determine if differences in plant chem­
istry contributed to latitudinal variation in palatability,
we compared the palatability of northern and southern
plant extracts. Two solvent mixtures were used in the
extractions in order to obtain compounds with a wide
range of polarity. Plants were collected and frozen.
Approximately 1 kg of plant material from each site
in each season was macerated and extracted twice in
2: 1 dichloromethane : methanol, followed by three ex­
tractions in 70:30 methanol: water. Each extraction
used 300 mL of combined solvents. The solvent mix­
tures from the five extractions were combined and par­
titioned in a separatory funnel into one polar (methanol
: water) and one nonpolar (dichloromethane) extract.
The extracts were reduced to dryness using rotary evap­
oration and lyophilization.

Polar and nonpolar extracts were tested separately.
Extracts from northern and southern plants were in­
corporated at natural concentrations (mass per volume)
into a 4% agar diet, and presented to herbivores in two­
choice feeding trials; trials were conducted and data
analyzed as described above (see Reconstituted-plant
feeding trials). Because we lacked detailed information
on how various aspects of nutritional quality varied
among plant species and geographic regions, we chose
to incorporate the extracts into an agar diet that lacked
additional nutritional constituents. The agar + extract
diets were readily eaten by the consumers; however,
results should be interpreted with caution because con­
sumers may be more sensitive to secondary metabolites
in diets with low nutritional quality (Duffy and Paul
1992, Hay et al. 1994).

Nitrogen and phenolic concentrations

Because geographic differences in plant N content
might mediate palatability, we measured total N con­
tent of northern and southern plants. Plants were col­
lected, lyophilized, and pulverized using an amalgam­
ator. CHN analysis was performed at the University of
Georgia Chemical Analysis laboratory using a Perkin­
Elmer 240C elemental analyzer (Perkin-Elmer, Welles­
ley, Massachusetts, USA). Nitrogen content (propor­
tion of dry mass) was arcsine (square-root) transformed
and compared for each species with a three-way AN­
OVA (latitude X season X year). Individual plants (n
= 4) were nested within sites (n = 2 plants per region
per season per year), which were the unit of replication.

For most of the plant species that we studied, bio­
assay-guided fractionation experiments have not been
performed to identify the secondary metabolite(s) that
mediate palatability. In the case of Spartina alterniflo­
ra, however, there is evidence that the primary sec­
ondary metabolites are simple phenolics such as ferulic
and coumeric acid (Valiela et al. 1979, Buchsbaum et
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al. 1984, Rietsma et al. 1988, Newell and Porter 2000). 
We measured total phenolic content of S. alternifiora 
leaves using a standard Folin-Dennis reaction (Julku- 
nen-Tiitto 1985, Zimmer 1997). Leaves were frozen 
after collection, lyophilized, and pulverized. Fifty mil- 
ligrams (dry mass) of leaf material was extracted in 
80% methyl alcohol 3 h, agitating extracts every 30 
min. Fifty microliters of extract supernatant were re- 
acted with 750 FL deionized H20, 200 pRL Folin-Cio- 
calteu reagent, and 1000 pRL 20% Na2CO3. The absor- 
bance at 700 nm was measured on a spectrophotometer 
20 minutes after addition of Na2CO3. Concentrations 
were calculated based on a standard curve using pure 
ferulic acid (Sigma Chemical Company, Saint Louis, 
Missouri, USA). Because Folin-Dennis measurements 
have a wide variety of limitations (Appel et al. 2001), 
results should be interpreted with caution. 

RESULTS 

Toughness measurements 

Five plant species were tougher in the south than in 
the north, based on at least one of the two toughness 
measurements (Fig. 1). In no case did the data suggest 
that northern plants were consistently tougher than 
southern conspecifics. 

Penetrometer test.-Most of the species tested, with 
the exception of Aster tenuifolius and Solidago sem- 
pervirens, varied in this measure of toughness as a 
function of latitude, season, or year; however, inter- 
actions between main effects often complicated un- 
ambiguous identification of latitudinal patterns (Table 
1). Nevertheless, inspection of the data (Fig. 1) re- 
vealed that southern Spartina alterniflora, S. patens, 
Limonium carolinianum, and Salicornia virginica were 
tougher than northern conspecifics on more than half 
of the dates. Latitudinal variation in toughness of Spar- 
tina patens was particularly striking, varying as much 
as three-fold between southern and northern plants. 

Ripping test.-Three of the plants tested, A. tenui- 
folius, S. alternifiora and Salicornia virginica, varied 
in this measure of toughness as a function of latitude. 
In the case of A. tenuifolius the magnitude of this dif- 
ference varied between years (Table 1); however, south- 
ern plants had higher toughness measurements than 
northern plants on each date (Fig. 1). Latitudinal var- 
iation in toughness of Spartina alterniflora was partic- 
ularly striking, with northern plants ripping at half the 
force of southern plants. 

Reconstituted-plant feeding trials 

Twenty-six out of 47 (55%) trials with reconstituted 
plants resulted in greater consumption of the northern 
diet than of the southern diet (Fig. 2). In only one 
reconstituted trial was a southern plant preferred over 
a northern conspecific. The nature of the results varied 
between plant species, with five species displaying 
strong latitudinal trends, two displaying inconclusive 

results, and two displaying no latitudinal trends. Grass- 
hoppers preferred the northern diet in 8 of 11 trials and 
crabs in 18 of 36 trials (P = 0.30, Fisher exact test). 

Over half of the trials with Iva frutescens (5 of 7), 
Spartina alterniflora (5 of 7), S. patens (5 of 6), Sal- 
icornia europaea (3 of 4) and S. virginica (3 of 4) 
resulted in significantly greater consumption of the 
northern plant than the southern nonspecific. Two ad- 
ditional trials were marginally significant (P < 0.06), 
and all the trials for these five species showed a trend 
towards greater consumption of the northern diet. Con- 
sequently, these assays provided strong evidence that, 
for these five species, there are latitudinal differences 
in plant quality other than, or in addition to, differences 
in toughness. 

Half of the trials with Aster tenuifolius (2 of 4) and 
Limonium carolinianum (2 of 4) resulted in signifi- 
cantly greater consumption of the northern plant than 
the southern nonspecific. In the case of A. tenuifolius, 
results depended upon which northern and southern 
sites were paired (e.g., one pair of sites displayed sig- 
nificant differences on both dates; the other pair did 
not). In the case of L. carolinianum, the results de- 
pended on season, with both early trials nonsignificant, 
and both late trials significant. For both species, at least 
one trial showed a nonsignificant trend towards greater 
consumption of southern plants. Because of the vari- 
ability in these results, we consider them suggestive 
but not conclusive evidence for latitudinal differences 
in plant quality unrelated to toughness. 

None of the trials with Distichlis spicata (O of 6) 
and only one of the trials with Solidago sempervirens 
(1 of 5) resulted in significantly greater consumption 
of the northern plant than the southern nonspecific. 
Moreover, one of the trials with S. sempervirens re- 
sulted in significantly greater consumption of the south- 
ern plant. For these species, the reconstituted-plant tri- 
als provided no evidence of latitudinal differences in 
plant quality unrelated to toughness. 

Chemical extract feeding trials 

Overall, 6 out of 37 (16%) trials with nonpolar ex- 
tracts and 23 of 37 (62%) trials with polar extracts 
resulted in significantly greater consumption of the 
northern than the southern diet (Fig. 3). Only one trial 
with a nonpolar extract and one trial with a polar extract 
resulted in significant preferences for the southern di- 
ets. Results varied among plant species, with four 
showing conclusive evidence for latitudinal differences 
in palatability of the polar extract, three showing sug- 
gestive but inconclusive results, and two displaying no 
latitudinal trends. 

Over half the trials with polar extracts of Iva fru- 
tescens (5 of 5), Spartina alternifiora (4 of 4), S. patens 
(3 of 4, counting one trial with P = 0.054), and Sal- 
icornia europaea (3 of 4) resulted in greater con- 
sumption of the northern than the southern diet. All 
nonsignificant trials with polar extracts of these species 
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al. 1984, Rietsma et al. 1988, Newell and Porter 2000).
We measured total phenolic content of S. alternifiora
leaves using a standard Folin-Dennis reaction (Julku­
nen-Tiitto 1985, Zimmer 1997). Leaves were frozen
after collection, lyophilized, and pulverized. Fifty mil­
ligrams (dry mass) of leaf material was extracted in
80% methyl alcohol 3 h, agitating extracts every 30
min. Fifty microliters of extract supernatant were re­
acted with 750 f.LL deionized H20, 200 f.LL Folin-Cio­
calteu reagent, and 1000 f.LL 20% Na2C03• The absor­
bance at 700 nm was measured on a spectrophotometer
20 minutes after addition of Na2C03• Concentrations
were calculated based on a standard curve using pure
ferulic acid (Sigma Chemical Company, Saint Louis,
Missouri, USA). Because Folin-Dennis measurements
have a wide variety of limitations (Appel et al. 2001),
results should be interpreted with caution.

RESULTS

Toughness measurements

Five plant species were tougher in the south than in
the north, based on at least one of the two toughness
measurements (Fig. 1). In no case did the data suggest
that northern plants were consistently tougher than
southern conspecifics.

Penetrometer test.-Most of the species tested, with
the exception of Aster tenuifolius and Solidago sem­
pervirens, varied in this measure of toughness as a
function of latitude, season, or year; however, inter­
actions between main effects often complicated un­
ambiguous identification of latitudinal patterns (Table
1). Nevertheless, inspection of the data (Fig. 1) re­
vealed that southern Spartina alterniflora, S. patens,
Limonium carolinianum, and Salicornia virginica were
tougher than northern conspecifics on more than half
of the dates. Latitudinal variation in toughness of Spar­
tina patens was particularly striking, varying as much
as three-fold between southern and northern plants.

Ripping test.-Three of the plants tested, A. tenui-
folius, S. alternifiora and Salicornia virginica, varied
in this measure of toughness as a function of latitude.
In the case of A. tenuifolius the magnitude of this dif­
ference varied between years (Table 1); however, south­
ern plants had higher toughness measurements than
northern plants on each date (Fig. 1). Latitudinal var­
iation in toughness of Spartina alterniflora was partic­
ularly striking, with northern plants ripping at half the
force of southern plants.

Reconstituted-plant feeding trials

Twenty-six out of 47 (55%) trials with reconstituted
plants resulted in greater consumption of the northern
diet than of the southern diet (Fig. 2). In only one
reconstituted trial was a southern plant preferred over
a northern conspecific. The nature of the results varied
between plant species, with five species displaying
strong latitudinal trends, two displaying inconclusive

results, and two displaying no latitudinal trends. Grass­
hoppers preferred the northern diet in 8 of 11 trials and
crabs in 18 of 36 trials (P = 0.30, Fisher exact test).

Over half of the trials with Iva frutescens (5 of 7),
Spartina alternifiora (5 of 7), S. patens (5 of 6), Sal­
icornia europaea (3 of 4) and S. virginica (3 of 4)
resulted in significantly greater consumption of the
northern plant than the southern conspecific. Two ad­
ditional trials were marginally significant (P < 0.06),
and all the trials for these five species showed a trend
towards greater consumption of the northern diet. Con­
sequently, these assays provided strong evidence that,
for these five species, there are latitudinal differences
in plant quality other than, or in addition to, differences
in toughness.

Half of the trials with Aster tenuifolius (2 of 4) and
Limonium carolinianum (2 of 4) resulted in signifi­
cantly greater consumption of the northern plant than
the southern conspecific. In the case of A. tenuzfolius,
results depended upon which northern and southern
sites were paired (e.g., one pair of sites displayed sig­
nificant differences on both dates; the other pair did
not). In the case of L. carolinianum, the results de­
pended on season, with both early trials nonsignificant,
and both late trials significant. For both species, at least
one trial showed a nonsignificant trend towards greater
consumption of southern plants. Because of the vari­
ability in these results, we consider them suggestive
but not conclusive evidence for latitudinal differences
in plant quality unrelated to toughness.

None of the trials with Distichlis spicata (0 of 6)
and only one of the trials with Solidago sempervirens
(1 of 5) resulted in significantly greater consumption
of the northern plant than the southern conspecific.
Moreover, one of the trials with S. sempervirens re­
sulted in significantly greater consumption of the south­
ern plant. For these species, the reconstituted-plant tri­
als provided no evidence of latitudinal differences in
plant quality unrelated to toughness.

Chemical extract feeding trials

Overall, 6 out of 37 (16%) trials with nonpolar ex­
tracts and 23 of 37 (62%) trials with polar extracts
resulted in significantly greater consumption of the
northern than the southern diet (Fig. 3). Only one trial
with a nonpolar extract and one trial with a polar extract
resulted in significant preferences for the southern di­
ets. Results varied among plant species, with four
showing conclusive evidence for latitudinal differences
in palatability of the polar extract, three showing sug­
gestive but inconclusive results, and two displaying no
latitudinal trends.

Over half the trials with polar extracts of Iva fru­
tescens (5 of 5), Spartina alterniflora (4 of 4), S. patens
(3 of 4, counting one trial with P = 0.054), and Sal­
icornia europaea (3 of 4) resulted in greater con­
sumption of the northern than the southern diet. All
nonsignificant trials with polar extracts of these species
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FIG, 1. Toughness of northern and southern plants, tested by penetrometer and ripping methods. Data are means and 1
SE. Season and year of collection are indicated below each bar.



