You are here
MULTI-MODEL DEEP LEARNING FOR GROUPER SOUND CLASSIFICATION AND SEIZURE PREDICTION
- Date Issued:
- 2019
- Abstract/Description:
- Deep learning models have been successfully applied to a variety of machine learning tasks, including image identification, image segmentation, object detection, speaker recognition, natural language processing, bioinformatics and drug discovery, among other things. This dissertation introduces Multi-Model Deep Learning (MMDL), a new ensemble deep learning approach for signal classification and event forecasting. The ultimate goal of the MMDL method is to improve classification and forecasting performances of individual classifiers by fusing results of participating deep learning models. The performance of such an ensemble model, however, depends heavily on the following two design features. Firstly, the diversity of the participating (or base) deep learning models is crucial. If all base deep learning models produce similar classification results, then combining these results will not provide much improvement. Thus, diversity is considered to be a key design feature of any successful MMDL system. Secondly, the selection of a fusion function, namely, a suitable function to integrate the results of all the base models, is important. In short, building an effective MMDL system is a complex and challenging process which requires deep knowledge of the problem context and a well-defined prediction process. The proposed MMDL method utilizes a bank of Convolutional Neural Networks (CNNs) and Stacked AutoEncoders (SAEs). To reduce the design complexity, a randomized generation process is applied to assign values to hyperparameters of base models. To speed up the training process, new feature extraction procedures which captures time-spatial characteristics of input signals are also explored. The effectiveness of the MMDL method is validated in this dissertation study with three real-world case studies. In the first case study, the MMDL model is applied to classify call types of groupers, an important fishery resource in the Caribbean that produces sounds associated with reproductive behaviors during yearly spawning aggregations. In the second case study, the MMDL model is applied to detect upcalls of North Atlantic Right Whales (NARWs), a type of endangered whales. NARWs use upcalls to communicate among themselves. In the third case study, the MMDL model is modified to predict seizure episodes. In all these cases, the proposed MMDL model outperforms existing state-of-the-art methods.
Title: | MULTI-MODEL DEEP LEARNING FOR GROUPER SOUND CLASSIFICATION AND SEIZURE PREDICTION. |
219 views
155 downloads |
---|---|---|
Name(s): |
Ibrahim, Ali K. , author Zhuang, Hanqi, Thesis advisor Florida Atlantic University, Degree grantor Department of Computer and Electrical Engineering and Computer Science College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2019 | |
Date Issued: | 2019 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 141 p. | |
Language(s): | English | |
Abstract/Description: | Deep learning models have been successfully applied to a variety of machine learning tasks, including image identification, image segmentation, object detection, speaker recognition, natural language processing, bioinformatics and drug discovery, among other things. This dissertation introduces Multi-Model Deep Learning (MMDL), a new ensemble deep learning approach for signal classification and event forecasting. The ultimate goal of the MMDL method is to improve classification and forecasting performances of individual classifiers by fusing results of participating deep learning models. The performance of such an ensemble model, however, depends heavily on the following two design features. Firstly, the diversity of the participating (or base) deep learning models is crucial. If all base deep learning models produce similar classification results, then combining these results will not provide much improvement. Thus, diversity is considered to be a key design feature of any successful MMDL system. Secondly, the selection of a fusion function, namely, a suitable function to integrate the results of all the base models, is important. In short, building an effective MMDL system is a complex and challenging process which requires deep knowledge of the problem context and a well-defined prediction process. The proposed MMDL method utilizes a bank of Convolutional Neural Networks (CNNs) and Stacked AutoEncoders (SAEs). To reduce the design complexity, a randomized generation process is applied to assign values to hyperparameters of base models. To speed up the training process, new feature extraction procedures which captures time-spatial characteristics of input signals are also explored. The effectiveness of the MMDL method is validated in this dissertation study with three real-world case studies. In the first case study, the MMDL model is applied to classify call types of groupers, an important fishery resource in the Caribbean that produces sounds associated with reproductive behaviors during yearly spawning aggregations. In the second case study, the MMDL model is applied to detect upcalls of North Atlantic Right Whales (NARWs), a type of endangered whales. NARWs use upcalls to communicate among themselves. In the third case study, the MMDL model is modified to predict seizure episodes. In all these cases, the proposed MMDL model outperforms existing state-of-the-art methods. | |
Identifier: | FA00013382 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2019. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Deep Learning Machine Learning Neural networks (Computer science) Groupers Whales Vocalization, Animal Seizures |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013382 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |