You are here
VISUALIZING NANO-SCALE SYNAPTIC CHANGES DURING SINGLE DENDRITIC SPINE LONG-TERM POTENTIATION BY CORRELATIVE LIGHT AND ELECTRON MICROSCOPY
- Date Issued:
- 2020
- Abstract/Description:
- Dendritic spines are the major sites for receiving excitatory synaptic inputs and play important roles in neuronal signal transduction, memory storage and neuronal circuit organization. Structural plasticity of dendritic spines is correlated with functional plasticity, and is critical for learning and memory. Visualization of the changes of dendritic spines at the ultrastructural level that specifically correlated with their function changes in high throughput would shed light on detailed mechanisms of synaptic plasticity. Here we developed a correlative light and electron microscopy workflow which combines two-photon MNI-glutamate uncaging, pre-embedding immunolabeling, Automatic Tape-collecting Ultramicrotome sectioning and scanning electron microscopy imaging. This method bridges two different visualization platforms, directly linking ultrastructure and function at the level of individual synapses. With this method, we successfully relocated single dendritic spines that underwent long-term potentiation (LTP) induced by two-photon MNI-glutamate uncaging, and visualized their ultrastructures and AMPA receptors distribution at different phases of LTP in high throughput.
Title: | VISUALIZING NANO-SCALE SYNAPTIC CHANGES DURING SINGLE DENDRITIC SPINE LONG-TERM POTENTIATION BY CORRELATIVE LIGHT AND ELECTRON MICROSCOPY. |
39 views
15 downloads |
---|---|---|
Name(s): |
Sun, Ye, author Yasuda, Ryohei, Thesis advisor Florida Atlantic University, Degree grantor Department of Biological Sciences Charles E. Schmidt College of Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2020 | |
Date Issued: | 2020 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 154 p. | |
Language(s): | English | |
Abstract/Description: | Dendritic spines are the major sites for receiving excitatory synaptic inputs and play important roles in neuronal signal transduction, memory storage and neuronal circuit organization. Structural plasticity of dendritic spines is correlated with functional plasticity, and is critical for learning and memory. Visualization of the changes of dendritic spines at the ultrastructural level that specifically correlated with their function changes in high throughput would shed light on detailed mechanisms of synaptic plasticity. Here we developed a correlative light and electron microscopy workflow which combines two-photon MNI-glutamate uncaging, pre-embedding immunolabeling, Automatic Tape-collecting Ultramicrotome sectioning and scanning electron microscopy imaging. This method bridges two different visualization platforms, directly linking ultrastructure and function at the level of individual synapses. With this method, we successfully relocated single dendritic spines that underwent long-term potentiation (LTP) induced by two-photon MNI-glutamate uncaging, and visualized their ultrastructures and AMPA receptors distribution at different phases of LTP in high throughput. | |
Identifier: | FA00013433 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2020. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Dendritic Spines Neuroplasticity Visualization Microscopy Long-Term Potentiation--physiology Neurons--ultrastructure |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013433 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |