You are here

Development of a Monte Carlo Simulation Model for Varian ProBeam Compact Single-Room Proton Therapy System using GEANT4

Download pdf | Full Screen View

Date Issued:
2020
Abstract/Description:
Proton therapy with pencil beam scanning technique is a novel technique to treat cancer patients due to its unique biophysical properties. However, a small error in dose calculation may lead towards undesired greater uncertainties in planed doses. This project aims to create a simulation model of Varian ProBeam Compact using the GEANT4 Monte Carlo simulation tool kit. Experimental data from the first clinical ProBeam Compact system at South Florida Proton Therapy Institute was used to validate the simulation model. A comparison was made between the experimental and simulated Integrated Depth-Dose curves using a 2%/2mm gamma index test with 100% of points passing. The beam spot standard deviation sizes (s!) were compared using percent deviation. All simulated s! matched the experimental s! within 2.5%, except 70 and 80 MeV. The model can be used to develop a more comprehensive model as an independent dose verification tool and further investigate dose distribution.
Title: Development of a Monte Carlo Simulation Model for Varian ProBeam Compact Single-Room Proton Therapy System using GEANT4.
49 views
21 downloads
Name(s): String, Shawn, author
Muhammad, Wazir , Thesis advisor
Shang, Charles , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Physics
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2020
Date Issued: 2020
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: online resource
Extent: 57 p.
Language(s): English
Abstract/Description: Proton therapy with pencil beam scanning technique is a novel technique to treat cancer patients due to its unique biophysical properties. However, a small error in dose calculation may lead towards undesired greater uncertainties in planed doses. This project aims to create a simulation model of Varian ProBeam Compact using the GEANT4 Monte Carlo simulation tool kit. Experimental data from the first clinical ProBeam Compact system at South Florida Proton Therapy Institute was used to validate the simulation model. A comparison was made between the experimental and simulated Integrated Depth-Dose curves using a 2%/2mm gamma index test with 100% of points passing. The beam spot standard deviation sizes (s!) were compared using percent deviation. All simulated s! matched the experimental s! within 2.5%, except 70 and 80 MeV. The model can be used to develop a more comprehensive model as an independent dose verification tool and further investigate dose distribution.
Identifier: FA00013547 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2020.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Proton Therapy
Monte-Carlo-Simulation
Radiotherapy Dosage
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013547
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.