3374 ERIN L. SISKA ET AL. Ecology, Vol. 83, No. 12 

TABLE 1. Plant toughness: three-way ANOVA results of penetrometer (p) and ripping (r) tests. 

Latitude x 
Latitude Latitude Season Season x 

Species Test Latitude Season Year x Season x Year x Year Year 

Aster tenuifolius p 0.549 0.253 0.605 0.508 0.861 0.251 0.660 
r <0.001 <0.001 0.363 0.707 0.006 0.503 0.601 

Iva frutescens p 0.611 <0.001 0.560 0.021 0.037 0.017 0.512 
r 0.833 0.003 0.086 0.008 0.352 0.173 0.199 

Solidago sempervirens p 0.205 0.754 0.111 0.680 0.496 0.070 0.155 
r 0.818 0.001 0.302 0.245 0.479 0.860 0.213 

Distichlis spicatat p <0.001 <0.001 0.008 0.018 0.009 0.001 0.001 
Spartina alterni fora p 0.001 0.165 0.624 0.022 0.018 0.008 0.253 

r 0.004 0.773 0.163 0.175 0.206 0.660 0.977 
S. patenst p <0.001 0.019 0.412 0.022 0.894 0.091 0.137 
Salicornia europaea p 0.007 0.186 0.002 <0.001 0.001 0.033 0.010 

r 0.726 0.887 0.214 0.053 0.274 0.159 0.342 
S. virginicat p <0.001 0.010 <0.001 ... ... 

r 0.039 0.316 -- 0.189 ... ... 
Limonium carolinianum p 0.018 0.391 0.041 0.107 0.846 0.846 0.243 

r 0.517 0.007 0.950 0.100 0.306 0.658 0.474 

Note: Significant results (P < 0.05) are indicated in boldface. 
t Measured only with penetrometer. 
t Evaluated with two-way ANOVA because no measurements were made in early 1997. 

showed a trend towards greater consumption of the 
northern diet. In addition, two of five trials with non- 
polar extracts of L frutescens also resulted in greater 
consumption of the northern than the southern diet. All 
four of these plant species previously displayed strong 
latitudinal patterns in palatability of reconstituted 
plants, and we conclude that this earlier result was 
primarily driven by latitudinal variation in palatability 
of polar extracts. 

The reconstituted-plant assays provided strong evi- 
dence for latitudinal differences in palatability of Sal- 
icornia virginica, and inconclusive evidence for Aster 
tenuifolius and Limonium carolinianum. In the chem- 
ical-extract trials with these species, half of the trials 
with polar extracts resulted in greater consumption of 
the northern than the southern diet (two out of four in 
each case). In the case of A. tenuifolius, the results 
again differed as a function of which sites were com- 
pared, but the pair of sites that consistently differed in 
palatability in the reconstituted-plant assays (Rumstick 
and Airport) did not differ in the polar-extract assays, 
and the pair of sites that consistently differed in pal- 
atability in the polar-extract assays (Hundred Acre and 
Marsh Landing) did not differ in the reconstituted as- 
says. Similarly, results for L. carolinianum again dif- 
fered by season, but whereas the reconstituted-plant 
assays displayed latitudinal differences only in the late 
season, the polar-extract assays displayed differences 
only in the early season. We consider these results sug- 
gestive but not conclusive evidence for latitudinal var- 
iation in plant palatability driven by extracts. 

There was no evidence in the reconstituted-plant tri- 
als for latitudinal difference in palatability of Solidago 
sempervirens or Distichlis spicata, nor did these spe- 
cies display strong evidence for latitudinal variation in 
extract palatability. Two of five assays with polar ex- 

tracts of S. sempervirens resulted in greater consump- 
tion of the northern than the southern diet. Results with 
D. spicata were mixed, with one assay indicating a 
preference for the northern diet, one a preference for 
the southern diet, and two no preference. 

Nitrogen and phenolic concentrations 

Northern populations of several plant species had 
higher N concentrations than did southern conspecifics 
(Fig. 4), but the magnitude of the differences often 
varied as a function of season or year, leading to sig- 
nificant interactions between the main effects (Table 
2). Inspection of the data indicated that Aster tenui- 
folius, Distichlis spicata, Spartina alterniflora, Sali- 
cornia europaea, S. virginica and Limonium caroli- 
nianum had higher levels of N in the north than in the 
south on at least three of four dates. Differences were 
often larger early in the year than late in the year, 
leading to significant latitude X season interactions 
(Table 2). 

At least three additional species, Ivafrutescens, Sol- 
idago sempervirens, and Spartina patens, had higher 
levels of nitrogen in the north than in the south early 
in the year, but showed minimal differences or the re- 
verse pattern late in the year. Given the shorter growing 
season in the north, these results are consistent with 
young, rapidly growing plants having high N content, 
and older, senescing plants having low foliar N content 
because of translocation to overwintering organs. In 
any case, because these species had a higher N content 
than southern conspecifics only in the spring, latitu- 
dinal variation in N content might explain differences 
in palatability that were observed in the spring, but 
could not explain differences in palatability that were 
observed in the fall (Pennings et al. 2001: Fig. 2). 
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TABLE 1. Plant toughness: three-way ANOVA results of penetrometer (p) and ripping (r) tests.

Latitude X
Latitude Latitude Season Season X

Species Test Latitude Season Year X Season X Year X Year Year

Aster tenuifolius p 0.549 0.253 0.605 0.508 0.861 0.251 0.660
r <0.001 <0.001 0.363 0.707 0.006 0.503 0.601

Iva frutescens p 0.611 <0.001 0.560 0.021 0.037 0.017 0.512
r 0.833 0.003 0.086 0.008 0.352 0.173 0.199

Solidago sempervirens p 0.205 0.754 0.111 0.680 0.496 0.070 0.155
r 0.818 0.001 0.302 0.245 0.479 0.860 0.213

Distichlis spioatat p <0.001 <0.001 0.008 0.018 0.009 0.001 0.001
Spartina alterniflora p 0.001 0.165 0.624 0.022 0.018 0.008 0.253

r 0.004 0.773 0.163 0.175 0.206 0.660 0.977
S. patenst p <0.001 0.019 0.412 0.022 0.894 0.091 0.137
Salicornia europaea p 0.007 0.186 0.002 <0.001 0.001 0.033 0.010

r 0.726 0.887 0.214 0.053 0.274 0.159 0.342
S. virginica-+ p <0.001 0.010 <0.001

r 0.039 0.316 0.189
Limonium carolinianum p 0.018 0.391 0.041 0.107 0.846 0.846 0.243

r 0.517 0.007 0.950 0.100 0.306 0.6~8 0.474

Note: Significant results (P < 0.05) are indicated in boldface.
t Measured only with penetrometer.
-+ Evaluated with two-way ANOVA because no measurements were made in early 1997.

showed a trend towards greater consumption of the
northern diet. In addition, two of five trials with non­
polar extracts of 1. frutescens also resulted in greater
consumption of the northern than the southern diet. All
four of these plant species previously displayed strong
latitudinal patterns in palatability of reconstituted
plants, and we conclude that this earlier result was
primarily driven by latitudinal variation in palatability
of polar extracts.

The reconstituted-plant assays provided strong evi­
dence for latitudinal differences in palatability of Sal­
icornia virginica, and inconclusive evidence for Aster
tenuifolius and Limonium carolinianum. In the chem­
ical-extract trials with these species, half of the trials
with polar extracts resulted in greater consumption of
the northern than the southern diet (two out of four in
each case). In the case of A. tenuifolius, the results
again differed as a function of which sites were com­
pared, but the pair of sites that consistently differed in
palatability in the reconstituted-plant assays (Rumstick
and Airport) did not differ in the polar-extract assays,
and the pair of sites that consistently differed in pal­
atability in the polar-extract assays (Hundred Acre and
Marsh Landing) did not differ in the reconstituted as­
says. Similarly, results for L. carolinianum again dif­
fered by season, but whereas the reconstituted-plant
assays displayed latitudinal differences only in the late
season, the polar-extract assays displayed differences
only in the early season. We consider these results sug­
gestive but not conclusive evidence for latitudinal var­
iation in plant palatability driven by extracts.

There was no evidence in the reconstituted-plant tri­
als for latitudinal difference in palatability of Solidago
sempervirens or Distichlis spicata, nor did these spe­
cies display strong evidence for latitudinal variation in
extract palatability. Two of five assays with polar ex-

tracts of S. sempervirens resulted in greater consump­
tion of the northern than the southern diet. Results with
D. spicata were mixed, with one assay indicating a
preference for the northern diet, one a preference for
the southern diet, and two no preference.

Nitrogen and phenolic concentrations

Northern populations of several plant species had
higher N concentrations than did southern conspecifics
(Fig. 4), but the magnitude of the differences often
varied as a function of season or year, leading to sig­
nificant interactions between the main effects (Table
2). Inspection of the data indicated that Aster tenui-
folius, Distichlis spicata, Spartina alternifiora, Sali­
cornia europaea, S. virginica and Limonium caroli­
nianum had higher levels of N in the north than in the
south on at least three of four dates. Differences were
often larger early in the year than late in the year,
leading to significant latitude X season interactions
(Table 2).

At least three additional species, Iva frutescens, Sol­
idago sempervirens, and Spartina patens, had higher
levels of nitrogen in the north than in the south early
in the year, but showed minimal differences or the re­
verse pattern late in the year. Given the shorter growing
season in the north, these results are consistent with
young, rapidly growing plants having high N content,
and older, senescing plants having low foliar N content
because of translocation to overwintering organs. In
any case, because these species had a higher N content
than southern conspecifics only in the spring, latitu­
dinal variation in N content might explain differences
in palatability that were observed in the spring, but
could not explain differences in palatability that were
observed in the fall (Pennings et al. 2001: Fig. 2).
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FIG. 2. Consumption of reconstituted northern vs. southern plants in two-choice feeding trials. Data are means and 1 SE. 

Sample sizes, sites, and herbivore used are indicated below paired bars. For site abbreviations see Methods: Study sites. 
Herbivore key: Ac = Armases cinereum, Of = Orchelimum fidicinum, Op = Orphulella pelidna, Pc = Paroxya clavuliger. 

Phenolic concentrations of Spartina alterniflora 
were almost 30% greater in the south (3.16 ? 0.10% 
of dry mass [mean + 1 SE]) than in the north (2.45 ? 
0.13%, P < 0.0001, ANOVA, results did not vary by 
year or season). This result is consistent with the lat- 
itudinal differences in palatability of polar extracts ob- 
served in most comparisons with this species (Fig. 3). 

Overall, we found strong evidence that all species 
of salt marsh plants demonstrate latitudinal variation 
in palatability when presented to herbivores in an intact 
form (Pennings et al. 2001). When we examined in- 
dividual plant traits, we found that all but one species 
exhibited latitudinal variation in at least one trait (Table 
3). Five species were tougher in the south than the 
north. Five species were less palatable in the south than 

the north when tested in reconstituted form. The polar 
extracts of four of these five species were less palatable 
in the south than the north. Finally, nitrogen content 
was lower for six species, and phenolic concentration 
higher for one species, in the south than the north. 

DISCUSSION 

Along the Atlantic coast of the United States, south- 
ern salt-marsh plants are less palatable than northern 
conspecifics (Pennings et al. 2001). Here, we have be- 
gun to identify the plant traits that are responsible for 
this variation. Plant toughness, secondary chemistry, 
and nitrogen content all varied with latitude in some 
plant species, but experimental evidence linking trait 
variation to variation in palatability was strongest for 
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FIG. 2. Consumption of reconstituted northern vs. southern plants in two-choice feeding trials. Data are means and 1 SE.

Sample sizes, sites, and herbivore used are indicated below paired bars. For site abbreviations see Methods: Study sites.
Herbivore key: Ac = Armases cinereum, Of = Orchelimum fidicinum, Op = Orphulella pelidna, Pc = Paroxya clavuliger.

Phenolic concentrations of Spartina alterniflora
were almost 30% greater in the south (3.16 ± 0.10%
of dry mass [mean + 1 SE]) than in the north (2.45 ±
0.13%, P < 0.0001, ANOVA, results did not vary by
year or season). This result is consistent with the lat­
itudinal differences in palatability of polar extracts ob­
served in most comparisons with this species (Fig. 3).

Overall, we found strong evidence that all species
of salt marsh plants demonstrate latitudinal variation
in palatability when presented to herbivores in an intact
form (Pennings et al. 2001). When we examined in­
dividual plant traits, we found that all but one species
exhibited latitudinal variation in at least one trait (Table
3). Five species were tougher in the south than the
north. Five species were less palatable in the south than

the north when tested in reconstituted form. The polar
extracts of four of these five species were less palatable
in the south than the north. Finally, nitrogen content
was lower for six species, and phenolic concentration
higher for one species, in the south than the north.

DISCUSSION

Along the Atlantic coast of the United States, south­
ern salt-marsh plants are less palatable than northern
conspecifics (Pennings et al. 2001). Here, we have be­
gun to identify the plant traits that are responsible for
this variation. Plant toughness, secondary chemistry,
and nitrogen content all varied with latitude in some
plant species, but experimental evidence linking trait
variation to variation in palatability was strongest for
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FIG. 3. Results of feeding trials with polar and nonpolar plant extracts. Data (consumption of northern vs. southern diets 
in two-choice feeding trials) are means and 1 SE. Sample sizes, sites, and herbivore used are indicated below paired bars. 
For site abbreviations see Methods: Study sites. Herbivore key: Ac = Armases cinereum, Pc = Paroxya clavuliger. 

3376 ERIN L. SISKA ET AL. Ecology, Vol. 83, No. 12

3 P= 0.102

11
RIA
Ac

P=0.26

9 12
HIM RIA
Ac Ac

15
HIM
Ac

12
H/A
Ac

P= 1.00

11 10 15
RIS RIA H/A
Ac Pc Ac

13
RIS
Ac

2

o
RII
Ac

6
P= 0.002

P=0.41

2

o
9

RIA
Ac

18
HIM
Ac

14
RIA
Ac

17
HIM
Ac

3

o
16
H/A
Ac

P= 0.018

19
RIS
Ac

20
RIA
Pc

16
H/A
Ac

19
RIS
Ac

3

o
13
HII
Ac

5
RII
Ac

18
R/I
Pc

14
HII
Ac

13
R/I
Ac

11
R/L
Ac

12
R/L
Ac

P=0.13

16
H/C
Ac

15
H/C
Ac

12
RIL
Ac

13
R/L
Ac

P<0.001

8
H/C
Ac

16
H/C
Ac

o

2

3

Spartina patens

Nonpolar
4,....---~~P.------Early Late

P= 0.08

8~ P_o....l_a_r _

7
6
5
4
3
2
1

o
18
RIS
Ac

18
H/A
Ac

14
RIS
Ac

8
H/A
Ac

4

2

o

Spartina alterniflora

7 Nonpolar
P< 0.001 Early Late

6

5

4

3

2

1

o
16
RIS
Ac

14
RIS
Ac

15
H/A
Ac

16
HIS
Ac

16
H/A
Ac

11
RIS
Ac

14
HIS
Ac

11
HIS
Ac

o

4

2

Distichlis spicata

6~ """,!,!"N_o~n.ppo_l_a_r _
Earl Late

P= 0.88

~

C\I

Eg 2

"'C
Q)

E 0
:J
enc
8
..... Polar Polar
Q) 5 r----...........;....;.,;..;;~----- 10,..------.....------:.c Early Late Early Late
'0 4 p= 0.007 8 P< 0.001

ttl
Q) 3 6

<
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FIG. 3. Continued. 

polar extracts. Results with reconstituted plants and 
plant traits were less striking than previous results with 
fresh plant material, suggesting that studies that work 
with reconstituted plants, or that focus only on plant 
traits, are likely to underestimate variation in plant pal- 
atability. Many of our results are similar to results from 
a latitudinal comparison of seaweed palatability by 
Bolser and Hay (1996), suggesting that similar pro- 
cesses may occur in both systems. 

In at least five salt-marsh plant species, southern 
individuals were tougher than northern conspecifics in 
at least one measure of toughness. For none of these 
species did latitudinal differences in palatability totally 
disappear when plants were compared in reconstituted 
form; however, in two cases (Aster tenuifolius and Li- 
monium carolinianum) the reconstituted assays were 
ambiguous, suggesting that removing differences in 
toughness removed some of the differences in palat- 
ability. Nevertheless, the three plants with the strongest 
differences in toughness (Salicornia virginica, Spar- 
tina alterniflora, and S. patens) also showed clear dif- 
ferences in palatability in reconstituted assays when 
differences in toughness were removed. Thus, latitu- 
dinal variation in toughness was not the only trait lead- 
ing to latitudinal variation in palatability; however, lat- 
itudinal variation in toughness could have reinforced 
palatability differences caused by other plant trait(s). 
Pennings et al. (1998) found that variation in toughness 
was the primary factor affecting feeding preferences of 
Armases cinereum, the crab used here in most of our 
assays; however, their study focused on comparing dif- 

ferent plant species which varied in toughness by >2 
orders of magnitude. In comparison, the intraspecific 
differences in toughness across latitude that we report 
here were modest (up to 3-fold). We conclude that al- 
though intraspecific variation in toughness could have 
contributed to latitudinal differences in palatability, it 
was not of overriding importance. 

In at least four and as many as seven of the plants 
(depending on the rigor of the evidence demanded), 
latitudinal variation in the palatability of polar extracts 
contributed to latitudinal variation in palatability of 
fresh plants. For all but two of these seven species, 
which were ambiguous for both tests, latitudinal dif- 
ferences in palatability were also found in the recon- 
stituted-plant assays. In the one case in which we quan- 
tified variation in a class of secondary metabolites, the 
phenolic concentration of Spartina alterniflora was 
higher in southern plants than in northern conspecifics. 
Thus, for these species we can link variation in pal- 
atability of fresh plants to variation in palatability of 
reconstituted plants (indicating that factors in addition 
to toughness are important) to variation in palatability 
of polar extracts-and in one case, potentially to var- 
iation in the concentration of phenolics. Documenting 
latitudinal variability in concentrations of individual 
secondary metabolites must await bioassay-guided 
identification of which secondary metabolites in each 
plant are distasteful to consumers. Moreover, because 
phenolic assays measure a broad group of compounds 
that may differ in activity and include compounds that 
are not true phenolics (Appel et al. 2001, Kubanek et 
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polar extracts. Results with reconstituted plants and
plant traits were less striking than previous results with
fresh plant material, suggesting that studies that work
with reconstituted plants, or that focus only on plant
traits, are likely to underestimate variation in plant pal­
atability. Many of our results are similar to results from
a latitudinal comparison of seaweed palatability by
Bolser and Hay (1996), suggesting that similar pro­
cesses may occur in both systems.

In at least five salt-marsh plant species, southern
individuals were tougher than northern conspecifics in
at least one measure of toughness. For none of these
species did latitudinal differences in palatability totally
disappear when plants were compared in reconstituted
form; however, in two cases (Aster tenuifolius and Li­
monium carolinianum) the reconstituted assays were
ambiguous, suggesting that removing differences in
toughness removed some of the differences in palat­
ability. Nevertheless, the three plants with the strongest
differences in toughness (Salicornia virginica, Spar­
tina alterniflora, and S. patens) also showed clear dif­
ferences in palatability in reconstituted assays when
differences in toughness were removed. Thus, latitu­
dinal variation in toughness was not the only trait lead­
ing to latitudinal variation in palatability; however, lat­
itudinal variation in toughness could have reinforced
palatability differences caused by other plant trait(s).
Pennings et al. (1998) found that variation in toughness
was the primary factor affecting feeding preferences of
Armases cinereum, the crab used here in most of our
assays; however, their study focused on comparing dif-

ferent plant species which varied in toughness by >2
orders of magnitude. In comparison, the intraspecific
differences in toughness across latitude that we report
here were modest (up to 3-fold). We conclude that al­
though intraspecific variation in toughness could have
contributed to latitudinal differences in palatability, it
was not of overriding importance.

In at least four and as many as seven of the plants
(depending on the rigor of the evidence demanded),
latitudinal variation in the palatability of polar extracts
contributed to latitudinal variation in palatability of
fresh plants. For all but two of these seven species,
which were ambiguous for both tests, latitudinal dif­
ferences in palatability were also found in the recon­
stituted-plant assays. In the one case in which we quan­
tified variation in a class of secondary metabolites, the
phenolic concentration of Spartina alterniflora was
higher in southern plants than in northern conspecifics.
Thus, for these species we can link variation in pal­
atability of fresh plants to variation in palatability of
reconstituted plants (indicating that factors in addition
to toughness are important) to variation in palatability
of polar extracts-and in one case, potentially to var­
iation in the concentration of phenolics. Documenting
latitudinal variability in concentrations of individual
secondary metabolites must await bioassay-guided
identification of which secondary metabolites in each
plant are distasteful to consumers. Moreover, because
phenolic assays measure a broad group of compounds
that may differ in activity and include compounds that
are not true phenolics (Appel et al. 2001, Kubanek et



3378 ERIN L. SISKA ET AL. Ecology, Vol. 83, No. 12 

m Northern M Southern 

Aster tenuifolius Iva frutescens Solidago sempervirens 
3 3 4 

3 
2 2 

W ~~~~~~~~~~~~~~~~~2 
1 1 

o0 t 0 I I I t j O I 0 I 
Early Early Late Late Early Early Late Late Early Early Late Late 
1997 1998 1997 1998 1997 1998 1997 1998 1997 1998 1997 1998 

Distichlis spicata Spartina alterniflora Spartina patens 
2. 3 2. 

(I) 
(I) 

W ~~~~~~~~~~2 
E 

1997 1998 1997 1998 1997 1998 1997 1998 1997 1998 1997 1998 

z 

Salicomia europaea Sal0 Early Early Late Late Early Early Late Late Early Early Late Late 
1997 1998 1997 1998 1997 1998 1997 1998 1997 1998 1997 1998 

SaFiconia europaea Salicornia virginica 3 Limonium carolinianum 
4 5 

4 

3 

2. 

1. 1 

0 
1 I I - I~~ 0 O 

Early Early Late Late Early Early Late Late Early Early Late Late 
1997 1998 1997 1998 1997 1998 1997 1998 1997 1998 1997 1998 

FIG. 4. Nitrogen content of northern and southern plants, Year and season of collection are presented below each bar. 

al. 2001), the phenolic measurements should be con- 
sidered preliminary until confirmed by quantification 
of individual compounds followed by feeding assays 
with compounds at natural concentrations. Bolser and 
Hay (1996) similarly found that the palatability of ex- 

tracts correlated with palatability of reconstituted sea- 
weeds better than did other seaweed traits. 

Nitrogen content in several plant species was higher 
in the north than the south. This variation could arise 
from several sources. Northeastern estuaries are typi- 

TABLE 2. Plant nitrogen content: results of three-way ANOVAs. 

Latitude x 
Latitude x Latitude x Season Season x 

Species Latitude Season Year Season Year X Year Year 

Aster tenuifolius <0.001 0.017 0.967 <0.001 0.024 0.003 0.273 
Iva frutescens 0.896 <0.001 0.392 <0.001 0.096 0.025 0.757 
Solidago sempervirens 0.009 <0.001 0.001 0.005 0.050 0.206 0.018 
Distichlis spicata 0.007 0.052 0.101 0.458 0.081 0.117 0.816 
Spartina alterniflora <0.001 0.974 <0.001 0.069 <0.001 0.027 0.605 
Spartina patens <0.001 0.001 0.279 <0.001 0.125 0.382 0.134 
Salicornia europaea <0.001 0.059 0.287 0.005 0.883 0.078 <0.001 
Salicornia virginica <0.001 <0.001 0.009 0.013 <0.001 0.010 <0.001 
Limonium carolinianum 0.015 0.195 0.906 0.999 0.223 0.546 0.489 

Note: Significant results (P < 0.05) are indicated in boldface. 
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al. 2001), the phenolic measurements should be con­
sidered preliminary until confirmed by quantification
of individual compounds followed by feeding assays
with compounds at natural concentrations. Bolser and
Hay (1996) similarly found that the palatability of ex-

tracts correlated with palatability of reconstituted sea­
weeds better than did other seaweed traits.

Nitrogen content in several plant species was higher
in the north than the south. This variation could arise
from several sources. Northeastern estuaries are typi-

TABLE 2. Plant nitrogen content: results of three-way ANOVAs.

Latitude X
Latitude x Latitude x Season Season x

Species Latitude Season Year Season Year x Year Year

Aster tenuifolius <0.001 0.017 0.967 <0.001 0.024 0.003 0.273
Iva frutescens 0.896 <0.001 0.392 <0.001 0.096 0.025 0.757
Solidago sempervirens 0.009 <0.001 0.001 0.005 0.050 0.206 0.018
Distichlis spicata 0.007 0.052 0.101 0.458 0.081 0.117 0.816
Spartina alterniflora <0.001 0.974 <0.001 0.069 <0.001 0.027 0.605
Spartina patens <0.001 0.001 0.279 <0.001 0.125 0.382 0.134
Salicornia europaea <0.001 0.059 0.287 0.005 0.883 0.078 <0.001
Salicornia virginica <0.001 <0.001 0.009 0.013 <0.001 0.010 <0.001
Limonium carolinianum 0.015 0.195 0.906 0.999 0.223 0.546 0.489

Note: Significant results (P < 0.05) are indicated in boldface.
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TABLE 3. Summary of results of tests for plant traits responsible for latitudinal variation in palatibity of nine salt-marsh 
plant species: "yes" indicates that we unambiguously' identified latitudinal variation in a trait, "maybe" indicates results 
were equivocal, and "no" indicates that we found little evidence for latitudinal variation. 

Solidago Spartina Salicornia Limonium 
Aster Iva sempervi- Distichlis alter- 

Salicornia 
carolini- 

tenuifolius frutescens rens spicata niflora patens europaea virginica anum 

Palatability of fresh plants yes yes yes yes yes yes yes yes yes 

Toughness 
Penetrometer no no no maybe yes yes maybe yes yes 
Ripping yes no no n/a yes n/a no yes no 

Palatability of reconstituted maybe yes no no yes yes yes yes maybe 
plants 

Palatability of extracts 
Nonpolar no maybe no no no no no no no 
Polar maybe yes no no yes yes yes maybe maybe 

Nitrogen content yes no maybe yes yes maybe yes yes yes 

Notes. An "n/a" entry indicates that the trait was not measured for this species. Results for fresh plants are from Pennings 
et al. (2001). 

cally more eutrophic than southeastern ones (Bricker 
et al. 1999). The shorter growing season in northern 
marshes might require a higher N content to allow for 
rapid growth. Finally, low N content of southern plants 
might be an adaptive response to reduce palatability to 
herbivores (McNeill and Southwood 1978, Denno and 
McClure 1983, White 1984, 1993, Augner 1995, but 
see Valentine and Heck 2001). Whether latitudinal var- 
iation in N contributes to variation in plant palatability 
is unclear, for three reasons. First, Armases cinereum, 
the consumer used in most of our studies, does not 
appear to respond strongly to variation in plant N con- 
tent (Pennings et al. 1998). Second, differences in N 
content were most pronounced early in the growing 
season, but differences in palatability were observed 
both early and late (Pennings et al. 2001). Third, we 
did not perform experiments in which we manipulated 
N content in order to assess consumer responses. Thus, 
our data are consistent with the hypothesis that differ- 
ences in N content contribute to latitudinal variation 
in palatability of fresh plants, but do not directly test 
this hypothesis. In comparison, Bolser and Hay (1996) 
ruled out protein content as an explanation for latitu- 
dinal differences in palatability of seaweeds. 

A potential caveat to our results is that most of our 
assays were conducted with a single consumer species 
that is found only in southern marshes. It is possible 
that another species of consumer might have reacted 
differently in our assays. For example, a northern con- 
sumer might have been more sensitive to variation in 
secondary chemistry (Cronin et al. 1997). In our pre- 
vious study of fresh plants (Pennings et al. 2001), how- 
ever, a suite of 13 consumers, including Armases, ex- 
hibited similar patterns of preference for northern vs. 
southern plants, regardless of consumer species or geo- 
graphic origin. Moreover, results in our present paper 
of 14 assays with three species of southern grasshopper 
were qualitatively similar to results of parallel Armases 
assays. Thus, although the use of different consumers 

might have altered some of the details of our results, 
the overall patterns and conclusions likely would not 
have changed. 

Overall, as we moved from fresh plants to reconsti- 
tuted plants to extracts, latitudinal differences in pal- 
atability decreased. Thus, all nine species of plants dif- 
fered in palatability in assays with fresh plant material, 
but only five unambiguously differed in palatability in 
reconstituted assays, and only four in assays with ex- 
tracts. For one species, Solidago sempervirens, no traits 
differed across latitude. Similarly, Bolser and Hay 
(1996) were only able to trace latitudinal differences 
in palatability of reconstituted seaweeds to extracts in 
about two thirds of the cases. Three explanations might 
account for these "dampening differences." First, if 
more than one plant trait contributes to differences in 
palatability, tests that eliminate some plant traits will 
find less striking differences. For example, if differ- 
ences in palatability are partially driven by factors other 
than secondary metabolites, this part of the variation 
will not be present in tests with extracts. Second, each 
time plant material is processed, various chemical com- 
ponents may volatilize, decompose, or react with each 
other. Thus, each step in handling the plant material 
may destroy or dilute the traits of interest. Finally, 
variation in palatability could be partially caused by 
traits that were not investigated here. Many traits com- 
bine to determine plant palatability, and variation in 
traits such as the content of water, salt, silica, or nu- 
trients other than nitrogen could have contributed to 
latitudinal gradients in palatability. Regardless of the 
explanation, this pattern suggests that studies that work 
with reconstituted plants, or look only at plant traits, 
may underestimate latitudinal differences in palatabil- 
ity of fresh plants. As discussed earlier (see Introduc- 
tion) it is also possible that studies that focus on plant 
traits may overestimate latitudinal differences in pal- 
atability if the studied traits do not affect palatability. 
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TABLE 3. Summary of results of tests for plant traits responsible for latitudinal variation in palatibity of nine salt-marsh
plant species: "yes" indicates that we unambiguously'identified latitudinal variation in a trait, "maybe" indicates results
were equivocal, and "no" indicates that we found little evidence for latitudinal variation.
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cally more eutrophic than southeastern ones (Bricker
et al. 1999). The shorter growing season in northern
marshes might require a higher N content to allow for
rapid growth. Finally, low N content of southern plants
might be an adaptive response to reduce palatability to
herbivores (McNeill and Southwood 1978, Denno and
McClure 1983, White 1984, 1993, Augner 1995, but
see Valentine and Heck 2001). Whether latitudinal var­
iation in N contributes to variation in plant palatability
is unclear, for three reasons. First, Armases cinereum,
the consumer used in most of our studies, does not
appear to respond strongly to variation in plant N con­
tent (Pennings et al. 1998). Second, differences in N
content were most pronounced early in the growing
season, but differences in palatability were observed
both early and late (Pennings et al. 2001). Third, we
did not perform experiments in which we manipulated
N content in order to assess consumer responses. Thus,
our data are consistent with the hypothesis that differ­
ences in N content contribute to latitudinal variation
in palatability of fresh plants, but do not directly test
this hypothesis. In comparison, Bolser and Hay (1996)
ruled out protein content as an explanation for latitu­
dinal differences in palatability of seaweeds.

A potential caveat to our results is that most of our
assays were conducted with a single consumer species
that is found only in southern marshes. It is possible
that another species of consumer might have reacted
differently in our assays. For example, a northern con­
sumer might have been more sensitive to variation in
secondary chemistry (Cronin et al. 1997). In our pre­
vious study of fresh plants (Pennings et al. 2001), how­
ever, a suite of 13 consumers, including Armases, ex­
hibited similar patterns of preference for northern vs.
southern plants, regardless of consumer species or geo­
graphic origin. Moreover, results in our present paper
of 14 assays with three species of southern grasshopper
were qualitatively similar to results of parallel Armases
assays. Thus, although the use of different consumers

might have altered some of the details of our results,
the overall patterns and conclusions likely would not
have changed.

