You are here

DEVELOPMENT OF AN ALGORITHM TO GUIDE A MULTI-POLE DIAGNOSTIC CATHETER FOR IDENTIFYING THE LOCATION OF ATRIAL FIBRILLATION SOURCES

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
Atrial Fibrillation (AF) is a debilitating heart rhythm disorder affecting over 2.7 million people in the US and over 30 million people worldwide annually. It has a high correlation with causing a stroke and several other risk factors, resulting in increased mortality and morbidity rate. Currently, the non-pharmocological therapy followed to control AF is catheter ablation, in which the tissue surrounding the pulmonary veins (PVs) is cauterized (called the PV isolation - PVI procedure) aims to block the ectopic triggers originating from the PVs from entering the atrium. However, the success rate of PVI with or without other anatomy-based lesions is only 50%-60%. A major reason for the suboptimal success rate is the failure to eliminate patientspecific non-PV sources present in the left atrium (LA), namely reentry source (a.k.a. rotor source) and focal source (a.k.a. point source). It has been shown from several animal and human studies that locating and ablating these sources significantly improves the long-term success rate of the ablation procedure. However, current technologies to locate these sources posses limitations with resolution, additional/special hardware requirements, etc. In this dissertation, the goal is to develop an efficient algorithm to locate AF reentry and focal sources using electrograms recorded from a conventionally used high-resolution multi-pole diagnostic catheter.
Title: DEVELOPMENT OF AN ALGORITHM TO GUIDE A MULTI-POLE DIAGNOSTIC CATHETER FOR IDENTIFYING THE LOCATION OF ATRIAL FIBRILLATION SOURCES.
0 views
0 downloads
Name(s): Ganesan, Prasanth, author
Ghoraani, Behnaz, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2019
Date Issued: 2019
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 141 p.
Language(s): English
Abstract/Description: Atrial Fibrillation (AF) is a debilitating heart rhythm disorder affecting over 2.7 million people in the US and over 30 million people worldwide annually. It has a high correlation with causing a stroke and several other risk factors, resulting in increased mortality and morbidity rate. Currently, the non-pharmocological therapy followed to control AF is catheter ablation, in which the tissue surrounding the pulmonary veins (PVs) is cauterized (called the PV isolation - PVI procedure) aims to block the ectopic triggers originating from the PVs from entering the atrium. However, the success rate of PVI with or without other anatomy-based lesions is only 50%-60%. A major reason for the suboptimal success rate is the failure to eliminate patientspecific non-PV sources present in the left atrium (LA), namely reentry source (a.k.a. rotor source) and focal source (a.k.a. point source). It has been shown from several animal and human studies that locating and ablating these sources significantly improves the long-term success rate of the ablation procedure. However, current technologies to locate these sources posses limitations with resolution, additional/special hardware requirements, etc. In this dissertation, the goal is to develop an efficient algorithm to locate AF reentry and focal sources using electrograms recorded from a conventionally used high-resolution multi-pole diagnostic catheter.
Identifier: FA00013310 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2019.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Atrial Fibrillation--diagnosis
Algorithm
Catheter ablation
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013310
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.