You are here

INFECTION AGE STRUCTURED VECTOR BORNE DISEASE MODEL WITH DIRECT TRANSMISSION.

Download pdf | Full Screen View

Date Issued:
2020
Abstract/Description:
Mathematical modeling is a powerful tool to study and analyze the disease dynamics prevalent in the community. This thesis studies the dynamics of two time since infection structured vector borne models with direct transmission. We have included disease induced death rate in the first model to form the second model. The aim of this thesis is to analyze whether these two models have same or different disease dynamics. An explicit expression for the reproduction number denoted by R0 is derived. Dynamical analysis reveals the forward bifurcation in the first model. That is when the threshold value R0 < 1, disease free-equilibrium is stable locally implying that if there is small perturbation of the system, then after some time, the system will return to the disease free equilibrium. When R0 > 1 the unique endemic equilibrium is locally asymptotically stable. For the second model, analysis of the existence and stability of equilibria reveals the existence of backward bifurcation i.e. where the disease free equilibrium coexists with the endemic equilibrium when the reproduction number R02 is less than unity. This aspect shows that in order to control vector borne disease, it is not sufficient to have reproduction number less than unity although necessary. Thus, the infection can persist in the population even if the reproduction number is less than unity. Numerical simulation is presented to see the bifurcation behaviour in the model. By taking the reproduction number as the bifurcation parameter, we find the system undergoes backward bifurcation at R02 = 1. Thus, the model has backward bifurcation and have two positive endemic equilibrium when R02 < 1 and unique positive endemic equilibrium whenever R02 > 1. Stability analysis shows that disease free equilibrium is locally asymptotically stable when R02 < 1 and unstable when R02 > 1. When R02 < 1, lower endemic equilibrium in backward bifurcation is locally unstable.
Title: INFECTION AGE STRUCTURED VECTOR BORNE DISEASE MODEL WITH DIRECT TRANSMISSION.
54 views
24 downloads
Name(s): Giri, Sunil, author
Tuncer, Necibe, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Mathematical Sciences
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2020
Date Issued: 2020
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: online resource
Extent: 89 p.
Language(s): English
Abstract/Description: Mathematical modeling is a powerful tool to study and analyze the disease dynamics prevalent in the community. This thesis studies the dynamics of two time since infection structured vector borne models with direct transmission. We have included disease induced death rate in the first model to form the second model. The aim of this thesis is to analyze whether these two models have same or different disease dynamics. An explicit expression for the reproduction number denoted by R0 is derived. Dynamical analysis reveals the forward bifurcation in the first model. That is when the threshold value R0 < 1, disease free-equilibrium is stable locally implying that if there is small perturbation of the system, then after some time, the system will return to the disease free equilibrium. When R0 > 1 the unique endemic equilibrium is locally asymptotically stable. For the second model, analysis of the existence and stability of equilibria reveals the existence of backward bifurcation i.e. where the disease free equilibrium coexists with the endemic equilibrium when the reproduction number R02 is less than unity. This aspect shows that in order to control vector borne disease, it is not sufficient to have reproduction number less than unity although necessary. Thus, the infection can persist in the population even if the reproduction number is less than unity. Numerical simulation is presented to see the bifurcation behaviour in the model. By taking the reproduction number as the bifurcation parameter, we find the system undergoes backward bifurcation at R02 = 1. Thus, the model has backward bifurcation and have two positive endemic equilibrium when R02 < 1 and unique positive endemic equilibrium whenever R02 > 1. Stability analysis shows that disease free equilibrium is locally asymptotically stable when R02 < 1 and unstable when R02 > 1. When R02 < 1, lower endemic equilibrium in backward bifurcation is locally unstable.
Identifier: FA00013552 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2020.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Vector Borne Diseases
Mathematical models
Simulations
Dynamics--Mathematical models
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013552
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.