Overall, as we moved from fresh plants to reconsti­
tuted plants to extracts, latitudinal differences in pal­
atability decreased. Thus, all nine species of plants dif­
fered in palatability in assays with fresh plant material,
but only five unambiguously differed in palatability in
reconstituted assays, and only four in assays with ex­
tracts. For one species, Solidago sempervirens, no traits
differed across latitude. Similarly, Bolser and Hay
(1996) were only able to trace latitudinal differences
in palatability of reconstituted seaweeds to extracts in
about two thirds of the cases. Three explanations might
account for these "dampening differences." First, if
more than one plant trait contributes to differences in
palatability, tests that eliminate some plant traits will
find less striking differences. For example, if differ-,
ences in palatability are partially driven by factors other
than secondary metabolites, this part of the variation
will not be present in tests with extracts. Second, each
time plant material is processed, various chemical com­
ponents may volatilize, decompose, or react with each
other. Thus, each step in handling the plant material
may destroy or dilute the traits of interest. Finally,
variation in palatability could be partially caused by
traits that were not investigated here. Many traits com­
bine to determine plant palatability, and variation in
traits such as the content of water, salt, silica, or nu­
trients other than nitrogen could have contributed to
latitudinal gradients in palatability. Regardless of the
explanation, this pattern suggests that studies that work
with reconstituted plants, or look only at plant traits,
may underestimate latitudinal differences in palatabil­
ity of fresh plants. As discussed earlier (see Introduc­
tion) it is also possible that studies that focus on plant
traits may overestimate latitudinal differences in pal­
atability if the studied traits do not affect palatability.
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One plant trait that we did not study that might vary 
with latitude is salt content. Southern marshes are typ- 
ically saltier than northern marshes because of in- 
creased evapotranspiration at lower latitudes (Pennings 
and Bertness 1999, 2001). To the extent that the salt 
concentration of plant tissues reflects that of the soil, 
southern plants might be saltier than northern ones 
(however, in pilot studies, latitudinal differences in ash 
content were neither large nor consistent). High salt 
concentration might deter feeding by some herbivores, 
but not by Armases, which prefers a high-salt diet (Pen- 
nings et al. 1998). Moreover, feeding preferences by 
Armases for fresh plant material did not differ from 
those of other consumers (Pennings et al. 2001). Thus, 
although we lack experimental data evaluating the role 
that salt concentration might play in feeding prefer- 
ences of most marsh herbivores, we doubt that it is a 
general explanation for the latitudinal patterns in pal- 
atability observed by Pennings et al. (2001). 

No single plant trait varied in a way that was con- 
sistent with latitudinal variation in plant palatability 
for every species. Rather, all the traits varied with lat- 
itude in several, but not all, plants. This diversity of 
trait differences across latitude is not surprising. Be- 
cause "palatability" is determined by many traits, 
plants can be "unpalatable" in different ways. Because 
a wide variety of consumers including sap-sucking in- 
sects, leaf-chewing insects, crabs, snails, and mammals 
eat salt marsh plants (Pennings and Bertness 2001), 
different types of defenses may be selected for by dif- 
ferent consumers. Moreover, abiotic factors such as 
edaphic or climate conditions also vary with latitude 
and may act concurrently with consumers to exert se- 
lective pressure on plants. Plant responses to edaphic 
conditions or climate may indirectly affect traits im- 
portant to consumers, further increasing the diversity 
of mechanisms responsible for latitudinal gradients in 
plant palatability. 

In this paper we have evaluated the potential for plant 
toughness, secondary chemistry, and N content to de- 
termine latitudinal patterns of plant palatability. Al- 
though a great deal more work remains to be done (we 
lack experimental studies addressing the role of N con- 
tent, and we lack knowledge about the secondary me- 
tabolites present in each plant species), our results are 
a first step towards explaining the proximate plant traits 
that contribute to latitudinal variation in plant palat- 
ability in Atlantic coast salt marshes. The ultimate evo- 
lutionary mechanisms behind this latitudinal variation 
in plant palatability and plant traits, however, remain 
to be investigated. Our work has been presented in the 
context of standard biogeographic theories arguing that 
consumer-prey interactions are more intense at lower 
latitudes, and hence that prey defenses should be better 
developed at lower latitudes (Mithen et al. 1995). Some 
circumstantial evidence supports the hypothesis that 
herbivore pressure is greater in low- than high-latitude 
salt marshes (Pennings et al. 2001), but a variety of 

other factors, including climate, length of growing sea- 
son, salinity, and anthropogenic eutrophication also 
may differ between low- and high-latitude salt marshes, 
and could play a role in latitudinal differences in plant 
traits and palatability. Future work by our group will 
evaluate these possibilities in more detail. 
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One plant trait that we did not study that might vary
with latitude is salt content. Southern marshes are typ­
ically saltier than northern marshes because of in­
creased evapotranspiration at lower latitudes (Pennings
and Bertness 1999, 2001). To the extent that the salt
concentration of plant tissues reflects that of the soil,
southern plants might be saltier than northern ones
(however, in pilot studies, latitudinal differences in ash
content were neither large nor consistent). High salt
concentration might deter feeding by some herbivores,
but not by Armases, which prefers a high-salt diet (Pen­
nings et al. 1998). Moreover, feeding preferences by
Armases for fresh plant material did not differ from
those of other consumers (Pennings et al. 2001). Thus,
although we lack experimental data evaluating the role
that salt concentration might play in feeding prefer­
ences of most marsh herbivores, we doubt that it is a
general explanation for the latitudinal patterns in pal­
atability observed by Pennings et al. (2001).

No single plant trait varied in a way that was con­
sistent with latitudinal variation in plant palatability
for every species. Rather, all the traits varied with lat­
itude in several, but not all, plants. This diversity of
trait differences across latitude is not surprising. Be­
cause "palatability" is determined by many traits,
plants can be "unpalatable" in different ways. Because
a wide variety of consumers including sap-sucking in­
sects, leaf-chewing insects, crabs, snails, and mammals
eat salt marsh plants (Pennings and Bertness 2001),
different types of defenses may be selected for by dif­
ferent consumers. Moreover, abiotic factors such as
edaphic or climate conditions also vary with latitude
and may act concurrently with consumers to exert se­
lective pressure on plants. Plant responses to edaphic
conditions or climate may indirectly affect traits im­
portant to consumers, further increasing the diversity
of mechanisms responsible for latitudinal gradients in
plant palatability.

In this paper we have evaluated the potential for plant
toughness, secondary chemistry, and N content to de­
termine latitudinal patterns of plant palatability. Al­
though a great deal more work remains to be done (we
lack experimental studies addressing the role of N con­
tent, and we lack knowledge about the secondary me­
tabolites present in each plant species), our results are
a first step towards explaining the proximate plant traits
that contribute to latitudinal variation in plant palat­
ability in Atlantic coast salt marshes. The ultimate evo­
lutionary mechanisms behind this latitudinal variation
in plant palatability and plant traits, however, remain
to be investigated. Our work has been presented in the
context of standard biogeographic theories arguing that
consumer-prey interactions are more intense at lower
latitudes, and hence that prey defenses should be better
developed at lower latitudes (Mithen et al. 1995). Some
circumstantial evidence supports the hypothesis that
herbivore pressure is greater in low- than high-latitude
salt marshes (Pennings et al. 2001), but a variety of

other factors, including climate, length of growing sea­
son, salinity, and anthropogenic eutrophication also
may differ between low- and high-latitude salt marshes,
and could playa role in latitudinal differences in plant
traits and palatability. Future work by our group will
evaluate these possibilities in more detail.
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