You are here
NEURALSYNTH - A NEURAL NETWORK TO FPGA COMPILATION FRAMEWORK FOR RUNTIME EVALUATION
- Date Issued:
- 2020
- Abstract/Description:
- Artificial neural networks are increasing in power, with attendant increases in demand for efficient processing. Performance is limited by clock speed and degree of parallelization available through multi-core processors and GPUs. With a design tailored to a specific network, a field-programmable gate array (FPGA) can be used to minimize latency without the need for geographically distributed computing. However, the task of programming an FPGA is outside the realm of most data scientists. There are tools to program FPGAs from a high level description of a network, but there is no unified interface for programmers across these tools. In this thesis, I present the design and implementation of NeuralSynth, a prototype Python framework which aims to bridge the gap between data scientists and FPGA programming for neural networks. My method relies on creating an extensible Python framework that is used to automate programming and interaction with an FPGA. The implementation includes a digital design for the FPGA that is completed by a Python framework. Programming and interacting with the FPGA does not require leaving the Python environment. The extensible approach allows multiple implementations, resulting in a similar workflow for each implementation. For evaluation, I compare the results of my implementation with a known neural network framework.
Title: | NEURALSYNTH - A NEURAL NETWORK TO FPGA COMPILATION FRAMEWORK FOR RUNTIME EVALUATION. |
117 views
94 downloads |
---|---|---|
Name(s): |
Lanham, Grant Jr, author Hallstrom, Jason O. , Thesis advisor Florida Atlantic University, Degree grantor Department of Computer and Electrical Engineering and Computer Science College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2020 | |
Date Issued: | 2020 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | online resource | |
Extent: | 137 p. | |
Language(s): | English | |
Abstract/Description: | Artificial neural networks are increasing in power, with attendant increases in demand for efficient processing. Performance is limited by clock speed and degree of parallelization available through multi-core processors and GPUs. With a design tailored to a specific network, a field-programmable gate array (FPGA) can be used to minimize latency without the need for geographically distributed computing. However, the task of programming an FPGA is outside the realm of most data scientists. There are tools to program FPGAs from a high level description of a network, but there is no unified interface for programmers across these tools. In this thesis, I present the design and implementation of NeuralSynth, a prototype Python framework which aims to bridge the gap between data scientists and FPGA programming for neural networks. My method relies on creating an extensible Python framework that is used to automate programming and interaction with an FPGA. The implementation includes a digital design for the FPGA that is completed by a Python framework. Programming and interacting with the FPGA does not require leaving the Python environment. The extensible approach allows multiple implementations, resulting in a similar workflow for each implementation. For evaluation, I compare the results of my implementation with a known neural network framework. | |
Identifier: | FA00013533 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2020. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Artificial neural networks Neural networks (Computer science)--Design Field programmable gate arrays Python (Computer program language) |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013533 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |