

56

comparator design to provide logic highs and lows. Figure 8 shows how the final design

is implemented for the two proximity sensors. It should be noted that two separate

Figure 8. Proximity Sensor Diagram

implementations of the above diagram are required with the need for two separate sensors.

An LM311 comparator chip compares the proximity sensor's analog output voltage with

an adjustable voltage that can be tweaked via a potentiometer. The circuitry after the

comparator is somewhat optional however. After a pull-up resistor, a logic high 5 V and

low 0 V is provided. The 1321X-SRB operates at a maximum of 3.4 V however. Using a

rail-to-rail op-amp following the logic signal, it will be possible to adjust the voltage

amplitude. On the other hand, because the input pins of the microcontroller being used

for the proximity sensors are simultaneously being used by pushbuttons, a relay is

connected after the op-amp as well to short the input and simulate a pushbutton. By

implementing the proximity sensors this way, the pushbuttons can simulate the sensors

for testing purposes. Overall, the proximity sensors worked as desired. The

GP2Y0A02YK0F in particular was easily able to detect objects at over one meter away,

and if any calibration was needed, the potentiometers easily adjusted the sensor's

57

sensitivity. Had proximity sensors not been used, another possible solution could involve

occupancy sensors, which are common among security systems. Placing occupancy

sensors either at door entry walkways or at ceiling corners, it may be possible to much

more accurately determine when people are in a room.

Current Sensing and Load Control

For measuring current, a current sense transformer was utilized to monitor and

estimate energy usage. Testing included transformers such as Honeywell's CSLA2CD

and Triad's CST-1020. The CSLA2CD is voltage based, outputting a varying voltage

depending on the current flow in a wire through the loop. The final design however is

based on the CST-1020, which outputs a small alternating current voltage based on the

amount of current of the wire passing through it, as seen in the figure below. The design

Figure 9. Current Sensing and Load Control Diagram

58

needs to be calibrated however, and the potentiometer assists with this. Increasing the

resistance at the output of the CST-1020, a larger AC voltage is output. This voltage

needs to be sufficiently high, as the following diode bridge rectifier will cut the voltage

down by ~0.7 volts. First, looping the AC line back through the transformer an extra two

times triples the detected current and thus triples the voltage. The potentiometer was then

adjusted to have the voltage several times higher than the desired measured voltage at

roughly 5 VAC per amp passing through the current sense transformer. After rectifying,

it is then possible the drop the DC voltage back down, and was adjusted to output 0.5 V

to the microcontroller ADC for every 0.5 amps on the AC line. In the same diagram it

can be seen how the line being measured is also controlled by the microcontroller. Using

a suitable solid-state relay, the microcontroller can toggle the load that it itself is

measuring. The overall design proved to provide fairly accurate readings regarding

current measurement.

Figure 10. Current Measurement Calibration

y = 0.3113x3 - 0.6634x2 + 1.2269x

0

0.5

1

1.5

2

0 0.5 1 1.5 2

A
C

 C
u

rr
e

n
t

(A
)

Voltage to µC (V)

Current Measurement

59

The output however is not perfectly linear, and to better display more precise measured

data, Figure 10 was plotted to better represent the current in the software stage. Using

seven different wattages of lighting, a linear fit was created to convert measured voltage

to its respective load current. Knowing the load current, it will only take multiplying by

120 to know the respective wattage of the load. It is important to note however that this

design is best used with lighting or loads where power factor isn't an issue. If the power

factor isn't close to one, more needs to be done than simply using a current sense

transformer, as it is necessary to measure the power factor as well to more accurately

measure power consumption. This measurement method would be similar in nature as the

P3 International Kill A Watt
™

 as mentioned before. By simply hooking one up in

between a connection at a wall outlet, power draw can be monitored. If set up as a router

node, one could easily be a range extender as well, as it would always be connected to a

power source.

Ambient Lighting and Temperature

Ambient lighting and temperature measurements are fairly straightforward. The

design and measurement of both are quite simple. For ambient lighting, a photoresistor

was utilized, which varies in resistance based on room lighting. The sensor was

implemented as a voltage divider as seen in Figure 11. To get the exact lighting

conditions, this setup is all that is needed. To choose the 22 KΩ resistor, the

photoresistor's resistance is measured at the point where the room lighting is beginning to

get dark enough that AC lighting is desired. Thus at roughly Vcc/2, the microcontroller

can then know whether the controlled AC lighting will be necessary. Optionally, the

voltage divider can output to a comparator to be connected to a microcontroller digital

60

Figure 11. Ambient Lighting and Temperature Diagram

input. Because of the lack of input pins, the temperature was acquired by using the

built-in temperature sensor on the 1321X-SRB. The sensor outputs 10 mV for every

degree Celsius. However, it is offset to add the capability of measuring freezing

temperatures, and thus a measurement of 600 mV is a reading of 0 °C. Though, to get

accurate temperature readings on the microcontroller it is necessary to power the

1321X-SRB though either the USB connector or DC adapter. Using the temperature

sensor, it will then be possible to create a custom thermostat.

Air Conditioner Control

 Air conditioner control was implemented with a system of relays. To briefly

explain how many thermostats function, several connections are made regarding a 24 V

signal, the fan (G), the condenser (Y), and the heater (W). Essentially, the 24 V signal is

applied to either of the connections to turn on what is desired. Using several relays as

mentioned, a system was set-up to bypass a connected standalone thermostat, and when

bypassed, to control where the 24 V signal is applied. The diagram in Figure 12

demonstrates this, showing how with three connections to the microcontroller, a custom

61

Figure 12. Air Conditioner Control Diagram

thermostat can be programmed. This design does not control the heating function

however, though would be easily possible if desired with an extra relay and

62

microcontroller connection akin to cooling. In the above diagram, the TSTAT

connections go to the standalone thermostat's respective 24 V, Y, W, and G terminals. In

this fashion, with no signal from the microcontroller, the setup acts as if nothing is

changed and the standalone thermostat is controlling the air conditioner normally. The

first microcontroller signal is used by bypass the thermostat, having the wall connections

disconnected from the thermostat. Only if the microcontroller bypasses the thermostat do

the second two relays have any effect, which are used to apply 24 V to either the

condenser or fan. It is important to note that the condenser should not be toggled back on

too rapidly and there is no safety for this aside from the software control. It is necessary

to design the software in such a way that will prevent the microcontroller from turning

the condenser off and on too quickly when the thermostat is bypassed. With all of the

hardware functioning as desired, it is possible to create the software that will utilize all

the designs mentioned.

Software Design

 The software design using two Freescale 1321X-SRB's involves creating three

separate programs that communicate with each other in one way or another. Two of the

programs are for each of the 1321X-SRB's, as each will be performing different tasks and

communicating differently, while the third is a PC application that will communicate

with the microcontroller connected to the PC. For the design mentioned beforehand, the

1321X-SRB connected to the PC is in a way the middle-man between the PC and remote

microcontroller board. The primary purpose of the remote microcontroller is to gather

sensor data and control lighting and air conditioning, while the PC application will be

capable of displaying data collected by the remote board, while adding the functionality

63

of controlling the air conditioner. Freescale's CodeWarrior
™

 and their SMAC based

software is used to program the two boards, while MATLAB
®

 is utilized to create a GUI

and program to communicate with the boards over USB.

Remote Microcontroller

 The remote 1321X-SRB powered either by batteries or a DC power adapter is

where much of the home automation features are put to use. This includes the proximity

sensing, current sensing and load control, ambient light and temperature monitoring, as

well as air conditioner control. There are multiple ways to go about programming the

microcontrollers. Instead of constantly transmitting collected sensor data to the PC

connected microcontroller, the data is only transmitted upon request, as seen in Figure 13.

Figure 13. Remote Microcontroller Software Flowchart

64

As shown in the flowchart, the microcontroller is checking the proximity sensors most of

the time, as they are set up in a polling interrupt manner. If one of the proximity sensors

triggers the interrupt flag, the other sensor is checked after a short delay to see whether a

person entered or left the room. The microcontroller is always keeping track of how

many people are in the room, and if there is at least one person, the ambient lighting is

checked as well. If necessary, the lighting is turned on as well, and if the room ever gets

very bright again or there are no people in the room, the lighting turns off. As mentioned,

data is only transmitted upon request, and the microcontroller responds by sampling the

ambient lighting, temperature, and current draw. To achieve better accuracy, the sensors

are sampled multiple times and averaged. The data is then transmitted to the other

1321X-SRB connected to the PC, along with other information such as the number of

people in the room and the status of the relays. Similarly, when this remote

microcontroller receives a request to set the air conditioner, the relays are configured as

desired. The next time sensor data is transmitted, the status of the relays will show if the

air conditioner is set appropriately. The core program code for the remote transceiver can

be found in Appendix A. Programming the complimentary 1321X-SRB is done similarly,

however communication will take place between both the remote microcontroller as well

as the PC.

