You are here

MACHINE LEARNING DEMODULATOR ARCHITECTURES FOR POWER-LIMITED COMMUNICATIONS

Download pdf | Full Screen View

Date Issued:
2020
Summary:
The success of deep learning has renewed interest in applying neural networks and other machine learning techniques to most fields of data and signal processing, including communications. Advances in architecture and training lead us to consider new modem architectures that allow flexibility in design, continued learning in the field, and improved waveform coding. This dissertation examines neural network architectures and training methods suitable for demodulation in power-limited communication systems, such as those found in wireless sensor networks. Such networks will provide greater connection to the world around us and are expected to contain orders of magnitude more devices than cellular networks. A number of standard and proprietary protocols span this space, with modulations such as frequency-shift-keying (FSK), Gaussian FSK (GFSK), minimum shift keying (MSK), on-off-keying (OOK), and M-ary orthogonal modulation (M-orth). These modulations enable low-cost radio hardware with efficient nonlinear amplification in the transmitter and noncoherent demodulation in the receiver.
Title: MACHINE LEARNING DEMODULATOR ARCHITECTURES FOR POWER-LIMITED COMMUNICATIONS.
51 views
28 downloads
Name(s): Gorday, Paul E., author
Nurgun, Erdol, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Computer and Electrical Engineering and Computer Science
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2020
Date Issued: 2020
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: online resource
Extent: 184 p.
Language(s): English
Summary: The success of deep learning has renewed interest in applying neural networks and other machine learning techniques to most fields of data and signal processing, including communications. Advances in architecture and training lead us to consider new modem architectures that allow flexibility in design, continued learning in the field, and improved waveform coding. This dissertation examines neural network architectures and training methods suitable for demodulation in power-limited communication systems, such as those found in wireless sensor networks. Such networks will provide greater connection to the world around us and are expected to contain orders of magnitude more devices than cellular networks. A number of standard and proprietary protocols span this space, with modulations such as frequency-shift-keying (FSK), Gaussian FSK (GFSK), minimum shift keying (MSK), on-off-keying (OOK), and M-ary orthogonal modulation (M-orth). These modulations enable low-cost radio hardware with efficient nonlinear amplification in the transmitter and noncoherent demodulation in the receiver.
Identifier: FA00013511 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2020.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Deep learning
Machine learning--Technique
Demodulators
Wireless sensor networks
Computer network architectures
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013511
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.