You are here

META-LEARNING AND ENSEMBLE METHODS FOR DEEP NEURAL NETWORKS

Download pdf | Full Screen View

Date Issued:
2020
Abstract/Description:
Deep Neural Networks have been widely applied in many different applications and achieve significant improvement over classical machine learning techniques. However, training a neural network usually requires large amount of data, which is not guaranteed in some applications such as medical image classification. To address this issue, people propose to implement meta learning and ensemble learning techniques to make deep learning trainers more powerful. This thesis focuses on using deep learning equipped with meta learning and ensemble learning to study specific problems. We first propose a new deep learning based method for suggestion mining. The major challenges of suggestion mining include cross domain issue and the issues caused by unstructured and highly imbalanced data structure. To overcome these challenges, we propose to apply Random Multi-model Deep Learning (RMDL) which combines three different deep learning architectures (DNNs, RNNs and CNNs) and automatically selects the optimal hyper parameter to improve the robustness and flexibility of the model. Our experimental results on the SemEval-2019 competition Task 9 data sets demonstrate that our proposed RMDL outperforms most of the existing suggestion mining methods.
Title: META-LEARNING AND ENSEMBLE METHODS FOR DEEP NEURAL NETWORKS.
84 views
39 downloads
Name(s): Liu, Feng , author
Dingding, Wang, Thesis advisor
Florida Atlantic University, Degree grantor
Department of Computer and Electrical Engineering and Computer Science
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2020
Date Issued: 2020
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 126 p.
Language(s): English
Abstract/Description: Deep Neural Networks have been widely applied in many different applications and achieve significant improvement over classical machine learning techniques. However, training a neural network usually requires large amount of data, which is not guaranteed in some applications such as medical image classification. To address this issue, people propose to implement meta learning and ensemble learning techniques to make deep learning trainers more powerful. This thesis focuses on using deep learning equipped with meta learning and ensemble learning to study specific problems. We first propose a new deep learning based method for suggestion mining. The major challenges of suggestion mining include cross domain issue and the issues caused by unstructured and highly imbalanced data structure. To overcome these challenges, we propose to apply Random Multi-model Deep Learning (RMDL) which combines three different deep learning architectures (DNNs, RNNs and CNNs) and automatically selects the optimal hyper parameter to improve the robustness and flexibility of the model. Our experimental results on the SemEval-2019 competition Task 9 data sets demonstrate that our proposed RMDL outperforms most of the existing suggestion mining methods.
Identifier: FA00013481 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2020.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Neural networks (Computer science)
Deep learning
Neural Networks in Applications
Machine learning--Technique
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013481
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.