PC Connected Microcontroller

 The second transceiver is connected to the PC, receiving power over the

connected USB cable and communicating to the PC through it as well. As mentioned

previously, this microcontroller's main function is to relay data back and forth from the

PC and the remote transceiver. If necessary, multiple sensors can also be connected to

65

this board as well. The program functions similarly to the remote microcontroller's,

however instead of awaiting a signal over the air, the program checks to see if there was

any incoming string from the PC, as shown in the flowchart below. As can be seen, the

Figure 14. PC Connected Microcontroller Software Flowchart

program acts depending on what the PC transmits. There are six possible character strings

the microcontroller checks for from the PC. Receiving a 'D,' the microcontroller follows

by asking the remote microcontroller for the sensor, relay, and other data. The receiver is

66

turned on for a few seconds to allow the remote microcontroller to gather data, and if the

data is received successfully, the PC connected microcontroller samples its own

temperature as well to transmit two separate temperature values along with all the other

data to the PC as one long string. If the microcontroller receives an 'O,' 'T,' 'G,' or 'Y'

from the PC however, the microcontroller makes note of what air conditioner setting the

PC requests. This is usually followed by an 'S' string from the PC, in which the

microcontroller then transmits the desired A/C setting to the remote microcontroller to

toggle the appropriate relays. To guarantee that the A/C was set properly, the data is also

requested from the remote microcontroller, as the data will contain the status of all the

relays. As with the previous program, the main software code used for the PC connected

microcontroller is available in Appendix B. With the two microcontrollers programmed

as described, it is then possible to use a suitable PC application that will make use of the

two transceiver boards.

PC Application

 The PC programming was done using MATLAB
®
, creating a graphical user

interface that assists in communicating with the PC connected microcontroller.

Simplifying the implementation of the program, Figure 15 shows the basic outline of how

the software functions. The first steps involve initializing any variables, opening the user

interface figure, as well as connecting to the microcontroller. To gather data, a

countdown is used to request the collection of sensor and other information at certain

intervals. The data is gathered transmitting the string 'D' as described previously, and the

data is also gathered any time the air conditioner is set differently. The program will

update the display with all of the relative data regarding sensors and A/C status on screen.

67

Much of the programming is geared towards controlling the air conditioner with a custom

programmed thermostat. This is likely the most complex part of the programming, as it is

Figure 15. PC Application Software Flowchart

also necessary to make sure the software does not allow the air conditioner condenser to

turn back on too rapidly had it just been on. As relay data is gathered every time the air

conditioner is set differently, it is possible to determine whether or not it is correctly set,

and whether the signal needs to be retransmitted. Lastly, if the PC is currently in control

of the air conditioner when the user tries to close the program, the PC try to turn off all

relays to hand control back over to the standalone thermostat. While the overall setup can

be described using the flowchart above, much of the programming resides in the

68

graphical user interface. A sample screen shown below in Figure 16 displays the user

interface in action displaying collected data while in control of the air conditioner.

Figure 16. PC Application GUI

In the top left corner, the user can adjust how often the data is updated, while a refresh

button is also provided to update the information whenever desired. The data displayed

includes the number of people determined by the remote microcontroller, the ambient

lighting of the room, the temperature in both Celsius and Fahrenheit from both

microcontrollers, the current measurement of the controlled lighting and whether the

controlled light is on, and the signal strength of the last received data packet. Using the

measured current, the power draw and yearly cost is displayed, with a small plot of recent

69

wattage measurements. It can be seen how the current sense transformer design is

correctly measuring a 60 watt light that is being controlled. The right hand side of the

GUI is primarily dedicated to the custom thermostat. After enabling PC Control of the

thermostat, it is then possible to configure the air conditioner in fan only or cool mode. It

is possible to select a desired temperature that the PC will try to maintain turning on and

off the air conditioner as necessary. As the gathered data includes two temperature

readings from different rooms, either one can be selected for the control to be based on.

For testing purposes, the condenser safety delay can be edited, which like the update

interval, is a timer that counts down a certain number of seconds before the condenser

can be turned back on. Along with the other collected data, the status of the air

conditioner thermostat, fan, and cooling relays is also displayed. The MATLAB
®
 m file

code for this GUI application can be found in Appendix C.

70

VI. FINAL THOUGHTS

 Based on experimentation and research, ZigBee proved to be a very capable

wireless networking standard. Whether from its ease-of-use, to its possible networking

features, to its transmission characteristics, many applications would greatly benefit from

the use of this wireless sensing and control standard. The possibilities are almost endless

in what can be done with a wireless network like ZigBee. ZigBee's ease-of-use relates to

both manufacturers and end-users. Applications are relatively easy to develop for, while

as a product ZigBee's networking requires hardly any set-up. Application profiles made

available by the ZigBee Alliance further assist by making ZigBee products interoperable

between different vendors. Long battery-life and low power use with the 802.15.4 are

also prominent features. Range, while not its greatest quality, is not an issue with the

network topology and node types available. The multitude of frequency channels

available further add to the robustness of a ZigBee network. Data rate is relatively slow

using ZigBee, especially in comparison to other networking standards available, but as

has been said, for the purposes of control and monitoring this is of very little concern.

Aside from home automation, some areas of interest in which ZigBee may prove to

become quite popular include ZigBee RF4CE and ZigBee Smart Energy. With RF4CE,

the ZigBee standard can be of great use in the consumer electronics market. Infrared

remote controls have been around for a long time, and there is much room for innovation.

Regarding ZigBee Smart Energy, its purposes are relatively similar to the goals desired in

71

the sample design experiment, though leans more towards monitoring energy use and

interconnecting with your utility service. It may be possible to incorporate ZigBee

products that provide these energy purposes into a more sophisticated automated network,

as considered for the sample design. A "smart home automation network" like this could

then assist with all the control, convenience, and security of a home automation network,

with a strong emphasis in conservation. Simply knowing how much energy is used and

its cost helps consumers conserve. Regardless of its application, the use of ZigBee

provides a low-cost, efficient, flexible, and robust means to create any desired wireless

sensing and control network.

 The sample designs tested and experimented on showed how ZigBee transceivers

provide a very effective means of wireless communication for home automation. While

only two transceivers were used, they provided a good insight as to how a large-scale

ZigBee network could be implemented. The multiple hardware and software designs

proved to work well for use in home automation and assist in power conservation.

Proximity sensors and ambient lighting measurements effectively assisted in controlling

automatic lighting, while monitoring current accurately depicted the lighting’s power

usage. Air conditioner control also worked just as desired, easily and safely coexisting

with a preinstalled thermostat. On the whole, the sample design experiment proved to

show how ZigBee is a very practical networking standard for use in home automation or

other sensor and control networks.

72

APPENDIX A

/*Software for remote 1321X-SRB*/

#include <hidef.h>

#include "pub_def.h"

#include "APP_SMAC_API.h"

#include "freescale_radio_hardware.h"

#include "smac_per_tx.h"

#include "eventDefs.h"

#include "timer.h"

#include "ledFunctions.h"

#include "kbi.h"

byte gu8RTxMode;

int app_status = 0;

int ambient_lighting_status = 0;

int number_of_people = 0;

int comp_thermostat = 0; //For TSTAT_BYPASS (0 = use thermostat; not

 //PC)

int fan = 0; //For G_RELAY

int cool = 0; //For Y_RELAY

UINT16 gu16Events = 0;

extern UINT16 gu16msTimer;

extern UINT16 gu16timerEvent[2];

int sample_ambient_lighting(int);

int sample_temperature(int);

int sample_ac_current(int);

void main(void) {

 static tRxPacket rx_packet; //SMAC structure for RX packets

 static tTxPacket tx_packet; //SMAC structure for TX packets

 static byte rx_data_buffer[20]; //Data buffer to hold RX data

 static byte tx_data_buffer[20]; //Data buffer to hold TX data

 //Initializing the TX/RX packet

 tx_packet.u8DataLength = 0; //Set TX default to 0

tx_packet.pu8Data = &tx_data_buffer[0]; //Load the address of our

 //txbuffer into tx structure.

 rx_packet.u8DataLength = 0; //Set RX default to 0

rx_packet.pu8Data = &rx_data_buffer[0]; //Load the address of our

 //rxbuffer into rx structure

rx_packet.u8MaxDataLength = 100; //Define the max buffer we are

 //interested in.

 rx_packet.u8Status = 0; //initialize the status packet to 0.

 MCUInit();

 RadioInit();

73

 KBIInit();

 KBI1SC_KBACK = 1;

 KBI_ENABLEINTERRUPTS;

 app_init();

 (void)MLMESetMC13192ClockRate(0); // Set initial Clock speed

 UseExternalClock();

 EnableInterrupts;

 (void)MLMESetChannelRequest(CHANNEL_NUMBER); //(CHANNEL_NUMBER = 0)

(void)MLMEMC13192PAOutputAdjust(OUTPUT_POWER); //(OUTPUT_POWER = 11)

 //(~0dBm)

 //Initialize ATD & pins:

 ATD1PE=0xD8; ATD1C=0xE1; //D8=11011000

 TSTAT_BYPASS = 0; Y_RELAY = 0; AC_RELAY = 0; //G_RELAY set in

 //app_init

 ACCEL_G_OFF; //Put Accelerometer to sleep

PTBDD_PTBDD0=DDIR_OUTPUT; PTBDD_PTBDD1=DDIR_OUTPUT;

PTBDD_PTBDD2=DDIR_OUTPUT; PTBDD_PTBDD5=DDIR_OUTPUT;

//---

setLedsMode(LED_HEX_MODE, 0xF, 30, LED_NO_FLAGS); //Blink all LEDs

 //(twice)

 setLedsMode(LED_HEX_MODE, 0xF, 30, LED_NO_FLAGS);

 app_status = RX_STATE;

 tx_data_buffer[0] = 0;

 tx_packet.u8DataLength = 8; //Set the data length of the packet.

//---

/* tx_data_buffer[0] = Ambient lighting

 tx_data_buffer[1] = Temperature

 tx_data_buffer[2] = AC current measurement

 tx_data_buffer[3] = # of people in room

 tx_data_buffer[4] = TSTAT_BYPASS (1 = PC control of thermostat)

 tx_data_buffer[5] = G_RELAY (1 = Fan ON, if PC in control)

 tx_data_buffer[6] = Y_RELAY (1 = Cool(condenser) ON, if PC in

 control)

 tx_data_buffer[7] = AC_RELAY (lights status. 1 = Lights on)

*/

 //Loop forever

 for (;;) {

 switch (app_status) {

 case SEND_DATA:

 LED5 = LED_ON; //Turn on green LED when sampling

 //sensors/transmitting

 BUZZER = BUZZER_ON; delay(5); BUZZER = BUZZER_OFF; delay(5);

 BUZZER = BUZZER_ON; delay(5); BUZZER = BUZZER_OFF; delay(5);

 BUZZER = BUZZER_ON; delay(5); BUZZER = BUZZER_OFF;

 tx_data_buffer[0] = sample_ambient_lighting(25); //# = number

 //of samples to average

 tx_data_buffer[1] = sample_temperature(25);

74

 tx_data_buffer[2] = sample_ac_current(25);

 tx_data_buffer[3] = number_of_people;

 tx_data_buffer[4] = TSTAT_BYPASS;

 tx_data_buffer[5] = G_RELAY;

 tx_data_buffer[6] = Y_RELAY;

 tx_data_buffer[7] = AC_RELAY;

 if (MCPSDataRequest(&tx_packet) == SUCCESS) //Transmit

 LED1 ^= 1;

 LED5 = LED_OFF;

 app_status = RX_STATE;

 break;

 case SET_AIR:

 TSTAT_BYPASS = comp_thermostat;

 G_RELAY = fan;

 Y_RELAY = cool;

 app_status = RX_STATE;

 break;

 case RX_STATE:

 MLMERXEnableRequest(&rx_packet,0); //Keep receiver on

 app_status = IDLE_STATE;

 break;

 case IDLE_STATE:

 break;

 }//end of app_status switch class

 if (number_of_people > 0){ //Turn on AC light if necessary

 ambient_lighting_status = sample_ambient_lighting(25);

 if (ambient_lighting_status < 170){

 AC_RELAY = 1;

 } else if (ambient_lighting_status > 200){

 AC_RELAY = 0;

 }

 } else {

 AC_RELAY = 0; //Always have light off if no people regardless of

 //lighting

 }

//---

 //Check for debounce timer (TIMER1)

 if ((gu16Events & TIMER_EVENT1) != 0) {

 gu16Events &= ~TIMER_EVENT1; //Clear the event

 gu16timerEvent[1] = 0; //Turn off the timer

 }

 //(If PROX1 is triggered) (or SW3)

 if ((gu16Events & KBI4_EVENT) != 0) {

 gu16Events &= ~KBI4_EVENT;

75

 BUZZER = BUZZER_ON;

 delay(10);

 BUZZER = BUZZER_OFF;

 delay(400); //Time to give PROX2 to be triggered to count a

 //person entering

 if ((gu16Events & KBI3_EVENT) != 0) { //If PROX2 triggered

 gu16Events &= ~KBI3_EVENT;

 number_of_people++;

 }

 }

 //(If PROX2 is triggered) (or SW2)

 if ((gu16Events & KBI3_EVENT) != 0) {

 gu16Events &= ~KBI3_EVENT;

 BUZZER = BUZZER_ON;

 delay(10);

 BUZZER = BUZZER_OFF;

 delay(400); //Time to give PROX1 to be triggered to count a

 //person leaving

 if ((gu16Events & KBI4_EVENT) != 0) {

 gu16Events &= ~KBI4_EVENT;

 if (number_of_people > 0){

 number_of_people--;

 }

 }

 }

 //(If SW1 is pressed)

 if ((gu16Events & KBI2_EVENT) != 0) {

 BUZZER = BUZZER_ON;

 delay(20);

 BUZZER = BUZZER_OFF;

 gu16Events &= ~KBI2_EVENT;

 app_status = SEND_DATA;

 }

 }//end of infinite for loop

}//end of main

//--

void MCPSDataIndication(tRxPacket *rx_packet) {

 if (rx_packet->u8Status == TIMEOUT) {

76

 app_status = RX_STATE;

 }

 if (rx_packet->u8Status == SUCCESS) { //Good packet received.

 if (rx_packet->pu8Data[0] == 'D' &&

 rx_packet->pu8Data[1] == 'a' &&

 rx_packet->pu8Data[2] == 't' &&

 rx_packet->pu8Data[3] == 'a' &&

 rx_packet->pu8Data[4] == 'P' &&

 rx_packet->pu8Data[5] == 'l' &&

 rx_packet->pu8Data[6] == 'z') {

 app_status = SEND_DATA;

 } else if (rx_packet->pu8Data[0] == 'S' &&

 rx_packet->pu8Data[1] == 'e' &&

 rx_packet->pu8Data[2] == 't' &&

 rx_packet->pu8Data[3] == 'A' &&

 rx_packet->pu8Data[4] == 'i' &&

 rx_packet->pu8Data[5] == 'r') {

 comp_thermostat = rx_packet->pu8Data[6];

 fan = rx_packet->pu8Data[7];

 cool = rx_packet->pu8Data[8];

 app_status = SET_AIR;

 }

 else {

 app_status = RX_STATE;

 }

 }

}//end MCPSDataIndication()

void MLMEMC13192ResetIndication() {

 RadioInit();

 app_status = IDLE_STATE;

}

void app_init() {

 LED_INIT_MACRO; //Set LEDs off & initialize as outputs

 BUZZER_INIT_MACRO; //Set Buzzer off & initialize as output

//Set Push button pull ups (SW1,SW2,SW3). Note: SW2 used for PROX2 &

 //SW3 used for PROX1; SW4 port (as output) used for G_RELAY

 PB0PU = 1; PB1PU = 1; PB2PU = 1;

 G_RELAY=0; PTADD_PTADD5 = 1;

 //Setup Timer 1

TPM1MOD = 625; //Set the timer for a 26ms timer rate (1/8E6) * 128 *

77

 //625 = 10msec

 //Timer rate = (1/BUSCLOCK) * TIMER_PRESCALER * TIMER MOD

TPM1SC = 0x4F; //Timer divide by 128. (16uS timebase for 8MHz bus

 //clock). interrupt on

}

int sample_ambient_lighting(int samples) {

 int average = 0;

 int i;

 for(i=1; i<=samples; i++){

 AMBIENT_LIGHT; //Sample AMBIENT_LIGHT voltage (for new binary

 //voltage to read)

 while((ATD1SC & 0x80) != 0x80);

 average = average + ATD1RH; //Read & add conversion data to

 //'average'

 delay(3);

 }

 average = average/samples;

return average;

}

int sample_temperature(int samples) {

 int average = 0;

 int i;

 for(i=1; i<=samples; i++){

 TEMP_VOUT;

 while((ATD1SC & 0x80) != 0x80);

 average = average + ATD1RH;

 delay(3);

 }

 average = average/samples;

return average;

}

int sample_ac_current(int samples) {

 int average = 0;

 int i;

 for(i=1; i<=samples; i++){

 CURRENT_MEAS;

 while((ATD1SC & 0x80) != 0x80);

 average = average + ATD1RH;

 delay(20);

 }

 average = average/samples;

return average;

}

78

APPENDIX B

/*Software for 1321X-SRB connected to PC*/

#include <hidef.h>

#include "pub_def.h"

#include "LCD.h"

#include "SCI.h"

#include "APP_SMAC_API.h"

#include "freescale_radio_hardware.h"

#include "smac_per_rx.h"

#include "eventDefs.h"

#include "timer.h"

#include "ledFunctions.h"

#include <string.h>

#include "kbi.h"

#include "ascii_utilities.h"

byte gu8RTxMode;

int app_status = 0;

int ambient_lighting_status = 0;

int temperature = 0;

int pc_temperature = 0;

int ac_current = 0;

int number_of_people = 0;

int tstat_bypass_status = 0;

int g_relay_status = 0;

int y_relay_status = 0;

int lights_status = 0;

int comp_thermostat = 0; //For TSTAT_BYPASS (0 = use thermostat; not

 //PC)

int fan = 0; //For G_RELAY

int cool = 0; //For Y_RELAY

UINT8 link_quality;

extern UINT8 gu8SCIData[128];

extern UINT8 gu8SCIDataFlag;

UINT16 gu16Events = 0;

extern UINT16 gu16msTimer;

extern UINT16 gu16timerEvent[2];

void main(void) {

 static tRxPacket rx_packet; //SMAC structure for RX packets

 static tTxPacket tx_packet; //SMAC structure for TX packets

 static byte rx_data_buffer[20]; //Data buffer to hold RX data, if

 //you want larger packets change 20 to what you need.

static byte tx_data_buffer[20]; //Data buffer to hold TX data, if

 //you want larger packets change 20 to what you need.

79

 char App_String[10]; //To store string transmitted over USB

 //Initialize the TX/RX packet

 tx_packet.u8DataLength = 0; //Set TX default length to 0

tx_packet.pu8Data = &tx_data_buffer[0]; //Load the address of our

 //txbuffer into the tx structure

 rx_packet.u8DataLength = 0; //Set RX default length to 0

rx_packet.pu8Data = &rx_data_buffer[0]; //Load the address of our

 //rxbuffer into the rx structure

rx_packet.u8MaxDataLength = 128; //Define the max buffer we

 //are interested in.

 rx_packet.u8Status = 0; //initial status variable for rx to 0.

 MCUInit();

 RadioInit();

 app_init();

 SCIInitGeneric(8000000, 38400, DEFAULT_SCI_PORT);

 KBIInit();

 KBI_ENABLEINTERRUPTS;

 (void)MLMESetMC13192ClockRate(0); //Set initial Clock speed

 UseExternalClock();

 EnableInterrupts;

 (void)MLMESetChannelRequest(CHANNEL_NUMBER); //(CHANNEL_NUMBER = 0)

(void)MLMEMC13192PAOutputAdjust(OUTPUT_POWER); //(OUTPUT_POWER = 11)

 //(~0dBm)

 //Initialize ATD for temperature:

 ATD1PE = 0xC0; ATD1C = 0xE1; //C0=11000000

setLedsMode(LED_HEX_MODE, 0xF, 30, LED_NO_FLAGS); //Blink all LEDs

 //(twice)

 setLedsMode(LED_HEX_MODE, 0xF, 30, LED_NO_FLAGS);

 app_status = IDLE_STATE;

//---

 //Loop forever

 for (;;) {

 switch (app_status) {

 case ASK_FOR_DATA:

 LED5 = LED_ON;

 tx_data_buffer[0] = 'D';

 tx_data_buffer[1] = 'a';

 tx_data_buffer[2] = 't';

 tx_data_buffer[3] = 'a';

 tx_data_buffer[4] = 'P';

 tx_data_buffer[5] = 'l';

 tx_data_buffer[6] = 'z';

 tx_packet.u8DataLength = 7;

 if (MCPSDataRequest(&tx_packet) == SUCCESS)

 LED2 ^= 1;

80

 (void)MLMERXEnableRequest(&rx_packet,DELAY_COUNT);

//Temporarily turn on receiver

 LED5 = LED_OFF;

 app_status = IDLE_STATE;

 break;

 case SET_AIR_COND:

 LED5 = LED_ON;

 tx_data_buffer[0] = 'S';

 tx_data_buffer[1] = 'e';

 tx_data_buffer[2] = 't';

 tx_data_buffer[3] = 'A';

 tx_data_buffer[4] = 'i';

 tx_data_buffer[5] = 'r';

 tx_data_buffer[6] = comp_thermostat;

 tx_data_buffer[7] = fan;

 tx_data_buffer[8] = cool;

 tx_packet.u8DataLength = 9;

 if (MCPSDataRequest(&tx_packet) == SUCCESS)

 LED2 ^= 1;

 delay(250); //Give time to switch Air Cond and await a new

 //request

 LED5 = LED_OFF;

 app_status = ASK_FOR_DATA; //To confirm that the air

 //conditioner is as desired

 break;

 case IDLE_STATE:

 break;

 case GOOD_PACKET:

 LED1 ^= 1;

 //Note: Adding 1000 or 100 to have transferred data retain same

 //string length (will later ignore first 1 in each case)

 link_quality = (UINT8)(MLMELinkQuality()/2); //Signal strength

 //of last received packet

 ambient_lighting_status = rx_packet.pu8Data[0] + 1000;

 temperature = rx_packet.pu8Data[1] + 1000; //Temp is 600mV

 //offset

 ac_current = rx_packet.pu8Data[2] + 1000;

 number_of_people = rx_packet.pu8Data[3] + 100;

 tstat_bypass_status = rx_packet.pu8Data[4]; //Relay status'

 //will either be 0 or 1

 g_relay_status = rx_packet.pu8Data[5];

 y_relay_status = rx_packet.pu8Data[6];

 lights_status = rx_packet.pu8Data[7];

 //--------------------------------

 //Sampling own temperature to give PC two different room

 //temperatures

 pc_temperature = sample_temperature(25) + 1000;

 //--------------------------------

81

 SCITransmitStr("LQI=-");

 (void)int2string((UINT32) link_quality, App_String);

 (void)trimWhiteSpace(App_String);

 SCITransmitStr(App_String);

 SCITransmitStr(" Ambient Lighting=");

 (void)int2string((UINT32) ambient_lighting_status, App_String);

 (void)trimWhiteSpace(App_String);

 SCITransmitStr(App_String);

 SCITransmitStr(" Temperature=");

 (void)int2string((UINT32) temperature, App_String);

 (void)trimWhiteSpace(App_String);

 SCITransmitStr(App_String);

 SCITransmitStr(" CurrentMeas=");

 (void)int2string((UINT32) ac_current, App_String);

 (void)trimWhiteSpace(App_String);

 SCITransmitStr(App_String);

 SCITransmitStr(" People=");

 (void)int2string((UINT32) number_of_people, App_String);

 (void)trimWhiteSpace(App_String);

 SCITransmitStr(App_String);

 SCITransmitStr(" Tstat_bypass=");

 (void)int2string((UINT32) tstat_bypass_status, App_String);

 (void)trimWhiteSpace(App_String);

 SCITransmitStr(App_String);

 SCITransmitStr(" G_Relay=");

 (void)int2string((UINT32) g_relay_status, App_String);

 (void)trimWhiteSpace(App_String);

 SCITransmitStr(App_String);

 SCITransmitStr(" Y_Relay=");

 (void)int2string((UINT32) y_relay_status, App_String);

 (void)trimWhiteSpace(App_String);

 SCITransmitStr(App_String);

 SCITransmitStr(" Lights=");

 (void)int2string((UINT32) lights_status, App_String);

 (void)trimWhiteSpace(App_String);

 SCITransmitStr(App_String);

 SCITransmitStr(" PC_Temperature=");

 (void)int2string((UINT32) pc_temperature, App_String);

 (void)trimWhiteSpace(App_String);

 SCITransmitStr(App_String);

 SCITransmitStr("\r\n");

 app_status = IDLE_STATE;

 break;

 }//end of app_status switch class

82

//---

 if (gu8SCIDataFlag == 1) {

 switch (gu8SCIData[0]) {

 case 'D': //Computer asking for sensor data

 BUZZER = BUZZER_ON; delay(5);

 BUZZER = BUZZER_OFF; delay(5);

 BUZZER = BUZZER_ON; delay(5);

 BUZZER = BUZZER_OFF; delay(5);

 BUZZER = BUZZER_ON; delay(5);

 BUZZER = BUZZER_OFF;

 app_status = ASK_FOR_DATA;

 break;

 case 'O':

 comp_thermostat = 0;

 fan = 0;

 cool = 0;

 app_status = IDLE_STATE;

 break;

 case 'T': //Toggle thermostat relay (though don't transmit

 //until 'S')

 comp_thermostat = 1;

 fan = 0;

 cool = 0;

 app_status = IDLE_STATE;

 break;

 case 'G': //To toggle G_RELAY (fan) (don't transmit yet)

 comp_thermostat = 1;

 fan = 1;

 cool = 0;

 app_status = IDLE_STATE;

 break;

 case 'Y': //To toggle Y_RELAY (cool/condenser) (don't transmit

 //yet)

 comp_thermostat = 1;

 fan = 1;

 cool = 1;

 app_status = IDLE_STATE;

 break;

 case 'S': //Set Air conditioner (after setting desired relay

 //states)

 BUZZER = BUZZER_ON; delay(5);

 BUZZER = BUZZER_OFF; delay(5);

 BUZZER = BUZZER_ON; delay(5);

 BUZZER = BUZZER_OFF; delay(5);

 BUZZER = BUZZER_ON; delay(5);

 BUZZER = BUZZER_OFF;

83

 app_status = SET_AIR_COND;

 break;

 }

 gu8SCIDataFlag = 0;

 }

//---

 //Check for debounce timer (TIMER1)

 if ((gu16Events & TIMER_EVENT1) != 0) {

 gu16Events &= ~TIMER_EVENT1; //Clear the event

 gu16timerEvent[1] = 0; //Turn off the timer

 }

 //(If SW1 is pressed)

 if ((gu16Events & KBI2_EVENT) != 0) {

 BUZZER = BUZZER_ON;

 delay(10);

 BUZZER = BUZZER_OFF;

 gu16Events &= ~KBI2_EVENT;

 app_status = ASK_FOR_DATA;

 }

 //(If SW2 is pressed)

 if ((gu16Events & KBI3_EVENT) != 0) {

 BUZZER = BUZZER_ON;

 delay(10);

 BUZZER = BUZZER_OFF;

 gu16Events &= ~KBI3_EVENT;

 comp_thermostat ^= 1;

 app_status = SET_AIR_COND;

 }

 //(If SW3 is pressed)

 if ((gu16Events & KBI4_EVENT) != 0) {

 BUZZER = BUZZER_ON;

 delay(10);

 BUZZER = BUZZER_OFF;

 gu16Events &= ~KBI4_EVENT;

 fan ^= 1;

 app_status = SET_AIR_COND;

 }

 //(If SW4 is pressed)

 if ((gu16Events & KBI5_EVENT) != 0) {

 BUZZER = BUZZER_ON;

 delay(10);

 BUZZER = BUZZER_OFF;

84

 gu16Events &= ~KBI5_EVENT;

 cool ^= 1;

 app_status = SET_AIR_COND;

 }

 }//end of infinite for loop

}//end of main

//---

void MCPSDataIndication(tRxPacket *rx_packet2) {

 if (rx_packet2->u8Status == TIMEOUT) {

 BUZZER = BUZZER_ON;

 delay(10);

 BUZZER = BUZZER_OFF;

 delay(10);

 BUZZER = BUZZER_ON;

 delay(10);

 BUZZER = BUZZER_OFF;

 delay(10);

 BUZZER = BUZZER_ON;

 delay(10);

 BUZZER = BUZZER_OFF;

 app_status = IDLE_STATE;

 }

 if (rx_packet2->u8Status == SUCCESS) {

 if (rx_packet2->u8DataLength == 8){ //Data length of packet. Can

 //add more conditions

 app_status = GOOD_PACKET;

 } else{

 app_status = IDLE_STATE;

 }

 } else {

 app_status = IDLE_STATE;

 }

}//end MCPSDataIndication()

void MLMEMC13192ResetIndication() {

 RadioInit();

 app_status = IDLE_STATE;

}

void app_init(void) {

 LED_INIT_MACRO; //Set LEDs off & initialize as outputs

 BUZZER_INIT_MACRO; //Set Buzzer off & initialize as output

85

 //Set Push button pull ups

 PB0PU = 1; PB1PU = 1; PB2PU = 1; PB3PU = 1;

 //Setup Timer 1

TPM1MOD = 625; //Set the timer for a 26ms timer rate (1/8E6) * 128 *

 //625 = 10msec

 //Timer rate = (1/BUSCLOCK) * TIMER_PRESCALER * TIMER MOD

TPM1SC = 0x4F; //Timer divide by 128. (16uS timebase for 8MHz bus

 //clock). interrupt on

}

int sample_temperature(int samples) {

 int average = 0;

 int i;

 for(i=1; i<=samples; i++){

 TEMP_VOUT;

 while((ATD1SC & 0x80) != 0x80);

 average = average + ATD1RH;

 delay(3);

 }

 average = average/samples;

return average;

}

86

APPENDIX C

%Matlab m file code for GUI based ZigBee Home Automation application

function varargout = zigbee(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @zigbee_OpeningFcn, ...
 'gui_OutputFcn', @zigbee_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

% --- Executes just before zigbee is made visible.
function zigbee_OpeningFcn(hObject, eventdata, handles, varargin)
global x;
x = [0:20];
global y;
y = zeros(1,21);
global Desired_Temperature; Desired_Temperature = 75;
global temperaturec; temperaturec = 0;
global temperaturef; temperaturef = 0;
global pc_temperaturef; pc_temperaturef = 0;
global pc_temperaturec; pc_temperaturec = 0;
global Vcc; Vcc = 3.02;
global Temperature_OK; Temperature_OK = 1;
global AC_Change_Flag; AC_Change_Flag = 0;
global AC_Safety_Time; AC_Safety_Time = 240;
global Cool_OK; Cool_OK = 0;
global tstat_bypass_status; tstat_bypass_status = 0;
global g_relay_status; g_relay_status = 0;
global y_relay_status; y_relay_status = 0;
global serial_port;
serial_port = serial('COM4','BaudRate',38400,'DataBits',8,'Parity', ...

 'none','StopBits',1,'Flowcontrol','none');

axes(handles.axes_Background);
Background = importdata('background.jpg');

87

image(Background);
axis off;

handles.output = hObject;
guidata(hObject, handles);

% --- Outputs from this function are returned to the command line.
function varargout = zigbee_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

function checkbox_PC_Control_Callback(hObject, eventdata, handles)
global Cool_OK;
global AC_Safety_Time;
global AC_Change_Flag;
AC_Change_Flag = 1;
PC_Control = get(handles.checkbox_PC_Control,'Value');
if (PC_Control == 1)
 set(handles.checkbox_Fan_Only,'Visible','on');
 set(handles.checkbox_Cool,'Visible','on');
 if (Cool_OK == 0)
 Cool_OK = AC_Safety_Time;
 set(handles.text_AC_Time,'String',num2str(Cool_OK), ...

 'Visible','on');
 end
else
 set(handles.checkbox_Fan_Only,'Visible','off','Value',0);
 set(handles.checkbox_Cool,'Visible','off','Value',0);
 if (Cool_OK == 0)
 Cool_OK = AC_Safety_Time; %Timer when turning off PC control,

 %as thermostat might have condenser on.
 set(handles.text_AC_Time,'String',num2str(Cool_OK), ...

 'Visible','on');
 end
end
guidata(hObject, handles);

function checkbox_Fan_Only_Callback(hObject, eventdata, handles)
global AC_Change_Flag;
global Cool_OK;
global AC_Safety_Time;
AC_Change_Flag = 1;
Fan_Only = get(handles.checkbox_Fan_Only,'Value');
Cool = get(handles.checkbox_Cool,'Value');
if (Fan_Only == 1)
 if (Cool == 1 && Cool_OK == 0)
 Cool_OK = AC_Safety_Time;
 set(handles.text_AC_Time,'String',num2str(Cool_OK), ...

 'Visible','on');
 end
 set(handles.checkbox_Cool,'Value',0);
end
guidata(hObject, handles);

88

function checkbox_Cool_Callback(hObject, eventdata, handles)
global Cool_OK;
global AC_Safety_Time;
global AC_Change_Flag;
AC_Change_Flag = 1;
Cool = get(handles.checkbox_Cool,'Value');
if (Cool == 1)
 set(handles.checkbox_Fan_Only,'Value',0);
else
 if (Cool_OK == 0)
 Cool_OK = AC_Safety_Time;
 set(handles.text_AC_Time,'String',num2str(Cool_OK), ...

 'Visible','on');
 end
end
guidata(hObject, handles);

function checkbox_Battery_Callback(hObject, eventdata, handles)
global Vcc;
Battery = get(handles.checkbox_Battery,'Value');
if (Battery == 1)
 Vcc = 2.56;
else
 Vcc = 3.02;
end
guidata(hObject, handles);

function checkbox_Room_1_Callback(hObject, eventdata, handles)
global temperaturec;
global temperaturef;
Room_1 = get(handles.checkbox_Room_1,'Value');
if (Room_1 == 1)
 set(handles.checkbox_Room_2,'Value',0);
 set(handles.text_Chosen_Temperature,'String', ...

 strcat(num2str(temperaturec),' C (', ...

 num2str(temperaturef),' F)'));
end
guidata(hObject, handles);

function checkbox_Room_2_Callback(hObject, eventdata, handles)
global pc_temperaturec;
global pc_temperaturef;
Room_2 = get(handles.checkbox_Room_2,'Value');
if (Room_2 == 1)
 set(handles.checkbox_Room_1,'Value',0);
 set(handles.text_Chosen_Temperature, ...

 'String',strcat(num2str(pc_temperaturec),' C (', ...

 num2str(pc_temperaturef),' F)'));

end
guidata(hObject, handles);

89

function slider_Desired_Temperature_Callback(hObject, eventdata, ...

 handles)
global Desired_Temperature;
Desired_Temperature = get(handles.slider_Desired_Temperature,'Value');
Desired_Temperature = round(Desired_Temperature);
set(handles.slider_Desired_Temperature,'Value',Desired_Temperature);
set(handles.edit_Desired_Temperature,'String',

num2str(Desired_Temperature));
guidata(hObject, handles);

function slider_Desired_Temperature_CreateFcn(hObject, eventdata, ...

 handles)
if isequal(get(hObject,'BackgroundColor'), ...

 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function edit_Desired_Temperature_Callback(hObject, eventdata, handles)
global Desired_Temperature;
Desired_Temperature = get(handles.edit_Desired_Temperature,'String');
Desired_Temperature = str2num(Desired_Temperature);
Desired_Temperature = round(Desired_Temperature);

if (isempty(Desired_Temperature))
 set(handles.slider_Desired_Temperature,'Value',75);
 set(handles.edit_Desired_Temperature,'String','75');
elseif (Desired_Temperature < 65)
 set(handles.slider_Desired_Temperature,'Value',65);
 set(handles.edit_Desired_Temperature,'String','65');
elseif (Desired_Temperature > 85)
 set(handles.slider_Desired_Temperature,'Value',85);
 set(handles.edit_Desired_Temperature,'String','85');
else
 set(handles.slider_Desired_Temperature,'Value', ...

 Desired_Temperature);
 set(handles.edit_Desired_Temperature,'String', ...

 num2str(Desired_Temperature));
end
guidata(hObject, handles);

function edit_Desired_Temperature_CreateFcn(hObject, eventdata, ...

 handles)
if ispc && isequal(get(hObject,'BackgroundColor'), ...

 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit_AC_Safety_Time_Callback(hObject, eventdata, handles)
global AC_Safety_Time;
global Cool_OK;
AC_Safety_Time = get(handles.edit_AC_Safety_Time,'String');
AC_Safety_Time = round(str2double(AC_Safety_Time));

90

if (AC_Safety_Time < 30)
 AC_Safety_Time = 30;
 set(handles.edit_AC_Safety_Time,'String',num2str(AC_Safety_Time));
else
 set(handles.edit_AC_Safety_Time,'String',num2str(AC_Safety_Time));
end
if (Cool_OK > AC_Safety_Time)
 Cool_OK = AC_Safety_Time;
end
guidata(hObject, handles);

function edit_AC_Safety_Time_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), ...

 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit_Update_Interval_Callback(hObject, eventdata, handles)
Update_Interval = get(handles.edit_Update_Interval,'String');
Update_Interval = str2num(Update_Interval);
Update_Interval = round(Update_Interval);
if (isempty(Update_Interval))
 set(handles.edit_Update_Interval,'String','60');
elseif (Update_Interval < 1)
 set(handles.edit_Update_Interval,'String','1');
else
 set(handles.edit_Update_Interval,'String', ...

 num2str(Update_Interval));
end
guidata(hObject, handles);

function edit_Update_Interval_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), ...

 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit_COM_Callback(hObject, eventdata, handles)
COM_Port = get(handles.edit_COM,'String');
COM_Port = round(str2double(COM_Port));
if (COM_Port < 0)
 COM_Port = 0;
elseif (COM_Port > 256)
 COM_Port = 256;
end
set(handles.edit_COM,'String',num2str(COM_Port));

function edit_COM_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), ...

 get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

91

function pushbutton_Connect_Callback(hObject, eventdata, handles)
global serial_port;
COM_Port = get(handles.edit_COM,'String');
COM_Port = strcat('COM',COM_Port);
if (strcmp('COM4',COM_Port) ~= 1)
 serial_port = serial(COM_Port,'BaudRate',38400,'DataBits',8, ...

 'Parity','none','StopBits',1,'Flowcontrol','none');

end
fopen(serial_port); %If it doesn't connect, will not continue (will

 %not remove button to try again)
set(handles.text_COM,'Visible','off');
set(handles.edit_COM,'Visible','off');
set(handles.pushbutton_Connect,'Visible','off');
set(handles.pushbutton_Start,'Visible','on');
guidata(hObject, handles);

function pushbutton_Start_Callback(hObject, eventdata, handles)
global serial_port;
global Cool_OK;
global AC_Safety_Time;
global Desired_Temperature;
global AC_Change_Flag;
global tstat_bypass_status;
global g_relay_status;
global y_relay_status;
global temperaturef;
global pc_temperaturef;
global Temperature_OK;
set(handles.pushbutton_Start,'String','Manual Refresh');
set(handles.text_Error,'Visible','off');

while true
 set(handles.text_Updating,'Visible','on');
 Update_Interval = get(handles.edit_Update_Interval,'String');
 Update_Interval = str2double(Update_Interval);

 fprintf(serial_port, 'D');
 get_data(handles);
 set(handles.text_Updating,'Visible','off');
 set(handles.checkbox_PC_Control,'Visible','on');
 guidata(hObject, handles);

 i=1;
 while (i ~= Update_Interval)
 set(handles.text_Update_Interval_Count,'String',num2str(i), ...

 'Visible','on');
 pause(1);
 PC_Control = get(handles.checkbox_PC_Control,'Value');
 if (Cool_OK >= 1)
 Cool_OK = Cool_OK - 1;
 set(handles.text_AC_Time,'String',num2str(Cool_OK));
 if (Cool_OK == 0)
 set(handles.text_AC_Time,'Visible','off');

92

 end
 end
 if (PC_Control == 1)
 Room_1 = get(handles.checkbox_Room_1,'Value');
 if (Room_1 == 1)
 Temperature = temperaturef;
 else
 Temperature = pc_temperaturef;
 end
 if (Temperature > Desired_Temperature + 1) %Note: Doesn't

 %matter if < desired temperature, no heat connected
 if (Temperature_OK == 1)
 AC_Change_Flag = 1; %Temperature just went above

 %desired range, need to turn on cooling
 end
 Temperature_OK = 0; %Temperature not below desired

 %range; want cooling
 elseif (Temperature < Desired_Temperature - 2)
 if (Temperature_OK == 0)
 AC_Change_Flag = 1; %Temperature just went below

 %desired range, need to turn off cooling
 Cool_OK = AC_Safety_Time; %Reset timer so cooler

 %can't come back on too soon
 set(handles.text_AC_Time,'String', ...

 num2str(Cool_OK),'Visible','on');
 end
 Temperature_OK = 1; %Temperature is OK, no cooling

 %needed
 end
 end
 if (AC_Change_Flag == 1)
 PC_Control = get(handles.checkbox_PC_Control,'Value');
 Fan_Only = get(handles.checkbox_Fan_Only,'Value');
 Cool = get(handles.checkbox_Cool,'Value');

 if (PC_Control == 0 && Cool_OK == 0) %Use Cool_OK

 %countdown to delay turning off A/C,

 %as thermostat might turn it on.
 while (tstat_bypass_status ~= 0) %Will keep trying to

 %turn off until received data shows it turned off
 set(handles.text_Updating,'Visible','on');
 fprintf(serial_port, 'OS');
 get_data(handles);
 set(handles.text_Updating,'Visible','off');
 guidata(hObject,handles);
 i = 0; %Restart data gathering update, as setting

 %AC gathered data.
 PC_Control = get(handles.checkbox_PC_Control,

 'Value');
 if (PC_Control == 1)
 break;
 end
 end
 elseif (PC_Control == 1 && Fan_Only == 0 && Cool == 0)

93

 while (tstat_bypass_status ~= 1 || ...

 g_relay_status ~= 0 || y_relay_status ~= 0)
 set(handles.text_Updating,'Visible','on');
 fprintf(serial_port, 'TS');
 get_data(handles);
 set(handles.text_Updating,'Visible','off');
 guidata(hObject,handles);
 i = 0; %Restart data gathering update, as setting

 %AC gathered data.
 PC_Control = get(handles.checkbox_PC_Control, ...

 'Value');
 set(handles.checkbox_Fan_Only,'Visible','on');
 set(handles.checkbox_Cool,'Visible','on');
 if (PC_Control == 0)
 break;
 end
 end
 elseif (PC_Control == 1 && Fan_Only == 1 && Cool == 0)
 while (tstat_bypass_status ~= 1 || ...

 g_relay_status ~= 1 || y_relay_status ~= 0)
 set(handles.text_Updating,'Visible','on');
 fprintf(serial_port, 'GS');
 get_data(handles);
 set(handles.text_Updating,'Visible','off');
 guidata(hObject,handles);
 i = 0; %Restart data gathering update, as setting

 %AC gathered data.
 PC_Control = get(handles.checkbox_PC_Control, ...

 'Value');
 Fan_Only = get(handles.checkbox_Fan_Only,'Value');
 Cool = get(handles.checkbox_Cool,'Value');
 if (PC_Control == 0 || Fan_Only == 0 || Cool == 1)
 break;
 end
 end
 elseif (PC_Control == 1 && Fan_Only == 0 && Cool == 1 && ...

 Cool_OK == 0 && Temperature_OK == 0)
 while (tstat_bypass_status ~= 1 || ...

 g_relay_status ~= 1 || y_relay_status ~= 1)

 %Note: When cool is on, we still want fan.

 set(handles.text_Updating,'Visible','on');
 fprintf(serial_port, 'YS');
 get_data(handles);
 set(handles.text_Updating,'Visible','off');
 guidata(hObject,handles);
 i = 0; %Restart data gathering update, as setting

 %AC gathered data.
 PC_Control = get(handles.checkbox_PC_Control, ...

 'Value');
 Fan_Only = get(handles.checkbox_Fan_Only,'Value');
 Cool = get(handles.checkbox_Cool,'Value');
 if (PC_Control == 0 || Fan_Only == 1 || Cool == 0)
 break;
 end
 end

94

 elseif (PC_Control == 1 && Fan_Only == 0 && Cool == 1 ...

 && Temperature_OK == 1) %Cool is checked,

 %but not needed based on desired temp.

 while (tstat_bypass_status ~= 1 || ...

 g_relay_status ~= 0 || y_relay_status ~= 0)
 set(handles.text_Updating,'Visible','on');
 fprintf(serial_port, 'TS');
 get_data(handles);
 set(handles.text_Updating,'Visible','off');
 guidata(hObject,handles);
 i = 0; %Restart data gathering update, as setting

 %AC gathered data.
 PC_Control = get(handles.checkbox_PC_Control, ...

 'Value');
 Fan_Only = get(handles.checkbox_Fan_Only,'Value');
 Cool = get(handles.checkbox_Cool,'Value');
 if (PC_Control == 0 || Fan_Only == 1 || Cool == 0)
 break;
 end
 end
 end
 PC_Control = get(handles.checkbox_PC_Control,'Value');
 Fan_Only = get(handles.checkbox_Fan_Only,'Value');
 Cool = get(handles.checkbox_Cool,'Value');
 if (PC_Control == tstat_bypass_status && Fan_Only == ...

 g_relay_status && Cool == y_relay_status)
 AC_Change_Flag = 0;
 end
 end
 i = i + 1;
 end
 set(handles.text_Update_Interval_Count,'Visible','off');
end

function get_data(handles)
global serial_port;
global tstat_bypass_status;
global g_relay_status;
global y_relay_status;
global Vcc;
global temperaturec;
global temperaturef;
global pc_temperaturec;
global pc_temperaturef;
global x;
global y;

pause(8); %Expected time to wait until new data comes in
newdata = fscanf(serial_port);

if(isempty(newdata))
 set(handles.text_Error,'Visible','on'); pause(.5);
 set(handles.text_Error,'Visible','off'); pause(.5);
 set(handles.text_Error,'Visible','on'); pause(.5);

95

 set(handles.text_Error,'Visible','off'); pause(.5);
 set(handles.text_Error,'Visible','on'); pause(.5);
 set(handles.text_Error,'Visible','off');
else
 link_quality = sscanf(newdata(5:7),'%d'); %In dBm
 ambient_lighting_status = round(sscanf(newdata(27:29), ...

 '%d')/2.56); %In percent from 0-100
 if (Vcc == 2.56)
 temperaturec = sscanf(newdata(44:46),'%d')/256*Vcc*100-66.5;

 else
 temperaturec = sscanf(newdata(44:46), ...

 '%d')/256*Vcc*100-62.5; %Calibrated when

 %plugged in
 end
 temperaturef = temperaturec*9/5+32;
 temperaturec = round(temperaturec*10)/10; %Celsius (rounded to 1

 %decimal place)
 temperaturef = round(temperaturef*10)/10; %Fahrenheit (rounded to

 %1 decimal place)
 ac_current = sscanf(newdata(61:63),'%d')/256*Vcc;
 %y = 0.3113x^3 - 0.6634x^2 + 1.2269x
 ac_current = 0.3113*ac_current^3 - 0.6634*ac_current^2 +

 1.2269*ac_current;
 power = ac_current*120; %Note: Not taking into account power

 %factor. (Though accurate with incand.lighting)
 yearly_cost = power/1000*8765.81277*0.1234; %power/1000=kW,

 %8765=hours/year, 0.1234=Avg FL 2009 cost pwer kWh.
 ac_current = round(ac_current*100)/100; %In Amps
 power = round(power*100)/100; %In Watts
 yearly_cost = round(yearly_cost*100)/100; %In Dollars.
 number_of_people = sscanf(newdata(73:74),'%d');
 tstat_bypass_status = sscanf(newdata(89),'%d');
 g_relay_status = sscanf(newdata(99),'%d');
 y_relay_status = sscanf(newdata(109),'%d');
 lights_status = sscanf(newdata(118),'%d');
 pc_temperaturec = sscanf(newdata(136:138),'%d')/256*300-60; %Note:

 %Is never battery powered
 pc_temperaturef = pc_temperaturec*9/5+32;
 pc_temperaturec = round(pc_temperaturec*10)/10;
 pc_temperaturef = round(pc_temperaturef*10)/10;

 set(handles.text_Number_of_People,'String', ...

 num2str(number_of_people));
 set(handles.text_Ambient_Lighting,'String', ...

 strcat(num2str(ambient_lighting_status),'%'));
 set(handles.text_Temperature,'String', ...

 strcat(num2str(temperaturec),' C (',num2str(temperaturef), ...

 ' F)'));
 set(handles.text_Current_Draw,'String', ...

 strcat(num2str(ac_current),' A'));
 set(handles.text_Total_Current_Draw,'String', ...

 strcat(num2str(ac_current),' A'));
 set(handles.text_Total_Power_Draw,'String', ...

 strcat(num2str(power),' W'));

96

 set(handles.text_Yearly_Cost,'String', ...

 strcat('$',num2str(yearly_cost)));
 if (lights_status == 0)
 set(handles.text_Lights,'String','OFF', ...

 'ForegroundColor',[0, 0, 0]);
 else
 set(handles.text_Lights,'String','ON','ForegroundColor', ...

 [1, .502, 0]);
 end
 set(handles.text_Signal_Strength,'String', ...

 strcat(num2str(link_quality),' dBm'));

 if (tstat_bypass_status == 0)
 set(handles.text_PC_Control,'String','OFF', ...

 'ForegroundColor',[1, 0, 0]);
 set(handles.text_Fan_Label,'Visible','off');
 set(handles.text_Fan,'Visible','off');
 set(handles.text_Cool_Label,'Visible','off');
 set(handles.text_Cool,'Visible','off');
 else
 set(handles.text_PC_Control,'String','ON', ...

 'ForegroundColor',[0, .757, 0]);
 set(handles.text_Fan_Label,'Visible','on');
 set(handles.text_Fan,'Visible','on');
 set(handles.text_Cool_Label,'Visible','on');
 set(handles.text_Cool,'Visible','on');
 end
 if (g_relay_status == 0)
 set(handles.text_Fan,'String','OFF','ForegroundColor', ...

 [1, 0, 0]);
 else
 set(handles.text_Fan,'String','ON','ForegroundColor', ...

 [0, .757, 0]);
 end
 if (y_relay_status == 0)
 set(handles.text_Cool,'String','OFF','ForegroundColor', ...

 [1, 0, 0]);
 else
 set(handles.text_Cool,'String','ON','ForegroundColor', ...

 [0, .757, 0]);
 end
 set(handles.text_PC_Temperature,'String',

 strcat(num2str(pc_temperaturec),' C (', ...

 num2str(pc_temperaturef),' F)'));
 Room_1 = get(handles.checkbox_Room_1,'Value');
 if (Room_1 == 1)
 set(handles.text_Chosen_Temperature,'String', ...

 strcat(num2str(temperaturec),' C (', ...

 num2str(temperaturef),' F)'));
 else
 set(handles.text_Chosen_Temperature,'String', ...

 strcat(num2str(pc_temperaturec),' C (', ...

 num2str(pc_temperaturef),' F)'));
 end

97

 for i=1:20
 y(i)=y(i+1);
 end
 y(21) = power;
 set(handles.text_Recent_Power_Use,'Visible','on');
 axes(handles.axes_Power);
 stem(x,y,'Color',[.263, .294, .482],'MarkerSize',2);
 if (max(y) ~= 0)
 set(handles.axes_Power,'YLim',[0 max(y)]);
 else
 set(handles.axes_Power,'YLim',[0 240]);
 end
 set(handles.axes_Power,'XTickLabel','','YGrid','on');
 ylabel('Watts');

end

function figure1_CloseRequestFcn(hObject, eventdata, handles)
global serial_port;
global tstat_bypass_status;
set(handles.text_Closing,'Visible','on');
if (tstat_bypass_status == 1)
 i = 1;
 while (tstat_bypass_status ~= 0 && i <= 3) %When closing program,

 %let uC know to go back to thermostat

 %(stop trying after a few tries though)
 fprintf(serial_port, 'OS');
 get_data(handles);
 guidata(hObject, handles);
 i = i + 1;
 end
end
if (strcmp(serial_port.status,'open') == 1)
 fclose(serial_port);
end
delete(hObject);

98

REFERENCES

1E & Alliance to Save Energy. (2009, March 25). PC Energy Report 2009. Retrieved

March 26, 2009, from http://www.1e.com/EnergyCampaign/downloads/

PC_EnergyReport2009-US.zip

Adams, J., & Heile, B. (2006, October). Busy as a ZigBee. Retrieved March 16, 2009,

from http://www.spectrum.ieee.org/oct06/4666

Air802 LLC. (2005). FCC Rules and Regulations. Retrieved March 14, 2009, from

http://www.air802.com/fcc-rules-and-regulations.html

Atmel Corporation. (2009). ZigBee FAQ. Retrieved February 21, 2009, from

http://www.meshnetics.com/zigbee-faq/

Bluetooth. (2009, March 15). Wikipedia, The Free Encyclopedia. Retrieved March 16,

2009, from http://en.wikipedia.org/wiki/Bluetooth

Digi International Inc. (2009). Digi Wireless Products. Retrieved March 16, 2009, from

http://www.digi.com/products/wireless/

Digi-Key Corporation. (2007). ZigBee Technology Product Training Module (PTM).

Retrieved February 21, 2009, from http://dkc1.digikey.com/us/en/tod/Freescale/

ZigBee/ZigBee.html

Energy conservation. (2009, February 16). Wikipedia, The Free Encyclopedia. Retrieved

February 16, 2009, from http://en.wikipedia.org/wiki/Power_conservation

99

Freescale Semiconductor, Inc. (2009). BeeKit Wireless Connectivity Toolkit. Retrieved

March 16, 2009, from http://www.freescale.com/webapp/sps/site/

prod_summary.jsp?code=BEEKIT_WIRELESS_CONNECTIVITY_TOOLKIT

Freescale Semiconductor, Inc. (2008). Freescale IEEE 802.15.4 Development Kits.

Retrieved March 16, 2009, from http://www.freescale.com/files/wireless_comm/

doc/brochure/BRIEEE802154DKIT.pdf

Google Inc. (2009). Energy Information. Retrieved February 11, 2009, from

http://www.google.org/powermeter/

Home automation. (2009, February 7). Wikipedia, The Free Encyclopedia. Retrieved

February 16, 2009, from http://en.wikipedia.org/wiki/Home_automation

IEEE Computer Society. (2007, August 31). 802.15.4a. Retrieved March 14, 2009, from

http://standards.ieee.org/getieee802/download/802.15.4a-2007.pdf

Jamieson, P. (2008, February 28). ZigBee Application Profiles. Retrieved March 16, 2009,

from www.zigbee.org/imwp/idms/popups/pop_download.asp?ContentID=12618

Jennic Ltd. (2007). Jennic's ZigBee e-learning Course. Retrieved February 21, 2009,

from http://www.jennic.com/elearning/zigbee/files/content_frame.htm

P3 International Corporation. (2008). P3 - Kill A Watt. Retrieved March 19, 2009, from

http://www.p3international.com/products/special/P4400/P4400-CE.html

Phase-shift keying. (2009, March 6). Wikipedia, The Free Encyclopedia. Retrieved

March 14, 2009, from http://en.wikipedia.org/wiki/BPSK

Standby power. (2009, March 26). Wikipedia, the Free Encyclopedia. Retrieved March

26, 2009, from http://en.wikipedia.org/wiki/Standby_power

100

Tendril Networks, Inc. (2008). Smart Energy Made Easy. Retrieved March 18, 2009,

from http://www.tendrilinc.com/wp-content/uploads/smart-energy-guide.pdf

Tendril Networks, Inc. (2008). Tendril Products. Retrieved March 18, 2009, from

http://www.tendrilinc.com/consumers/products/

U.S. Department of Energy. (2008, September). 2008 Buildings Energy Data Book.

Retrieved March 22, 2009, from http://buildingsdatabook.eren.doe.gov/docs/

DataBooks/2008_BEDB.pdf

U.S. Department of Energy. (2008, October). EERE: Energy Savers Tips. Retrieved

March 26, 2009, from http://www1.eere.energy.gov/consumer/tips/pdfs/

energy_savers.pdf

Vision for the Home - ZigBee Wireless Home Automation. (2006, November). Retrieved

March 19, 2009, from http://www.zigbee.org/imwp/idms/popups/

pop_download.asp?contentID=10254

ZigBee Alliance. (2009). ZigBee Alliance. Retrieved March 11, 2009, from ZigBee

Alliance: http://www.zigbee.org

ZigBee Alliance. (2009). ZigBee Smart Energy. Retrieved March 18, 2009, from

http://www.zigbee.org/Markets/ZigBeeSmartEnergy/tabid/224/Default.aspx

ZigBee Alliance. (2009, March). ZigBee Wireless Sensor Applications for Health,

Wellness and Fitness. Retrieved March 18, 2009, from http://www.zigbee.org/

imwp/download.asp?ContentID=15585

ZigBee and RF4CE Set New Course For Consumer Electronic Remote Controls. (2009,

March 3). Retrieved March 16, 2009, from http://www.zigbee.org/imwp/

download.asp?ContentID=15438

101

ZigBee. (2009, February 16). Wikipedia, The Free Encyclopedia. Retrieved February 16,

2009, from http://en.wikipedia.org/wiki/ZigBee

