You are here

DEVELOPMENT OF GUIDELINES FOR IMPLEMENTATION OF FREIGHT AND TRANSIT SIGNAL PRIORITIES TO ENHANCE ROAD TRAFFIC SUSTAINABILITY

Download pdf | Full Screen View

Date Issued:
2020
Abstract/Description:
Lately, the attractiveness of cities has contributed to a rise in vehicle movements to and from cities. The growth of freight movements in cities predictably will be one of the critical issues of the near future. Congestion caused by the increased movements of freight impacts the flow of private and transit vehicles. Thus, it is crucial to reduce the congestion on multimodal corridors. Components of the Intelligent Transportation System (ITS) such as Freight Signal Priority (FSP) and Transit Signal Priority (TSP) that promote the freight and transit vehicles may not only help solve these conditions but may assist with the sustainability of the system. The primary objective of this research is to develop guidelines for traffic agencies to implement signal priorities based on identified decision factors on certain corridors. Besides, this study evaluates the efficiency of FSP and TSP in improving the performance of freight and transit systems. Finally, inclusive guidelines are drawn up based on the literature and the conducted simulation. The developed guidelines apply to corridors where freight delay plays a vital role in the assessment of corridor benefits.
Title: DEVELOPMENT OF GUIDELINES FOR IMPLEMENTATION OF FREIGHT AND TRANSIT SIGNAL PRIORITIES TO ENHANCE ROAD TRAFFIC SUSTAINABILITY.
26 views
11 downloads
Name(s): Ardalan, Taraneh , author
Kaisar, Evangelos I. , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Civil, Environmental and Geomatics Engineering
College of Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2020
Date Issued: 2020
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 110 p.
Language(s): English
Abstract/Description: Lately, the attractiveness of cities has contributed to a rise in vehicle movements to and from cities. The growth of freight movements in cities predictably will be one of the critical issues of the near future. Congestion caused by the increased movements of freight impacts the flow of private and transit vehicles. Thus, it is crucial to reduce the congestion on multimodal corridors. Components of the Intelligent Transportation System (ITS) such as Freight Signal Priority (FSP) and Transit Signal Priority (TSP) that promote the freight and transit vehicles may not only help solve these conditions but may assist with the sustainability of the system. The primary objective of this research is to develop guidelines for traffic agencies to implement signal priorities based on identified decision factors on certain corridors. Besides, this study evaluates the efficiency of FSP and TSP in improving the performance of freight and transit systems. Finally, inclusive guidelines are drawn up based on the literature and the conducted simulation. The developed guidelines apply to corridors where freight delay plays a vital role in the assessment of corridor benefits.
Identifier: FA00013484 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2020.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Freight and freightage
Traffic signs and signals—Control systems
Traffic congestion
Freight transportation
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013484
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.