You are here

THE IMPACT OF ENVIRONMENTAL FACTORS ON LOGGERHEAD SEA TURTLE (CARETTA CARETTA) HATCHLING BIOLOGY

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
The eggs of all sea turtle species develop in underground nests on oceanic nesting beaches. Eggs are unattended and their incubation conditions are subject to effects of the environment. Nest temperature influences various aspects of hatchling biology, including sex determination. Past studies identified that sea turtle embryos have a warm female cool male response pattern and rainfall has been thought to cool nest temperature. The effects of rainfall or periods of drought were often inferred but not verified. Using laboratory and field studies, I examined how changes in environmental factors during incubation, particularly sand moisture, can affect nest conditions and hatchling biology. I derived temperature-sex ratio response curves for eggs incubated at different moisture levels to determine the effect of moisture on how embryos respond to temperature. I also studied how increasing moisture levels in relocated nests through daily watering influence nest conditions and discuss if this method is an effective mitigation strategy for the detrimental effects of increasing temperatures on embryo survival and sex ratios. I investigated how environmental factors, nest conditions, and hatchling biology can differ among sites on a nesting beach. Extreme moisture conditions, both low and high, result in a narrower transition between one sex ratio bias to another. I demonstrated that watering nests decreases nest temperatures and increases hatching success but watering has a minimal impact on sex ratios. Ambient beach conditions vary slightly in air temperature, rainfall, solar radiation, and humidity, depending on beach location. Nest conditions such as nest temperature and moisture also differ, but hatching success and sex ratios do not vary among different sites on the same nesting beach in Boca Raton, Florida. Ultimately, these studies together help identify and demonstrate how these environmental factors and drivers can affect the nest environment during incubation. Further developing our understanding of environmental factors, particularly nest moisture, and their variability will provide better predictions of future climate change effects and perhaps create more effective mitigation strategies.
Title: THE IMPACT OF ENVIRONMENTAL FACTORS ON LOGGERHEAD SEA TURTLE (CARETTA CARETTA) HATCHLING BIOLOGY.
134 views
72 downloads
Name(s): Lolavar, Alexandra A. , author
Wyneken, Jeanette , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Biological Sciences
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2019
Date Issued: 2019
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 100 p.
Language(s): English
Abstract/Description: The eggs of all sea turtle species develop in underground nests on oceanic nesting beaches. Eggs are unattended and their incubation conditions are subject to effects of the environment. Nest temperature influences various aspects of hatchling biology, including sex determination. Past studies identified that sea turtle embryos have a warm female cool male response pattern and rainfall has been thought to cool nest temperature. The effects of rainfall or periods of drought were often inferred but not verified. Using laboratory and field studies, I examined how changes in environmental factors during incubation, particularly sand moisture, can affect nest conditions and hatchling biology. I derived temperature-sex ratio response curves for eggs incubated at different moisture levels to determine the effect of moisture on how embryos respond to temperature. I also studied how increasing moisture levels in relocated nests through daily watering influence nest conditions and discuss if this method is an effective mitigation strategy for the detrimental effects of increasing temperatures on embryo survival and sex ratios. I investigated how environmental factors, nest conditions, and hatchling biology can differ among sites on a nesting beach. Extreme moisture conditions, both low and high, result in a narrower transition between one sex ratio bias to another. I demonstrated that watering nests decreases nest temperatures and increases hatching success but watering has a minimal impact on sex ratios. Ambient beach conditions vary slightly in air temperature, rainfall, solar radiation, and humidity, depending on beach location. Nest conditions such as nest temperature and moisture also differ, but hatching success and sex ratios do not vary among different sites on the same nesting beach in Boca Raton, Florida. Ultimately, these studies together help identify and demonstrate how these environmental factors and drivers can affect the nest environment during incubation. Further developing our understanding of environmental factors, particularly nest moisture, and their variability will provide better predictions of future climate change effects and perhaps create more effective mitigation strategies.
Identifier: FA00013390 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2019.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Loggerhead turtle
Sea turtles--Nests
Environment
Eggs--Hatchability
Eggs--Incubation
Moisture
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013390
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.