You are here
CONTRIBUTIONS TO QUANTUM-SAFE CRYPTOGRAPHY: HYBRID ENCRYPTION AND REDUCING THE T GATE COST OF AES
- Date Issued:
- 2019
- Abstract/Description:
- Quantum cryptography offers a wonderful source for current and future research. The idea started in the early 1970s, and it continues to inspire work and development toward a popular goal, large-scale communication networks with strong security guarantees, based on quantum-mechanical properties. Quantum cryptography builds on the idea of exploiting physical properties to establish secure cryptographic operations. A particular quantum-based protocol has gathered interest in recent years for its use of mesoscopic coherent states. The AlphaEta protocol has been designed to exploit properties of coherent states of light to transmit data securely over an optical channel. AlphaEta aims to draw security from the uncertainty of any measurement of the transmitted coherent states due to intrinsic quantum noise. We propose a framework to combine this protocol with classical preprocessing, taking into account error-correction for the optical channel and establishing a strong provable security guarantee. Integrating a state-of-the-art solution for fast authenticated encryption is straightforward, but in this case the security analysis requires heuristic reasoning.
Title: | CONTRIBUTIONS TO QUANTUM-SAFE CRYPTOGRAPHY: HYBRID ENCRYPTION AND REDUCING THE T GATE COST OF AES. |
181 views
119 downloads |
---|---|---|
Name(s): |
Pham, Hai, author Steinwandt, Rainer, Thesis advisor Florida Atlantic University, Degree grantor Charles E. Schmidt College of Science Department of Mathematical Sciences |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2019 | |
Date Issued: | 2019 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 74 p. | |
Language(s): | English | |
Abstract/Description: | Quantum cryptography offers a wonderful source for current and future research. The idea started in the early 1970s, and it continues to inspire work and development toward a popular goal, large-scale communication networks with strong security guarantees, based on quantum-mechanical properties. Quantum cryptography builds on the idea of exploiting physical properties to establish secure cryptographic operations. A particular quantum-based protocol has gathered interest in recent years for its use of mesoscopic coherent states. The AlphaEta protocol has been designed to exploit properties of coherent states of light to transmit data securely over an optical channel. AlphaEta aims to draw security from the uncertainty of any measurement of the transmitted coherent states due to intrinsic quantum noise. We propose a framework to combine this protocol with classical preprocessing, taking into account error-correction for the optical channel and establishing a strong provable security guarantee. Integrating a state-of-the-art solution for fast authenticated encryption is straightforward, but in this case the security analysis requires heuristic reasoning. | |
Identifier: | FA00013339 (IID) | |
Degree granted: | Dissertation (Ph.D.)--Florida Atlantic University, 2019. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Cryptography Quantum computing Algorithms Mesoscopic coherent states |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013339 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |