You are here

A GPU- BASED SIMULATED ANNEALING ALGORITHM FOR INTENSITY-MODULATED RADIATION THERAPY

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
Simulating Annealing Algorithm (SAA) has been proposed for optimization of the Intensity-Modulated Radiation Therapy (IMRT). Despite the advantage of the SAA to be a global optimizer, the SAA optimization of IMRT is an extensive computational task due to the large scale of the optimization variables, and therefore it requires significant computational resources. In this research we introduce a parallel graphics processing unit (GPU)-based SAA developed in MATLAB platform and compliant with the computational environment for radiotherapy research (CERR) for IMRT treatment planning in order elucidate the performance improvement of the SAA in IMRT optimization. First, we identify the “bottlenecks” of our code, and then we parallelize those on the GPU accordingly. Performance tests were conducted on four different GPU cards in comparison to a serial version of the algorithm executed on a CPU. A gradual increase of the speedup factor as a function of the number of beamlets was found for all four GPUs. A maximum speedup factor of 33.48 was achieved for a prostate case, and 30.51 for a lung cancer case when the K40m card and the maximum number of beams was utilized for each case. At the same time, the two optimized IMRT plans that were created (prostate and lung cancer plans) were met the IMRT optimization goals.
Title: A GPU- BASED SIMULATED ANNEALING ALGORITHM FOR INTENSITY-MODULATED RADIATION THERAPY.
95 views
31 downloads
Name(s): Galanakou, Panagiota, author
Leventouri, Theodora , Thesis advisor
Florida Atlantic University, Degree grantor
Department of Physics
Charles E. Schmidt College of Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2019
Date Issued: 2019
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 76 p.
Language(s): English
Abstract/Description: Simulating Annealing Algorithm (SAA) has been proposed for optimization of the Intensity-Modulated Radiation Therapy (IMRT). Despite the advantage of the SAA to be a global optimizer, the SAA optimization of IMRT is an extensive computational task due to the large scale of the optimization variables, and therefore it requires significant computational resources. In this research we introduce a parallel graphics processing unit (GPU)-based SAA developed in MATLAB platform and compliant with the computational environment for radiotherapy research (CERR) for IMRT treatment planning in order elucidate the performance improvement of the SAA in IMRT optimization. First, we identify the “bottlenecks” of our code, and then we parallelize those on the GPU accordingly. Performance tests were conducted on four different GPU cards in comparison to a serial version of the algorithm executed on a CPU. A gradual increase of the speedup factor as a function of the number of beamlets was found for all four GPUs. A maximum speedup factor of 33.48 was achieved for a prostate case, and 30.51 for a lung cancer case when the K40m card and the maximum number of beams was utilized for each case. At the same time, the two optimized IMRT plans that were created (prostate and lung cancer plans) were met the IMRT optimization goals.
Identifier: FA00013372 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2019.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Radiotherapy, Intensity-Modulated
Annealing algorithm
Simulated annealing (Mathematics)
Graphics processing units
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013372
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.