You are here

SUSTAINING CHAOS USING DEEP REINFORCEMENT LEARNING

Download pdf | Full Screen View

Date Issued:
2020
Abstract/Description:
Numerous examples arise in fields ranging from mechanics to biology where disappearance of Chaos can be detrimental. Preventing such transient nature of chaos has been proven to be quite challenging. The utility of Reinforcement Learning (RL), which is a specific class of machine learning techniques, in discovering effective control mechanisms in this regard is shown. The autonomous control algorithm is able to prevent the disappearance of chaos in the Lorenz system exhibiting meta-stable chaos, without requiring any a-priori knowledge about the underlying dynamics. The autonomous decisions taken by the RL algorithm are analyzed to understand how the system’s dynamics are impacted. Learning from this analysis, a simple control-law capable of restoring chaotic behavior is formulated. The reverse-engineering approach adopted in this work underlines the immense potential of the techniques used here to discover effective control strategies in complex dynamical systems. The autonomous nature of the learning algorithm makes it applicable to a diverse variety of non-linear systems, and highlights the potential of RLenabled control for regulating other transient-chaos like catastrophic events.
Title: SUSTAINING CHAOS USING DEEP REINFORCEMENT LEARNING.
58 views
25 downloads
Name(s): Vashishtha, Sumit , author
Verma, Siddhartha , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Ocean and Mechanical Engineering
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2020
Date Issued: 2020
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 52 p.
Language(s): English
Abstract/Description: Numerous examples arise in fields ranging from mechanics to biology where disappearance of Chaos can be detrimental. Preventing such transient nature of chaos has been proven to be quite challenging. The utility of Reinforcement Learning (RL), which is a specific class of machine learning techniques, in discovering effective control mechanisms in this regard is shown. The autonomous control algorithm is able to prevent the disappearance of chaos in the Lorenz system exhibiting meta-stable chaos, without requiring any a-priori knowledge about the underlying dynamics. The autonomous decisions taken by the RL algorithm are analyzed to understand how the system’s dynamics are impacted. Learning from this analysis, a simple control-law capable of restoring chaotic behavior is formulated. The reverse-engineering approach adopted in this work underlines the immense potential of the techniques used here to discover effective control strategies in complex dynamical systems. The autonomous nature of the learning algorithm makes it applicable to a diverse variety of non-linear systems, and highlights the potential of RLenabled control for regulating other transient-chaos like catastrophic events.
Identifier: FA00013498 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2020.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Machine learning--Technique
Reinforcement learning
Algorithms
Chaotic behavior in systems
Nonlinear systems
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013498
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.